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Weyl semimetal and topological phase transition in five dimensions
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We study two Weyl semimetal generalizations in five dimensions (5D) which have Yang monopoles and
linked Weyl surfaces in the Brillouin zone, respectively, and carry the second Chern number as a topological
number. In particular, we show a Yang monopole naturally reduces to a Hopf link of two Weyl surfaces when
the TP (time reversal combined with space inversion) symmetry is broken. We then examine the phase transition
between insulators with different topological numbers in 5D. In analogy to the three-dimensional case, 5D Weyl
semimetals emerge as intermediate phases during the topological phase transition.
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I. INTRODUCTION

The discovery of topological states of matter has greatly
enriched the variety of condensed matter in nature [1].
These states usually undergo phase transitions involving
a change of topology of the ground-state wave function,
which are called topological phase transitions (TPTs). In
three dimensions (3D), a significant topological state is the
Weyl semimetal [2–5], which plays a key role in TPTs
of 3D insulators. An example is the time-reversal-invariant
(TRI) transition between a noncentrosymmetric topological
insulator (TI) [6,7] and a normal insulator (NI) in 3D, during
which an intermediate TRI Weyl semimetal phase inevitably
occurs [8,9]. Another example is the TPT between different
3D Chern insulators (CIs) [10], where an intermediate Weyl
semimetal phase is also required [11]. In both examples, the
topological numbers of the insulators are transferred via Weyl
points of the Weyl semimetal phase, which behave as “Dirac
monopoles” of the Berry curvature in the Brillouin zone (BZ).
The electrons around each Weyl point obey the Weyl equation,
with a chirality equal to the first Chern number C1 = ±1 of
the Berry curvature around the Weyl point.

Recently, there has been a revival of interest in gapless topo-
logical phases in higher dimensions, aimed at understanding
roles of higher-dimensional topological numbers [7,12–18].
In particular, the Weyl semimetal can be generalized to five
dimensions (5D) in two ways: the first is to promote Weyl
fermions in 3D to chiral fermions in 5D, which are described
by a four-component spinor and have a twofold-degenerate
linear energy spectrum. The Dirac monopoles associated with
the Weyl points in 3D become the Yang monopoles in 5D [19],
which carry a non-Abelian second Chern number CNA

2 =
±1 of the SU(2) Berry curvature of the twofold-degenerate
valence (conduction) band [20]. The Yang monopole was first
introduced into condensed-matter physics in the construction
of the four-dimensional (4D) quantum Hall effect [21]. The
second way is to keep the energy spectrum nondegenerate
while promoting the Weyl points to linked two-dimensional
(2D) Weyl surfaces in the 5D BZ [12,15]. In this case, each
Weyl surface carries an Abelian second Chern number CA

2 ∈ Z
of the U(1) Berry curvature, which is equal to the sum of its
linking number with all the other Weyl surfaces [15]. Two
natural questions are then whether the two 5D Weyl semimetal
generalizations are related and whether they play the role
of intermediate phases during the TPT of certain gapped
topological states of matter in 5D.

In this paper, we show the two 5D Weyl semimetal
generalizations, namely, the Yang monopole and the linked
Weyl surfaces in 5D, are closely related via the TP symmetry
breaking, where T and P stand for time-reversal and space-
inversion, respectively. We then demonstrate they also arise
as intermediate phases in the TPT between 5D CI and NI
and between 5D TI and NI with particle-hole symmetry C
that satisfies C2 = −1 [7,22,23]. In analogy to 3D cases, the
Weyl arcs on the boundary of the 5D Weyl semimetal [15]
naturally interpolate between the surface states of different
gapped topological phases.

II. YANG MONOPOLES AND LINKED WEYL SURFACES

In 3D, a Weyl semimetal is known as a semimetal which
is gapless at several points in the BZ, i.e., Weyl points. The
low-energy bands near a Weyl point are generically given by
a 2 × 2 Weyl fermion Hamiltonian HW (k) = ∑3

i=1 vi(ki −
kW
i )σ i up to an identity term, where k is the momentum

and σ i (i = 1,2,3) are the Pauli matrices. The Weyl point
is located at kW , while the velocities vi �= 0 (i = 1,2,3) play
the role of light speed. By defining the U(1) Berry connection
ai(k) = i〈uk|∂ki

|uk〉 of the valence (conduction) band wave
function |uk〉, one can show the first Chern number of the
Berry curvature fij = ∂ki

aj − ∂kj
ai on a 2D sphere enclosing

kW is C1 = sgn(v1v2v3) = ±1, where sgn(x) is the sign of
x. Therefore, the Weyl point kW can be viewed as a Dirac
monopole of the Berry connection.

The first way to generalize the Weyl semimetal to 5D is to
replace the Weyl fermions above by the chiral Dirac fermions
in 5D:

HY (k) =
5∑

i=1

vi

(
ki − kY

i

)
γ i , (1)

where k is now the 5D momentum and γ i (1 � i � 5) are the
4 × 4 gamma matrices satisfying the anticommutation relation
{γ i,γ j } = 2δij . The band structure of such a Hamiltonian is
fourfold degenerate at kY and is twofold degenerate every-
where else with a linear dispersion. The twofold degeneracy
enables us to define a U(2) Berry connection a

αβ

i (k) =
i〈uα

k |∂ki
|uβ

k〉, where |uα
k〉 (α = 1,2) denote the two degenerate

wave functions of the valence bands [20]. One can then show
the non-Abelian second Chern number CNA

2 on a 4D sphere
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TABLE I. A Hamiltonian H (k) with (TP)2 = +1,0, − 1 is in the
real (R), complex (C), and quaternion (Q) classes of the Wigner-
Dyson threefold way, respectively, and the Hamiltonians of the 2D
Dirac point, 3D Weyl point, and 5D Yang monopole shown here
exactly fall into these three classes.

(TP)2 Class d Minimal model Hamiltonian

+1 R 2 H (k) = k1σ
1 + k2σ

3

0 C 3 H (k) = k1σ
1 + k2σ

2 + k3σ
3

−1 Q 5 H (k) = ∑5
i=1 kiγ

i

enclosing kY is

CNA
2 =

∮
S4

d4kεijkl[tr(fijfkl) − (trfij )(trfkl)]

32π2
= ±1, (2)

where fij = ∂ki
aj − ∂kj

ai − i[ai,aj ] is the non-Abelian U(2)
Berry curvature. In this calculation, only the traceless SU(2)
part of fij contributes. Therefore, kY can be viewed as a
Yang monopole in the BZ, which is the source of the SU(2)
magnetic field in 5D [19]. However, the generic twofold
degeneracy of Hamiltonian HY (k) requires the system to have
certain symmetries. A common symmetry of this kind is
the combined TP symmetry of time reversal and inversion,
which is antiunitary and satisfies (TP)2 = −1 for fermions.
Therefore, the Yang monopole 5D generalization is not in the
same symmetry class as that of the generic 3D Weyl semimetal.

We remark here that the above 5D Yang monopole, together
with the 3D Weyl point and the 2D Dirac point (e.g., in
graphene), corresponds exactly to the quaternion (pseudoreal),
complex, and real classes of the Wigner-Dyson threefold
way [24,25], and the antiunitary TP symmetry plays a key role
in the classification. Basically, a matrix Hamiltonian H (k) falls
into these three classes if (TP)2 = −1,0,+1, respectively (0
stands for no TP symmetry), and one can show d = 5,3,2 are
the corresponding spatial dimensions where pointlike gapless
manifolds in the BZ are stable. The minimal Hamiltonians of
the three classes are listed in Table I. In particular, (TP)2 = +1
is possible for systems with a negligible spin-orbital coupling
such as graphene, where the electrons can be regarded as
spinless.

The second 5D Weyl semimetal generalization requires no
symmetry (other than the translational symmetry) and thus
is in the same symmetry class as the 3D Weyl semimetal.
Its band structure is nondegenerate except for a few closed
submanifolds Mj called Weyl surfaces, where two bands
cross each other [15]. The effective Hamiltonian near each
Mj involves only the two crossing bands and takes the
2 × 2 form HW (k) = ξ0(k) + ∑3

i=1 ξi(k)σ i . Therefore, Mj is
locally determined by three conditions ξi(k) = 0 (i = 1,2,3).
In one band α of the two associated with Mj , one can define
a U(1) Berry connection a

(α)
i (k) = i〈uα

k |∂ki
|uα

k〉 with its wave
function |uα

k〉 and define the U(1) second Chern number ofMj

in band α on a 4D closed manifold V that encloses only Mj

as

CA
2 (Mj ,α) =

∮
V

d4kεijklf
(α)
ij f

(α)
kl

32π2
∈ Z, (3)
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FIG. 1. (a) Doubly degenerate band structure near a Yang
monopole plotted at k̃i = 0 (2 � i � 5). (b) The band structure and
Weyl surfaces in the presence of the TP-breaking b term. (c) Yang
monopole enclosed by S4 shown in the 3D subspace k̃3 = k̃5 = 0. (d)
The Hopf link of Weyl surfaces M1 and M2 shown in 3D subspace
k̃3 = k̃5 = 0 (thick red and blue lines) and a 4D manifoldV = S2 × S2

enclosing Weyl surface M1 (appearing as a torus).

where f
(α)
ij is the Berry curvature of a

(α)
i . Remarkably, we

showed in an earlier paper that [15]

CA
2 (Mj ,α) =

∑
�∈α,� �=j

�(Mj ,M�), (4)

where �(Mj ,M�) is the linking number between Mj and
M� in the 5D BZ and M� runs over all the Weyl surfaces
associated with band α.

The relation between the above two 5D generalizations can
be most easily seen in the following four-band model with
Hamiltonian

H ′
Y (k) =

5∑
i=1

(
ki − kY

i

)
γ i + b

i[γ 4,γ 5]

2
, (5)

where b is a real parameter that breaks the TP symmetry.
When b = 0, the Hamiltonian reduces to the Yang monopole
Hamiltonian HY (k) in Eq. (1), where we have set all the
velocities to vi = 1. When b �= 0, the TP symmetry is
broken, and the Yang monopole necessarily evolves into
linked Weyl surfaces. This can be seen explicitly by deriving
the energy spectrum εα

k = ±{[(k̃2
1 + k̃2

2 + k̃2
3)1/2 ± b]2 + k̃2

4 +
k̃2

5}1/2, where we have defined k̃i = ki − kY
i (1 � i � 5). Here

1 � α � 4 denotes the αth band in energies. Figures 1(a)
and 1(b) show the band structures for b = 0 and b �= 0,
respectively, where k̃2,k̃3,k̃4,k̃5 are assumed to be zero. In the
b �= 0 case, one can readily identify three Weyl surfaces: M1

between bands ε2
k and ε3

k, M2 between bands ε1
k and ε2

k, and
M′

2 between bands ε3
k and ε4

k [see Fig. 1(b)].M1 is a 2D sphere
given by k̃2

1 + k̃2
2 + k̃2

3 = b2 and k̃4 = k̃5 = 0, while M2 and
M′

2 coincide and are a 2D plane given by k̃1 = k̃2 = k̃3 = 0.
In particular, the second band ε2

k [thick red line in Fig. 1(b)]
is associated with M1 and M2, which form a Hopf link in
5D, as can be seen in the 3D subspace k3 = k5 = 0 plotted
in Fig. 1(d). In the limit b → 0, the radius of M1 contracts
to zero, so M1 collapses onto M2 (and M′

2) and becomes

235106-2



WEYL SEMIMETAL AND TOPOLOGICAL PHASE . . . PHYSICAL REVIEW B 95, 235106 (2017)

the fourfold-degenerate Yang monopole in Fig. 1(c). One can
add other small TP-breaking terms to Eq. (5), and the above
picture remains topologically unchanged.

Due to the TP symmetry breaking, the U(2) gauge field
ai(k) is broken down to two U(1) gauge fields, a

(1)
i (k) and

a
(2)
i (k), in bands ε1

k and ε2
k. One can easily check the Abelian

second Chern number of M1 calculated from a
(2)
i (k) is

CA
2 (M1,2) = 1, which is defined on the 4D manifold V with

topology S2 × S2, as shown in Fig. 1(d) [15]. This is closely
related to the non-Abelian second Chern number CNA

2 = 1
of the Yang monopole before symmetry breaking. In fact,
ignoring the gauge invariance, we can still define the U(2)
gauge field a

αβ

i (k) using the two valence bands of Hamiltonian
H ′

Y (k), which is singular on M1 but not on M2 [since M2

is between the two bands defining the U(2) Berry connection]
and still satisfies CNA

2 = 1 on a sphere S4 enclosing M1. The
sphere S4 can be deformed adiabatically into V in Fig. 1(d),
so we also have CNA

2 = 1 on V . To see CNA
2 is equal to

CA
2 (M1,2), we can take the limit where V is a thin “torus”

S2 × S2; that is, its smaller radius (distance to M1) tends
to zero. In this limit, one will find

∫
V d4kεijklf 12

ij f 21
kl = 0;

namely, the off-diagonal elements of field strength fij do not
contribute (see Appendix A). So CNA

2 is given solely by the
diagonal field strengths f 11

ij and f 22
ij , which can be roughly

identified with U(1) Berry curvatures of bands 1 and 2. By
calculations, one can show εijklf 11

ij f 11
kl = εijkl trfij trfkl = 0.

A heuristic understanding of this is the Berry curvature f 11
ij of

band 1 sees onlyM2, while the U(1) trace Berry curvature trfij

sees only M1, so both of them do not see linked Weyl surfaces
and have zero contribution to the second Chern number.
One can then readily show CNA

2 = ∫
V d4kεijklf 22

ij f 22
kl /32π2 =∫

V d4kεijklf
(2)
ij f

(2)
kl /32π2 = CA

2 (2,M1). We note that in this
limit where V is closely attached to M1, only the diagonal
elements of fij contribute, while in the Yang monopole case
which is spherically symmetric, the diagonal and off-diagonal
elements are equally important [19].

In high-energy physics, a U(2) gauge symmetry can be
spontaneously broken down to U(1) × U(1) via the Georgi-
Glashow mechanism [26] with an isospin-1 Higgs field. In
5D space, SU(2) gauge fields are associated with pointlike
Yang monopoles, while U(1) gauge fields are associated with
monopole 2-branes (codimension-3 objects). We conjecture
that a gauge symmetry breaking from U(2) to U(1) × U(1) in
5D will always break an SU(2) Yang monopole into two linked
U(1) monopole 2-branes M1 and M2, where M1 is coupled
to one of the two U(1) gauge fields, while M2 is coupled to
both U(1) gauge fields with opposite monopole charges.

III. TOPOLOGICAL PHASE TRANSITIONS IN 5D

It is known that 3D Weyl semimetals play an important role
in 3D TPTs. An example is the TPT of the 3D CI with no
symmetry, which is characterized by three integers (n1,n2,n3),
with ni being the first Chern number in the plane orthogonal
to ki in the BZ [10,11]. The CI becomes a NI when all ni = 0.
The TPT from a 3D NI to a (0,0,1) CI involves an intermediate
Weyl semimetal phase, as shown in Figs. 2(a)–2(c). By creating
a pair of Weyl points with opposite monopole charges and
annihilating them after winding along a closed cycle in the k3

k2
k1

k3

(a) (b) (c)

+-
+

-

3d CI3d Weyl3d NI

k2
k1

k3

(d) (e) (f)

+
-

+
-+

+
-

- +
+ --

3d Weyl 3d NI3d TI

FIG. 2. (a)–(c) TPT from a 3D NI to a 3D CI via creation and
annihilation of a pair of Weyl points in the BZ. (d)–(f) TPT from a
3D TI to a 3D NI, which involves winding of (multiples of) four Weyl
points.

direction, one creates Berry flux quanta in the k1-k2 plane, and
n3 increases by 1 [11]. At the same time, a Fermi arc arises
on the real-space boundary connecting the projections of the
two Weyl points [4], which finally becomes a closed Fermi
loop along k3. Another example is the TPT from TI to NI,
which are the two phases in the Z2 classification of 3D TRI
insulators [6,7]. When the inversion symmetry is broken, an
intermediate TRI Weyl semimetal arises [8,9], which contains
(multiples of) four Weyl points, as shown in Figs. 2(d)–2(f).
The TPT is done by creating two pairs of Weyl points with
opposite charges, winding them along a loop that encloses a
TRI point (e.g.,  point), then annihilating them in pairs with
their partners exchanged. Meanwhile, the Fermi surface loop
of the Dirac surface states of TI breaks into two Fermi arcs
connecting the four Weyl points, which vanish when all the
Weyl points are gone.

Similarly, the 5D TPTs involve creation of 5D Weyl
semimetal phases. We first examine the TPT of 5D CIs with
no symmetry, which are characterized by five second Chern
numbers ni in the 4D hyperplanes of the BZ orthogonal to
ki (1 � i � 5) and ten first Chern numbers nij in the 2D
planes parallel to ki and kj (1 � i < j � 5). The second Chern
numbers ni are even under both T and P transformations,
while the first Chern numbers nij are odd under T and even
under P. Here we shall show that changes of the five ni will
involve creation and annihilation of linked Weyl surfaces in the
BZ. A simple example without TP symmetry is the following
four-band Hamiltonian:

HQH (k) =
5∑

i=1

ξi(k)γ i + b
i[γ 3,γ 4]

2
, (6)

where ξi(k) = sin ki for 1 � i � 4 and ξ5(k) = m +∑4
i=1(1 − cos ki) + η(1 − cos k5). Here m is a tuning param-

eter, while 0 � b < η < 1 − b. We shall label each band
by its order in energies and assume the lower two bands
are occupied. Through an analysis similar to what we did
following Eq. (5), the Weyl surfaces between bands 2 and
3 are given by ξ 2

1 + ξ 2
2 + ξ 2

5 = b2 and ξ3 = ξ4 = 0, while
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1
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2

FIG. 3. The evolution of Weyl surfaces in the 5D TPT from NI
to CI, plotted in 3D subspace k2 = k4 = 0. The blue loops are Weyl
surfaces between bands 2 and 3, while the red loop is that between
bands 1 and 2.

those between bands 1 and 2 (also 3 and 4) are given by
ξ1 = ξ2 = ξ5 = 0. These two kinds of Weyl surfaces are
drawn as blue and red in the 3D subspace k2 = k4 = 0 of
the BZ shown in Fig. 3, respectively, where they appear as
one-dimensional loops.

When m > b, the system is a 5D NI with all ni and nij

zero and no Weyl surfaces [Fig. 3(a)]. The TPT to a 5D CI
with n5 = 1 is driven by decreasing m, which experiences the
following stages: when −b < m < b, a Weyl surface between
bands 2 and 3 arises around the origin, which is topologically a
2D sphere in the k3 = k4 = 0 hyperplane [Figs. 3(b) and 3(c)].
When b − 2η < m < −b, as shown in Fig. 3(d), the 2D sphere
between bands 2 and 3 splits into two smaller spheres M1

and M3 (blue) in the k3 = k4 = 0 hyperplane, while another
2D sphere Weyl surface M2 (red) between bands 1 and 2
is created in the k1 = k2 = 0 plane, which is linked to both
M1 and M3. As m is further decreased, M1 and M3 will
move along ±k5, respectively, and finally merge into a single
Weyl surface when −b − 2η < m < b − 2η [Fig. 3(e)]. This
Weyl surface then shrinks to zero, and the system becomes
a 5D CI with n5 = 1 for b − 2 < m < −b − 2η, leaving a
cylindrical Weyl surface M2 between bands 1 and 2 [and also
one between bands 3 and 4, Fig. 3(f)]. We note that if b = 0, the
TP symmetry is restored, and the two blue Weyl surfaces M1

and M3 will collapse into two Yang monopoles of opposite
monopole charges CNA

2 . The TPT process then becomes the
creation, winding, and annihilation of two Yang monopoles.

This TPT is also accompanied by a surface-state evolution
from trivial to nontrivial. It has been shown [15] that a 5D Weyl
semimetal with linked Weyl surfaces contains protected Weyl
arcs in the 4D momentum space of surface states, which have
linear dispersions in the other three directions perpendicular
to the arc. By taking an open boundary condition along the
k3 direction, one can obtain a Weyl arc on the 4D boundary
connecting the projections of the two Weyl surface Hopf links
[Figs. 3(d) and 3(e)]. When the system becomes a CI, the
Weyl arc develops into a noncontractible Weyl loop along k5

as expected.

The second example is the TPT between TP-breaking 5D
insulators with particle-hole symmetry C satisfying C2 =
−1, which are shown to be classified by Z2 into 5D TIs
and NIs [7,22,23]. Here we consider an eight-band model
Hamiltonian of a 5D TI as follows:

HTI(k) =
6∑

i=1

ζi(k)i + HA, (7)

where i (1 � i � 7) are the 8 × 8 gamma matrices chosen
so that 1, 2, 3, and 7 are real and 4, 5, and
6 are imaginary, ζi(k) = sin ki for 1 � i � 5, ζ6(k) = m +∑5

i=1 ti(1 − cos ki) with ti > 0, and

HA = iη0
127 + η1

7 sin k5 + iη2
345 + iη3

34

(8)
is a symmetry-breaking perturbation. The T, P, and C
transformation matrices are given by T = 457, P = i6,
and C = 45, and a Hamiltonian H (k) will have these
symmetries if T †H (−k)T = H ∗(k), P†H (−k)P = H (k),
and C†H (−k)C = −H ∗(k), respectively. It is then easy to
see that HA respects the C symmetry but breaks T, P, and
TP symmetries. In particular, only η1 and η2 break the TP
symmetry.

In the absence of HA, the system is a 5D NI if m > 0 and
is a 5D TI if m < 0. With the symmetry-breaking term HA,
the calculation of the band structure of HTI(k) becomes more
complicated. For simplicity, we shall examine only the limiting
case where (t1/t2)2 + η2

0 < 1, |η0| 	 |η1|, |η0| 	 |η2|, and
|η0η1| 	 |η3| [with t1 and t2 as defined in the expression for
ζ6(k)]. We shall label each band by its order in energies and
keep the Fermi energy at zero, i.e., between bands 4 and 5,
as required by the C symmetry. To a good approximation, the
Weyl surfaces between bands 4 and 5 are given by ζ 2

1 + ζ 2
2 =

η2
0, ζ 2

3 + ζ 2
4 + ζ 2

5 = η2
2, and ζ6 = 0, while those between bands

5 and 6 (and also between 3 and 4) are given by ζ3 = ζ4 =
ζ5 = 0. The TPT can be driven by tuning m from negative (TI)
to positive (NI), and the evolution of these low-energy Weyl
surfaces is illustrated in Figs. 4(a)–4(f) in the 3D subspace
k2

1 + k2
2 = η2

0 and k4 = 0. The small blue loops are the images
of Weyl surfaces between bands 4 and 5, while the red loop
at k3 = k5 = 0 is that between bands 5 and 6. At first, two
pairs of blue Weyl surfaces arise unlinked [Fig. 4(b)]. As m

increases, they merge into four new Weyl surfaces linked with
the red Weyl surface, which then wind around the red Weyl
surface and merge into unlinked pairs again with their partners
exchanged [Figs. 4(c)–4(e)]. Finally, the four unlinked blue
Weyl surfaces contract to zero, and the system becomes a 5D
NI. Similar to the CI case, if η1 = η2 = 0, the TP symmetry
is recovered, and the four blue Weyl surfaces will collapse
into four Yang monopoles. The TPT process then involves the
winding of Yang monopoles instead of linked Weyl surfaces.
The topological surface states of the system also involve a
topological transition during the TPT. The topological surface
states of a noncentrosymmetric 5D TI are generically a “Weyl
ring,” as shown in Fig. 4(g). The TPT then breaks into two
Weyl arcs [Fig. 4(h)], which finally vanish when entering the
NI phase.

In conclusion, we showed that 5D Weyl semimetals with
Yang monopoles are protected by the TP symmetry and
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FIG. 4. (a)–(f) The TPT from 5D TI to NI shown in 3D subspace
k2

1 + k2
2 = η2

0 and k4 = 0. The small blue loops are the Weyl surfaces
at the Fermi energy between bands 4 and 5, while the large red loop
is that between bands 3 and 4. (g) and (h) The evolution of surface
states from a Weyl ring to two Weyl arcs during the TPT.

generically reduce to 5D Weyl semimetals with linked Weyl
surfaces in the presence of TP symmetry breaking. We
therefore expect that Yang monopoles generically break into
linked U(1) monopole 2-branes in 5D theories of gauge
symmetry breaking from U(2) to U(1) × U(1). As gapless
states carrying the second Chern number, they emerge as
intermediate phases in the TPTs between CIs and NIs or
between TIs and NIs in 5D space, generalizing the connection
between gapless and gapped topological phases in 3D [8,9].
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APPENDIX A: DERIVATION OF C N A
2 = C A

2 (M1,2)
ON MANIFOLD V

It is sufficient to do the calculation in the limit where V
is thin, i.e., close to Weyl surface M1. For the model given
in Eq. (5), such a 4D manifold V can be given by (κ − b)2 +
k̃2

4 + k̃2
5 = ε2, where κ =

√
k̃2

1 + k̃2
2 + k̃2

3 and ε 
 b. Using 

matrices defined in [15], the wave function |u2
k〉 is given by

∣∣u2
k

〉 =
(

cos
θ

2
cos

α

2
, sin

θ

2
cos

α

2
eiφ,

× cos
θ

2
sin

α

2
eiψ , sin

θ

2
cos

α

2
eiφ+iψ

)
, (A1)

while |u1
k〉 is well approximated by

∣∣u1
k

〉 =
(

sin
θ

2
, − cos

θ

2
eiφ,0,0

)
, (A2)

where we have defined the angles α,ψ,θ,φ by sin αeiψ =
(k4 + ik5)/ε and sin θeiφ = (k1 + ik2)/κ . This approximation
basically ignores the dependence of |u1

k〉 on k4 and k5, which
is valid since |k̃4,5| < ε 
 b and |u1

k〉 is nonsingular at M1.

The nonzero components of the U(2) Berry connection a
αβ

k
can then be shown to be

a11
φ = −1 + cos θ

2
, a22

φ = −1 − cos θ

2
,

a22
ψ = −1 − cos α

2
, a21

θ = i

2
cos θ cos

α

2
,

a21
φ = 1

2
sin θ cos

α

2
, (A3)

with a12
i = a21∗

i . It is then straightforward to calculate the
non-Abelian field strengths f

αβ

ij . In particular, one can prove
that εijklf 12

ij f 21
kl = [sin 2θ (1 − cos α) sin α]/8, which gives

zero when integrated over the four angles. Therefore, the
off-diagonal components of fij have no contribution to the
second Chern number CNA

2 . Further, one can show f 22
θφ =

−f 11
θφ = f

(2)
θφ + (sin 2θ cos α)/4 and f 22

αψ = f
(2)
αψ = (sin α)/2

are the only rest nonzero terms, where f
(1)
ij and f

(2)
ij are the U(1)

Berry connection in bands 1 and 2, respectively. Therefore,
we have εijklf 11

ij f 11
kl = εijkl trfij trfkl = 0 and εijklf 22

ij f 22
kl =

εijklf
(2)
ij f

(2)
kl + sin 2θ sin 2α. The non-Abelian second Chern

number is then

CNA
2 =

∫ π

0
dθ

∫ 2π

0
dφ

∫ π

0
dα

∫ 2π

0
dψ

εijklf 22
ij f 22

kl

32π2

=
∮
V

d4kεijklf
(2)
ij f

(2)
kl

32π2
= CA

2 (2,M1) = 1. (A4)

If we rewrite the non-Abelian field strength as fij = f a
ij t

a ,
where ta = (1,σ 1,σ 2,σ 3)/2 (a = 0,1,2,3) are the generators
of U(2), the non-Abelian second Chern number on V can be
expressed as

CNA
2 = −c0 + c1 + c2 + c3,

where we have defined ca = ∫
V d4kεijklf a

ij f
a
kl/64π2. In the

limit where V is close to M1, the above calculations tell us
that c0 = c1 = c2 = 0 and c3 = C2(2,M1) = 1. In contrast, in
the Yang monopole case, which is rotationally symmetric, one
can show c0 = 0 and c1 = c2 = c3 = 1/3. Therefore, the T P

symmetry breaking also breaks the symmetry between c1, c2,
and c3.

APPENDIX B: WEYL SURFACES OF MODEL
HAMILTONIAN (7)

Compared to the four-band model in Eq. (6) which can be
easily diagonalized, the eight-band model HTI(k) in Eq. (7) has
a band structure more difficult to calculate. Here we present an
easier way to examine the band structure with the assumptions
(t1/t2)2 + η2

0 < 1, |η0| 	 |η1|, |η0| 	 |η2|, and |η0η1| 	 |η3|.
For the moment we shall assume η3 = 0. To solve the

Schrödinger equation HTI|ψ〉 = E|ψ〉, one can first rewrite
it as H 2

TI|ψ〉 = E2|ψ〉, which reduces to(
E2 −

6∑
i=1

ξ 2
i − η2

0 − η2
1 sin2 k5 − η2

2

)
|ψ〉 = (�0 + �2)|ψ〉

(B1)
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after making use of the properties of  matrices, where we
have defined

�0 = 2η0(ζ1
27 − ζ2

17 + η1 sin k5
12),

�2 = 2η2(ζ3
45 − ζ4

35 + ζ5
34).

One can easily show that �2
0 = 4η2

0(ζ 2
1 + ζ 2

2 + η2
1 sin2 k5) =

η2
0χ

2
0 , �2

2 = 4η2
2(ζ 2

3 + ζ 2
4 + ζ 2

5 ) = η2
2χ

2
2 , and [�0,�2] = 0.

Therefore, 0 and 2 can be simultaneously diagonalized,
i.e., �0 = ±η0χ0, �2 = ±η2χ2. One then obtains the energy
spectrum of the eight bands as

E = ±
√

(η0 ± χ0)2 + (η2 ± χ2)2 + ζ 2
6 . (B2)

One can then see the Weyl surfaces between bands 4 and 5
are given by χ2

0 = ζ 2
1 + ζ 2

2 + η2
1 sin2 k5 = η2

0, χ2
2 = ζ 2

3 + ζ 2
4 +

ζ 2
5 = η2

2, and ζ6 = 0. Since |η0| 	 |η1|, one can approximately
ignore the η2

1 sin2 k5 term.
It is also easy to see that the Weyl surfaces between bands

3 and 4 are given by χ2 = 0, i.e., ζ3 = ζ4 = ζ5 = 0, which is
exactly the k1-k2 plane. However, another set of Weyl surfaces
is given by χ0 = 0, i.e., ζ1 = ζ2 = sin k5 = 0, which gives the
k3-k4 plane in touch with the above Weyl surface (the k1-k2

plane). Such a configuration is unstable against perturbations
in 5D.

This touching of Weyl surfaces is removed when one adds
the η3 term. Via a perturbation analysis, one can show the η3

term splits the above two kinds of Weyl surfaces in the k5

direction for a distance of about order |η3E/η0η1| away.
The Weyl surfaces between bands 4 and 5 and between

bands 5 and 6 can then be plotted according to the expression of
the functions ζi , which are as illustrated in Fig. 4. In particular,
the condition (t1/t2)2 + η2

0 < 1 limits the number of Weyl
surfaces between bands 4 and 5 to only four.
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