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Effects of interedge scattering on the Wigner crystallization in graphene nanoribbons
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We investigate the effects of coupling between the two zigzag edges of graphene nanoribbons on the
Wigner crystallization of electrons and holes using a combination of tight-binding, mean-field Hubbard and
many-body configuration interaction methods. We show that the thickness of the nanoribbon plays a crucial
role in the formation of Wigner crystal. For ribbon widths smaller than 16 Å, increased kinetic energy
overcomes the long-range Coulomb repulsion and suppresses the Wigner crystallization. For wider ribbons
up to 38 Å wide, strong Wigner localization is observed for an even number of electrons, revealing an even-odd
effect also found in the Coulomb-blockade addition spectrum. Interedge correlations are found to be strong
enough to allow simultaneous crystallization on both edges, although an applied electric field can decouple
the two edges. Finally, we show that Wigner crystallization can also occur for holes, albeit weaker than for
electrons.
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I. INTRODUCTION

As the density of an electron gas is lowered, Coulomb
energy can overcome the kinetic energy which causes the
electrons to localize at their classical position in order to
minimize the electron-electron interactions. This process is
known as Wigner crystallization [1–4], which is expected to
have important implications for electronic transport properties
[5–7]. The electron crystal phase was first observed on the
surface of liquid helium [8]. Later, the metal-insulator transi-
tion in GaAs/AlGaAs heterostructures was also attributed to
Wigner crystallization [9]. In the case of bulk graphene, the
linear dispersion of Dirac fermions is expected to prevent the
formation of a Wigner crystal [10,11], unless a strong magnetic
field is applied[12] or finite-size effects are present [10,13,14].

In a one-dimensional electron gas, even a very weak long-
range force is expected to lead to a one-dimensional Wigner
crystal [15], although quantum fluctuations may prevent
the formation of the electronic localization [11]. The first
one-dimensional transport measurements were performed in
GaAs heterostructures point contacts [16]. Later, localization
in one-dimensional GaAs/AlGaAs heterostructures was ob-
served by measuring the tunneling conductance [5,6] and was
investigated theoretically in inhomogeneous one-dimensional
systems [7,17]. On the other hand, the low-temperature single-
electron transport spectroscopy was used to show the formation
of one-dimensional Wigner crystal in carbon nanotubes [18].
Also, Wigner molecules were experimentally observed in
ultraclean carbon nanotubes [19].

The zigzag graphene nanoribbon (ZGNR) is a one-
dimensional strip of graphene with zigzag edges. The presence
of a highly degenerate band of zigzag edge states is expected
to give rise to unusual magnetic properties [20–30], similar to
graphene quantum dots with zigzag edges [31–35]. Although
there is no direct experimental evidence of edge magnetization
in such structures, recent experimental works [36,37] indicate
a possible ferromagnetic-antiferromagnetic phase transition
in ZGNRs, which may be related to disorder effects [30].
Graphene nanoribbons were synthesized using various exper-

imental methods [38–41]. Moreover, recently, highly clean
ZGNRs with well-defined size were synthesized by surface-
assisted polymerization of a specific monomer [42].

Another interesting property of zigzag edges in graphene
nanostructures is the possibility of Wigner localization pre-
dicted theoretically at relatively high electronic densities in a
single zigzag edge [10]. However, in ZGNRs, the effects of
interedge correlations due to electronic interactions remains
unknown. In this work, we use a combination of tight-binding,
mean-field Hubbard and many-body configuration interaction
methods in order to study the effects of interedge correlations
on Wigner crystallization of electrons and holes in ZGNRs
as a function of size and electronic density in the edge
states. We show that the thickness of the nanoribbon plays
a crucial role in Wigner crystallization. In particular, while
for wide ribbons up to 38 Å strong Wigner localization
is observed on both edges simultaneously, increased kinetic
energy suppresses the crystallization in ribbons thinner than
16 Å wide. Moreover, the analysis of the Coulomb-blockade
addition spectrum shows the formation of metastable ground
states for an even number of electrons, leading to oscillatory
behavior consistent with classical calculations.

II. MODEL AND METHOD

In order to include electronic correlation effects within the
electrons occupying the edge states, we start with the tight-
binding Hamiltonian expanded in the localized atomic basis set
of pz atomic orbitals. The nearest-neighbor and next-nearest-
neighbor hopping parameters between two carbon atoms are
set to −2.7 and −0.1 eV, respectively. The low-energy states
around the Fermi level are well localized at the zigzag edges of
the ribbon. Once those edge states are identified (explained be-
low), we proceed with the mean-field Hartree-Fock approach
to include the effect of electron-electron interactions in the bulk
states as discussed in the Appendix. Once the self-consistent
mean-field problem is solved, the obtained eigenstates can
then be used as a basis set to expand the many-body
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FIG. 1. (a) The atomic structure of ZGNR for L = 52 and W =
28. (b) Variation of total spin S with the number of electrons for
ZGNR for different widths and lengths.

Hamiltonian,

H =
∑
pσ

Epσ c†pσ cpσ + 1

2

∑
pqrs

∑
σσ ′

〈pq|V |rs〉c†pσ c
†
qσ ′crσ ′csσ ,

(1)

where Epσ and c
†
pσ (cpσ ) are the energy levels and the creation

(annihilation) operator for an electron with spin σ in the pth
state of the mean-field Hamiltonian. The two-body interaction
terms consist of the simultaneous scattering of electrons in
p → s and q → r states with the matrix elements 〈pq|V |rs〉,
expressed in terms of a two-body localized pz orbital scattering
matrix. In Rydberg units, the two-body matrix elements are
calculated as

〈pq|V |rs〉 =
∫ ∫

dr1dr2φ
∗
p(r1)φ∗

q (r2)

× 2

κ | r1 − r2 |φr (r2)φs(r1), (2)

where φ∗
p(r) is the pth tight-binding localized edge state at

r and κ is the dielectric constant, which is set to 6. The
interaction strength between nearest and next nearest atoms
is tabulated (see Table I in the Appendix), and for other
atomic sites we used the screened Coulomb term. For the
localized edge states around the Fermi level we use the
configuration-interaction (CI) method to solve the many-body
Hamiltonian and obtain the many-body eigenstates of ZGNR.
For CI calculations, the Hilbert space basis is constructed by
consecutively applying all possible combinations of creation
operators to the vacuum state. The CI method is an accurate
way to solve the many-body Schrodinger equation by directly
solving the many-body Hamiltonian. It includes all correlation
effects missing in the density-functional and Hartree-Fock
theories [33]. In our calculations, we consider ZGNRs with
and without periodic boundary conditions [10] that are W

atoms wide and L atoms long, as depicted in Fig. 1(a). For

the ribbon plotted in Fig. 1(a), L = 52 and W = 28, which
corresponds to approximately 65 Å long and 28 Å wide.

III. RESULTS AND DISCUSSION

In our CI calculations, we consider a total of N = Nup +
Ndown spin-up and -down electrons occupying the zigzag
edge states. The edge states are not quite flat and possess
different localization extents. One can identify the edge
states by analyzing the wave functions from the tight-binding
Hamiltonian. For a periodic ring, the edge states can be
identified through their Fourier index k between L/6 and
L/3 [22], which gives an estimation of their number. In
practice, we also check the convergence of CI results as we
increase the number of edge states included in the calculations.
The many-body Hamiltonian can be conveniently solved in the
subspace of the total spin component Sz = 1

2 [Nup − Ndown].
Once the eigenenergies are calculated, the net total spin S of
the ground state can be deduced. In our calculations, the size of
the largest Hamiltonian matrix diagonalized using the Lanczos
algorithm was 1093092 × 1093092.

The variation of total spin S with the charge doping with
respect to the charge-neutral system, �N = N − Nneutral, is
plotted in Fig. 1(b). We note that the total number of electrons
in the ZGNR is the summation of edge electrons N and
the number of electrons in the bulk states. For half filling
(charge neutrality), the total spin is S = 0, and we observe an
antiferromagnetic configuration of spins on opposite zigzag
edges which was reported by mean-field Hubbard and density-
functional theories [21,27,43]. For wider ribbons and away
from charge neutrality, the total spin of the ground states
reaches the maximum possible value Smax = 1

2N , giving a
ferromagnetic coupling between the two edges. However,
for the periodic ribbon, if we increase the ribbon length to
L = 52, total spin S is not maximized anymore, and spin
oscillations are observed, indicating that magnetic properties
are sensitive to both the length and the width of the ribbon. We
note that by increasing the ribbon length, the number of edge
states also increases, making the computational calculations
more difficult. The missing points in Fig. 1(b) are due to
computational limitations for large Hamiltonian matrices.
In contrast to the periodic ribbon, the ground state for the
finite ribbon away from charge neutrality is completely spin
polarized Smax. We note that in the case of a periodic ribbon,
the number of unit cells along the ribbon length may break
or restore the inversion symmetry, which may have additional
effects on the numerical results requiring further investigation.
Here, we fix the length of ribbon to 26 and 52 atomic sites in
all calculations.

We now investigate the pair-correlation function (PCF), i.e.,
the probability of finding an electron with spin σ ′ at a position
r ′, provided that another electron with spin σ is present at the
position r , calculated using the ground-state expectation value
Pσσ ′(r,r′) = 〈nσ (r)nσ ′(r′)〉, where n is the density operator.
Figure 2 shows the PCF for W = 28 and L = 26 and 52 atoms
for a periodic ZGNR. For the numerical calculation of PCFs,
the position r of an electron with spin up is fixed at the top left
corner of the ribbon, shown with a white arrow in Fig. 2(a).
The total PCF is the sum over spin-up and -down probabilities,
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FIG. 2. Pair-correlation function for periodic ZGNRs with W =
28 atoms, (a), (c), and (e) L = 26 and (b), (d), and (f) L = 52, and
N = 2, 3, and 4 electrons. The fixed electron is located at the top left
corner of the ribbon in all cases, indicated by a white arrow in (a). For
clarity, part of the empty bulk region of the ribbon is cropped from
the plot.

P = P↑↑ + P↑↓. Figure 2 is the counter plot of PCF as a
function of r′.

For clarity, part of the empty bulk region of the ribbon was
cropped from the figure. For N = 2, one electron is localized
in the center of the lower edge to form a zigzag configuration
with the reference electron in the top left corner. Clearly, the
system is in the Wigner crystal regime. When we add one more
electron, although the upper edge seems to remain crystallized,
we observe a nearly homogeneous electronic distribution on
the lower edge. One might think that the Wigner crystal is
destroyed due to the increased electronic density. However, the
suppression of Wigner crystal here is mainly due to the fact
that an odd number of electrons must be shared between the
two edges. Indeed, the ground state is doubly degenerate, with
a linear combination of two possible classical configurations.
For plotting purposes, we have taken the average PCF of the
two degenerate ground states. As we increase the number of
electrons to N = 4, each edge now hosts two electrons that are
localized at the classically predicted positions. The electronic
densities of up and down edges are coupled together via the
long-range Coulomb interaction to form the Wigner crystal.
Note that, unlike for the N = 2 system that exhibits a zigzag
Wigner configuration, the N = 4 system has a symmetric
configuration (upper and lower edge electrons are lined up),
which is consistent with our classical calculations for the same
system (not shown).

In Fig. 3, we focus on narrower periodic nanoribbons with
W = 12 and two different lengths, L = 26 (left panels) and
52 (right panels), similar in size to the recently produced
experimental ribbons in Ref. [42]. The top and bottom panels
show the PCFs corresponding to N = 2 and 4 electrons,
respectively. For these structures, although charge-density
oscillations are present, no clear signature of Wigner crys-
tallization is observed. In fact, due to the narrow nature of the
ribbon, the opposite-edge states have a high spatial overlap,
lifting the degeneracy of the zero-energy band. As a result,
the relative kinetic energy of the electrons occupying the
edge states increases, suppressing the effect of long-range
electron-electron interactions.

FIG. 3. Pair-correlation function for narrow periodic ZGNRs
W = 12 with (a) and (c) L = 26 and (b) and (d) L = 52. The fixed
electron is located at the top left corner of the ribbon in all cases,
indicated by a white arrow in (a).

In order to investigate the effect of ribbon width on
the electronic localization further, we calculated the power
spectrum, i.e., the Fourier transform of the PCF, which is
a more useful way to quantify the degree of localization in
periodic systems [3,10]. In the following, we consider Smax to
be the ground state in our calculations. The alignment of all
spin in the system is achievable in the presence of an in-plane
external magnetic field. A discussion of the effect of spin on the
Wigner localization at zigzag edges can be found in Ref. [10].
A strong peak maximum at the Fourier component k = Nedge in
the power spectrum indicates the localization of Nedge electrons
on the edge. Figure 4 shows the power spectrum peak strength
corresponding to upper and lower edges as a function of
ribbon width W for different electron numbers N . We observe
small oscillations as a function of W , presumably due to the
change in the symmetry of the ribbon as W is increased by
2 (i.e., by an extra zigzag chain) [44]. More strikingly, there
exists a critical value of the width, W = 16, above which the
upper edge electrons containing the fixed electron become

FIG. 4. Power spectrum peak strength as a function of ribbon
width for a ribbon with L = 52 and (a) upper edge and (b) lower
edge.
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FIG. 5. Power spectrum peak strength in upper and lower edges
as a function of N for periodic ZGNR with W = 28 and (a) L = 26
and (b) L = 52.

strongly localized. In the lower edge, localization is weaker
but still present, especially for N = 3 and 4, and starts at a
higher critical value of W = 20, indicating strong interedge
correlations. The specific value of critical width for Wigner
crystallization presumably depends on the dielectric constant,
which may differ due to the presence of substrate. Also, we
neglect inhomogeneities in the substrate and imperfections
in the graphene lattice [30], which may affect the critical
width. Further experimental and theoretical work is needed
for an accurate determination of the critical width for graphene
nanoribbons under different experimental conditions.

Figure 5 shows the strength of power spectrum peak
maxima for L = 26, 52 and W = 28 as a function of electron
number N . Consistent with our previous discussion on the
even-odd effect, the power spectrum oscillates with the number
of electrons. For an even number of electrons the Wigner
crystal is formed on both edges for up to eight electrons,
but the localization is more robust on the upper edge where
the reference electron is fixed. We observed the Wigner
localization for electronic densities up to 1.2 nm−1, which
is much higher than the critical density for a one-dimensional
electron gas [5,7].

It is possible to control the interedge correlations described
above by applying an external electric field through the ribbon,
creating a potential difference V between the two edges.
Figure 6 shows the effect of the potential difference V on
the PCF for N = 2. By increasing V , localization on the lower
edge becomes suppressed. Indeed, the potential difference de-
couples the edge states energetically, destroying the interedge
correlations. Moreover, for odd N it is also possible to control
the relative number of electrons on each edge, preventing the
edges from sharing an electron (not shown).

We now investigate the effect of boundary conditions on
the Wigner crystallization. Figure 7 shows the pair-correlation
function for a finite ribbon instead of a periodic ribbon, with
L = 52 and W = 28 atoms. We consider up to six electrons
which are localized at the zigzag edges. The fixed electron
is set in the charge-density maximum and indicated with

FIG. 6. The PCF for ribbon with L = 52, W = 28 atoms
and N = 2 electrons for different applied voltages (a) 0.05 Volt,
(b) 0.1 Volt and (c) 0.2 Volt.

white arrows. Due to the existence of armchair edges on the
left and right sides of the ribbon, the electrons are pushed
towards the middle of the ZGNR due to quantum confinement
effects, unlike what would happen in a classical system. For an
even number of electrons, Wigner localization is again clearly
observed in all cases. But for an odd number of electrons,
although charge-density oscillations are present, they do not
match the classical configurations or the expected number of
peaks. Hence, as for periodic ZGNRs, the even-odd effect
plays an important role in the formation of a Wigner crystal in
a finite ZGNR.

A possible way to probe Wigner crystallization and strong
interaction effects in nanostructures is Coulomb-blockade
spectroscopy [3,45]. In confined structures, the large elec-
trostatic charging energy forces the system to have a fixed
number of electrons, preventing the current flow. By applying
a gate potential it is possible to lift this Coulomb blockade.
Thus, the conductance through the system as a function of
gate voltage gives a series of sharp peaks with spacing between
them proportional to the second difference of the ground-state
energies with respect to the electron number N . In terms of
the chemical potential μ, the addition energy for the N th peak
is given by �N = μN − μN−1. Figure 8 shows the addition
energy spectrum for ZGNR with L = 52 and W = 12,28

FIG. 7. Pair-correlation function for a finite ZGNR with L = 52
and W = 28 atoms and up to six electrons. (a) N = 2, (b) N = 3, (c)
N = 4, (d) N = 5 and (e) N = 6. The white arrows show the position
of the fixed electron, which is chosen to be at a density maximum
position.
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FIG. 8. The addition energy spectra in the classical and CI models
for L = 52 and periodic ribbon with (a) W = 12, (b) W = 28 atoms
and (c) Finite ribbon with W = 28 atoms.

obtained from CI ground-state energies. Note that within
the noninteracting tight-binding model the addition energies
would be very small due to the nearly degenerate edge states.
However, including interaction effects and due to the presence
of two edges of the ribbon, the addition energies are different
for even and odd numbers of electrons, which is reflected in
Fig. 8. In Fig. 8 we also compare the addition spectrum in the
classical and CI models. In the classical model we consider
localized electrons on the atomic sites with direct Coulomb
interaction. All different possible electron configurations were
examined to minimize the total energy to find the ground state
of the classical model. The simple classical calculations predict
even-odd-effect-based oscillations in the addition energy with
the number of electrons. In the CI calculations the same
behavior is observed for W = 28, but for the W = 12 the
CI model does not follow the classical results. For W = 28 the
electronic density is well explained in the classical limit, which
confirms the formation of a Wigner crystal for wide ZGNR.
We note that the agreement between the CI and classical results
is better for the periodic ribbon than for the finite ribbon. This
is due to quantum confinement effects present in the finite
ZGNR, which push the electrons towards the middle of the
zigzag edges, resulting in an electronic configuration different
from the classically predicted configuration.

An interesting question is whether edge holes in a zigzag
ribbon (i.e., the absence of electrons in fully occupied
edge states) can Wigner crystallize. The possibility of hole
localization is investigated in Fig. 9. The PCF for H = 2,
3, and 4 holes for the ribbon with L = 52 and W = 28
is plotted in Figs. 9(a)–9(c), where the reference hole is
fixed at the top left corner of the system as before. Note
that according to Fig. 1(b), the total spin has electron-hole
symmetry with respect to the half-filling of the edge states;
thus, hole crystallization is not unexpected. From the other
point of view the electron-hole system is not symmetric due
to the next-nearest-neighbor hopping terms in the original
tight-binding Hamiltonian. Indeed, we observe a Wigner
crystal for H = 2 and a delocalized opposite-edge charge

FIG. 9. Pair-correlation function for holes in periodic ZGNR with
L = 52, W = 28, and(a) H = 2, (b) H = 3, and (c) H = 4 holes. (d)
The hole power spectrum peak height for the upper (blue) and lower
(red) edges of ZGNR.

distribution for H = 3, similar to the feature in Fig. 2(b).
However, in contrast to the metastable localization of N = 4
electrons, the opposite-edge hole localization is not recovered
as H is increased to 4. This weaker aspect of hole localization
is also observed more quantitatively in the power spectrum
peak heights in Fig. 9(d), which are weaker for both edges
compared to Fig. 5(b).

In summary, we have investigated the Wigner crystal
formation on the edges of periodic and finite zigzag graphene
nanoribbons with different sizes using many-body configura-
tion interaction calculations. The real-space pair-correlation
functions and power spectra reveal that Wigner crystallization
occurs for ribbons above a critical width of 16 Å. Across such
distances, opposite-edge localization also occurs, although it
is weaker than same-edge localization. Further investigation of
interedge correlations reveals an even-odd effect as a function
of the number of electrons. For an odd number of electrons,
Wigner localization is partially suppressed due to degenerate
many-body states and electron sharing between two edges.
Moreover, the analysis of the addition energy spectrum shows
the formation of metastable ground states for an even number
of electrons, leading to oscillatory behavior consistent with
classical calculations. Finally, we have shown that, although
weaker than electron localization, Wigner crystallization of
holes is also possible at the edges of ZGNRs.
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APPENDIX: THE MEAN-FIELD APPROACH

For a typical graphene quantum dot the general many-body
equation may be simplified in the mean-field approach as

HMF =
∑
p,σ

Ep,σ c†p,σ cp,σ +
∑

p,q,r,s

∑
σ,σ ′

(
ρZGNR

qr,σ ′ − ρ0
qr,σ ′

)

× (〈pq|V |rs〉 − 〈pq|V |rs〉δσ,σ ′)c†p,σ c
†
q,σ ′cr,σ ′cs,σ ,

(A1)
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where ρZGNR
qr,σ ′ and ρ0

qr,σ ′ are the electronic density matrix
element for the ZGNR and bulk graphene, respectively. The
above mean-field Hamiltonian may be simplified to obtain a
modified tight-binding Hamiltonian. The mean field introduces
on-site and hopping like terms into the total Hamiltonian.
We define the net electronic density for ZGNR as ρqr,σ =
ρZGNR

qr,σ − ρ0
qr,σ . The correction terms due to the electron-

electron interaction in the mean-field sense are

H MF(A,A) = v1111ρAA + (2v1221 − v1212)ρBB + 2v1331ρCACA

+ v1112(ρAB + ρBA) + 2v1231(ρBXBA
+ ρXBAB)

+ v1113
(
ρACA

+ ρCAA

) + (2v1223 − v1232)ρBXAB
,

(A2)
HMF (A,B) = v1112(ρAA + ρBB) + v1231

(
2ρXABXAB

+ 2ρXBAXBA
− ρBXAB

− ρXBAA

)
+ (2v1212 − v1221)ρBA + v1122ρAB

+ v2213(ρXBAB + ρAXAB
)

+ (2v1232 − v1223)(ρBXBA
+ ρXABA), (A3)

HMF (A,CA) = −v1331(ρCAA + ρCAB)

− v1231
(
ρBMA,CA

A + ρCABMA,CA

)
+ v1113(ρAA + ρCACA

)

+ (2v1223 − v1232)ρBMA,CA
BMA,CA

, (A4)

where A and B are nearest-neighbor atoms, A and CA are
next-nearest-neighbor atoms, XAB is the nearest neighbor of
A and next nearest neighbor of B, and BMA,B is the common
nearest neighbor of the A and B atoms. The above equations

TABLE I. The electron-electron interaction strength for a
graphene quantum dot.

Parameter Value (eV)

V1111 16.5219
V1221 8.6396
V1331 5.3332
V1112 3.1574
V1231 1.7355
V1212 0.8729
V1122 0.8729
V2213 0.6061
V1113 0.3511
V1223 0.4094
V1232 0.6061

include the direct and exchange terms for nearest- and next-
nearest-neighbor atoms. The required parameters are tabulated
in Table I.

The interaction strength in the dot is divided by the
dielectric constant κ , which is set to 6 for a graphene quantum
dot vpqrs = Vpqrs/κ . By including the long-range Coulomb
electron-electron interaction between the A and D atoms, the
mean-field Hamiltonian is modified as

HMF (A,A) = 2ke

κrAD

ρDD, (A5)

HMF (A,D) = −ke

κrAD

ρDA, (A6)

where k and e are Coulomb’s constant and the electron
elementary charge.
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