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Motivated by recent thermal conductivity measurements in the superconductor CeCoIn5, we theoretically
examine a possible staggered spin-triplet superconducting order to be induced by the coupled spin-density-wave
(SDW) and d-wave superconducting (SC) orders in the high-field and low-temperature (HFLT) SC phase peculiar
to this material with strong paramagnetic pair-breaking (PPB). It is shown that one type of the π -triplet order
is consistent with that explaining the thermal conductivity data and can naturally be incorporated in the picture
that the HFLT phase is a consequence of the strong PPB effect inducing the SDW order and the FFLO spatial
modulation parallel to the applied magnetic field.
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I. INTRODUCTION

The high field and low temperature (HFLT) superconduct-
ing (SC) phase [1], the so-called Q phase, of the dx2−y2 -wave
paired superconductor CeCoIn5 continues to show strange
phenomena, and its nature is still a matter under much debate.
Data of NMR measurements [2] and the doping experiment [3]
have shown results consistent with the presence in this phase
of the amplitude of the SC order parameter modulated spatially
along the magnetic field [4]. On the other hand, it is known
[5] that a long-range spin density wave (SDW) order with
a Q vector parallel to a gap node of the dx2−y2 -wave pairing
function is present in the HFLT phase and disappears as the SC
order is lost by increasing the field. It is natural to expect the
strong paramagnetic pair-breaking (PPB) effect seen clearly
in, e.g., the Hc2(T ) curve [6] and the discontinuous nature of
the mean-field Hc2 transition at lower temperatures [7], in this
material is the main origin of such strange properties. In fact,
it is plausible that the suggested [4] spatial modulation of the
SC order is attributed to the presence of the PPB-induced
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) SC order in the
HFLT phase [8,9]. Further, the presence of a basic mechanism
inducing the SDW order [2,5] based on the strong PPB in the
d-wave paired SC phase has been noticed [10]. It has been
stressed in Ref [10] that, although this PPB-induced SDW
ordering is essentially of an electronic origin [11,12], it is
enhanced by the FFLO spatial modulation of the amplitude of
the SC order parameter.

A different picture on the SDW order in the HFLT phase
is based not on the presence of the strong PPB but on the
assumption of a π -triplet SC order present only in such high
fields [13,14]. Though this approach has been used as the
simplest picture explaining the original neutron scattering
measurements [5], the assumption that the π -triplet order
inducing the SDW order spontaneously occurs in such higher
fields lacks a concrete support based on a reasonable micro-
scopic model and has not been justified so far. In fact, the recent
detection that the SDW Q vector favors the nodal direction
perpendicular to the field [15] is found not to be explained
based on this scenario. Rather, this Q-vector orientation
sensitive to the field direction has been microscopically
explained as a pinning effect of the Q vector to the FFLO
nodal planes perpendicular to the field [16].

However, the recent thermal conductivity data have shown
a feature, which cannot be explained without the π -triplet SC
order in the HFLT phase [17]. Upon rotating the magnetic field
direction through the [100] direction within the basal plane, the
thermal conductivity jumps together with the discontinuous
change of the SDW Q vector [15] when H ‖ [100]. This
suggests the presence of an additional SC gap node determined
by the SDW Q vector. A possible approach will be to extend
the theoretical picture [10] based on the strong PPB to the
case with a π -triplet SC order. This is not a formidable task
because the coexistence of the d-wave SC order and a SDW
order with Q vector parallel to a d-wave SC gap node can
induce a π -triplet SC order.

In the present work, we investigate a possible π -triplet SC
order and its roles in the HFLT phase of CeCoIn5 within the
theoretical approach [10] based on the strong PPB. We find
that the π -triplet order determined theoretically is consistent
with that suggested from the thermal conductivity result [17].
It is pointed out that the PPB-based theoretical picture on the
HFLT phase constructed previously [10,16] is not changed
essentially by taking account of this triplet order, and that
inclusion of the π -triplet order improves the results on the
phase diagram in previous works [18,20] in a couple of ways.

FIG. 1. Relations among the PPB-induced multiple orderings
to occur in dx2−y2 -wave paired superconductors. The thin arrow
indicates such an indirect effect [10] that the FFLO spatial modulation
assists the SDW ordering, while a direct effect from one event to
another is indicated by each thick solid arrow. The present SDW
ordering occurs as a combined effect of the PPB and the dx2−y2 -wave
pairing.
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TABLE I. List of irreducible representations and their basis functions in the space group P4/mmm with Q = (k,±k,0.5) or (k,±k,−0.5).

Irreducible rep. D�s
(E) D�s

(σz) D�s
(C2η) D�s

(σζ ) ψ( p) ds( p) S component

�1 1 1 1 1 s,pxpy ẑ(px ∓ py),pz(x̂ ∓ ŷ)
�2 1 1 −1 −1 p2

x − p2
y ẑ(px ± py),pz(x̂ ± ŷ) Sz

�3 1 −1 −1 1 pz(px ± py) x̂px − ŷpy,x̂py − ŷpx Sx ∓ Sy

�4 1 −1 1 −1 pz(px ∓ py) x̂px + ŷpy,x̂py + ŷpx Sx ± Sy

The picture obtained in Refs. [10,16] and its extension done
in the present work is summarized in Fig. 1.

This paper is organized as follows. In Sec. II, possible
staggered π -triplet SC orders, which may occur in the HFLT
phase of CeCoIn5 are classified based on the group theoretical
method. In Sec. III, a stable π -triplet order is examined within
the mean-field approximation neglecting the FFLO spatial
modulation. In Sec. IV, the switching of the SDW Q vector
upon rotation of the in-plane magnetic field is explained in
the FFLO theory neglecting the presence of the vortices. In
Sec. IV, effects of the π -triplet order on the HFLT phase
composed of the SDW and FFLO orders are investigated.
Further, a summary of the present work is mentioned in Sec. V,
and details of calculation in Sec. III are presented in Appendix.

II. POSSIBLE TRIPLET ORDER

First, let us start our analysis from classfying candidates of
the π -triplet orders based on the group theory. Our treatment
closely follows the approach by Agterberg et al. [13]. In the
present context, three order parameters can be realized in the
HFLT phase of CeCoIn5. These are the d-wave SC order
parameter

� = |g|
2

∑
α,β, p

(−iσy)α,βψ( p)〈c p,αc− p,β〉 (1)

with a scalar pairing function ψ( p), the SDW order parameter

m = U

2

∑
α,β, p

(σ · n̂)α,β〈c†p,αc p+ Q,β〉 (2)

with the polarization direction n̂ of the SDW moment, and the
staggered π -triplet SC order parameter

�̃
(s)
± Q = Vs

2

∑
α,β, p

ds( p) · (−iσσy)α,β〈c p± Q/2,αc− p± Q/2,β〉, (3)

where the index s indicates the type of the possible π -triplet
order (see below).

In this section, possible spatial modulations of � with long
wavelengths are neglected for simplicity because they play
no essential role for determining a pairing symmetry. In fact,
in experiments on CeCoIn5, the pattern of the vortex lattice
modulation in the plane perpendicular to the magnetic field is
not changed upon entering the HFLT phase by increasing the
field [19], indicating that some phenomena in the HFLT phase
may be described by neglecting the orbital pair-breaking effect
of the magnetic field.

The in-plane component of the SDW Q vector will be
assumed hereafter to be either of (k,±k). The SDW Q vector
is the sum of the commensurate component Q0 and the

incommensurate part q which is parallel [5,20] to Q0, and
the in-plane component of Q0 is either of (π,±π ).

We have the following two possibilities of a third order
coupling term in the free energy among the three order
parameter fields,

f1 = −i m
(
�∗�̃(s)

− Q − �
(
�̃

(s)
Q

)∗) + c.c. (4)

and

f2 = Hm
(
�∗�̃(s)

− Q + �
(
�̃

(s)
Q

)∗) + c.c., (5)

where H is the magnitude of the applied magnetic field.
Through one of fj (j = 1, 2), one order is induced by the
presence of the remaining two orders. Agterberg et al. [13,14]
have assumed a nonvanishing π -triplet order as the primary
order in the HFLT phase and a nonzero SDW order as the
secondary one induced by the primary one. In the present
work, the origin of the nonvanishing SDW order is assumed to
consist in the strong PPB according to the previous work [10],
and a π -triplet order induced by such a nonvanishing SDW
order is taken to be the secondary one (see Fig. 1).

Next, the order parameters will be classified in the group-
theoretical manner [13]. The full space group of CeCoIn5 is
P4/mmm. For a given SDW Q, the two pairing functions,
the scalar ψ and the vector ds , are defined together with a
magnetic vector field S as the irreducible representations of
the set of four operations conserving Q. Both the magnetic
field and the SDW moment are regarded as one of S in
this classification. When Q = (k,±k,0.5), the four operations
including the identity consist of the π -rotation C

(±)
2η around

the axis (1,±1,0), the mirror operation σz at the basal plane,
and the mirror operation σ±ζ at the plane perpendicular
to (1,∓1,0). Here, we only have to extend Table I in the
previous work [13] to the manner including the case with
Q = (k,−k,0.5). The resulting table for Q = (k,±k,0.5) is
given in Table I, where the z direction in the spin space is
taken to be the c axis.

Based on this table, the set of the order parameter fields
making the coupling term f1 nonvanishing will be first
determined. It is known that the SDW moment parallel to the c

axis and the dx2−y2 -wave singlet pairing with ψ( p) ∝ p2
x − p2

y

are realized in the HFLT phase of CeCoIn5. Thus the only
staggered π -triplet pairing leading to a nonvanishing coupling
term (4) belongs to �1 and, when Q = (k,±k,0.5), is given
in the representation (3) by d1 ∝ ẑ(px ∓ py). Namely, the
gap node of the d1 vector is always directed to the SDW
Q vector. Note that the two d1 vectors are parallel to the c

axis and hence are unaffected by any in-plane rotation of the
magnetic field direction. Then, it is suggested that, based on
the representation (3), the sudden switching of the Q vector
upon rotating the in-plane field direction through (1,0,0) leads
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FIG. 2. Diagram describing the coupling term, Eqs. (4) or (5),
among the three order parameters. Compare the wave vectors carried
by each Green’s functions (solid curves) with the indices indicated in
Eqs. (1)– (3).

to the simulatneous change of the gap node of the induced
spin-triplet vector d1. This is the same as the interpretation
introduced [17] to explain the thermal conductivity data.

In deriving the third-order free energy term (4) microscop-
ically, however, the above representation on realization of
a π -triplet order should be changed. In fact, the linearized
representation such as ψ( p) and d1( p) is not useful for
describing the p dependencies of the pairing functions and
the SDW order consistently, and they have to be rewritten in
the tight-binding representation. The pairing functions need to
be replaced, in the tight-binding model, in the manner

ψ( p) ∝ p2
x − p2

y → w p = cos(px) − cos(py),

d1( p) ∝ ẑ(px ∓ py) → d̃1( p) ∝ ẑ[sin(px) ∓ sin(py)]. (6)

In addition, the diagram representation, Fig. 2, of the coupling
term (4) implies that, in order for this term to become nonzero,
the π -triplet order parameter should be expressed by shifting
p in Eq. (3) to p + Q/2 in the form consistent with the
expressions (1) and (2) of other order parameters. That is, if
the alternative representation of the π -triplet order parameter

�
(s)
± Q = Vs

2

∑
α,β, p

Ds( p) · (−iσσy)α,β〈c p,αc− p± Q,β〉 (7)

is used to obtain the free energy, the pairing function in the �1

representation is given by

D1( p) = d̃1( p ∓ Q/2) ∝ ẑw p (8)

irrespective of the Q-direction, where w p is defined in Eq. (6).
Thus there is no change of gap nodes of the triplet order
parameter accompanying the discontinuous change of the
SDW Q direction in the tight-binding representation. Note
that �(s) and �̃(s) are defined by summing over the momentum
p so that they are equivalent to each other. Nevertheless, in
examining the free energy and the resulting phase diagram,
this tight-binding representation Eq. (7) has to be used to make
our calculation consistent with the conventional definition of
other order parameters, Eqs. (1) and (2). On the other hand,
the Doppler shift to be examined in relation to the thermal
conductivity data [17] is investigated based on the use of the
continuum representation, Eq. (3) (see also Sec. VI).

The π -triplet order parameter making another coupling
term (5) nonvanishing can similarly be considered by noting
that the magnetic field is perpendicular to the SDW moment
[5] parallel to the c axis, and one finds that any d3 and

FIG. 3. Definition of coordinates in the a-b (basal) plane. The
direction of the magnetic field applied along the basal plane is
expressed by the angle θ measured from the (1,1,0) direction.

d4 belonging to �3 or �4 in Table I satisfy this condition.
According to Eqs. (6) to (8), the two order parameters
D3 belonging to �3 in the tight-binding approximation are
given by (cospx,−cospy,0) and (cospy,−cospx,0) for both
Q = (k,±k,0.5), respectively, while the corresponding ones
D4 in �4 are given by (cospx,cospy,0) and (cospy,cospx,0).
All of them are gapped in the Q-directions parallel to the
d-wave gap nodes, in disagreement with the indication of the
thermal conductivity data [17]. The phase diagrams following
from them will be discussed at the end of the next section.
We note that both D3 and D4 are perpendicular to the c axis
and thus, in contrast to D1, depend on the in-plane direction
of the magnetic field perpendicular to the c axis. In fact, when
the magnetic field field H is tilted within the a-b plane up
to the angle θ from (1,1,0), as defined in Fig. 3, the parallel
component Ds(θ )|‖ and perpendicular one Ds(θ )|⊥ to H of
Ds = (Ds,x,Ds,y,0) (s = 3 and 4) are given as the following
θ -dependent expressions,

Ds(θ )|‖ = 1√
2

[(Ds,x + Ds,y)cosθ + (Ds,x − Ds,y)sinθ ],

Ds(θ )|⊥ = 1√
2

[(Ds,y − Ds,x)cosθ + (Ds,x + Ds,y)sinθ ], (9)

respectively.

III. MODEL AND STABLE �-TRIPLET ORDER

The recent thermal conductivity data [17] have suggested
the presence of a π -triplet order with gap nodal lines
perpendicular to the basal plane. The results in Sec. I indicate
that the realized π -triplet order should be not Ds (s = 3 and
4) but D1 defined in Eq. (8). It will be shown here that, indeed,
the D1 state tends to have a lower free energy.

Throughout this paper, we focus on the Pauli-limited model
with no orbital pair-breaking effect included. That is, the
presence of the field-induced vortices will be neglected. This
approximation which has also been used elsewhere [11,12,18]
seems to give quantitatively reasonable results as far as
the mean-field approximation is used to describe the phase
diagram.

First, we start from describing the model to be used in
Sec. V where all of the SDW, FFLO, and π -triplet orders are
taken into account. The following mean-field Hamiltonian is
essentially the same as that broadly used in the literature [14]
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and expressed as

H = H0 + HSS + HSDW + HTS, (10)

where H0 is the sum of the transfer energy and the Zeeman
term,

H0 =
∑

σ=±1

∫
d3r

[
ψ

(σ )
(r)

]†
[ε(−i∇) − σI ]ψ (σ )(r),

ψ (σ )(r) = 1√
V

∑
p

c p,σ ei p·r ,

ε( p) = −2t1(cos(px) + cos(py)) − 4t2 cos(px) cos(py)

− 2t3(cos(2px) + cos(2py)) − μ, (11)

and, following the previous study [18] neglecting the π -triplet
order, the parameter values t1/Tc = 15, t2/t1 = −1.5, t3/t1 =
−0.65, and μ/t1 = 1.85 have been used. Taking account of the
case with a spatial modulation of the d-wave order parameter
�, the second term of Eq. (10) associated with the d-wave SC
pairing will be expressed in the form

HSS =
∑
qLO

[
1

|g| |�(qLO)|2 − (�(qLO)�†(qLO) + H.c.)

]
,

(12)

where

�(qLO) = 1

2

∑
p,α,β

(−iσy)α,β w p c− p+qLO/2,α c p+qLO/2,β ,

�(qLO) = |g|〈�(qLO)〉. (13)

That is, a possible FFLO spatial modulation with the wave
vector qLO of the d-wave SC order parameter is included in
the above expressions. Then, noting that, in the present issue,
the SDW ordering occurs in the SC phase, the SDW order
parameter should also be generally qLO-dependent. Thus the
SDW mean-field part of the Hamiltonian is expressed by the
term

HSDW =
∑
q,qLO

[U−1|m(q,qLO)|2 − (m(q,qLO)S†(q,qLO)

+ H.c.)], (14)

where q indicates possible incommensurate components Q −
Q0, and

S(q,qLO) =
∑
p,α,β

c†p,α (σ · n̂)α,β c p+ Q+qLO,β ,

m(q,qLO) = U 〈S(q,qLO)〉. (15)

Hereafter, the z axis will be chosen along the magnetic field
H in the spin space. Then, to study the HFLT phase of
CeCoIn5 with the SDW moment along the c axis and hence,
perpendicular to H , n in Eq. (15) will be taken to be along the
y axis.

Further, we assume the presence of a weakly attractive
channel for the π -triplet pairing with the interaction strength
V1 (> 0). The terms associated with the triplet pairing

component expressed by HTS take the form

HTS = 1

V1

∑
q,qLO

(|�(1)
− Q(q,qLO)|2 + |�(1)

Q (q,qLO)|2)

−
∑
q,qLO

(
�

(1)
− Q(q,qLO)B(1)†

− Q(q,qLO)

+�
(1)
Q (q,qLO)B(1)†

Q (q,qLO) + H.c.
)

(16)

in the case of the π -triplet order D1, where

B
(1)
− Q(q,qLO) = 1

2

∑
p,α,β

(−i D1( p) · σ ,σy)α,β c p,α c− p− Q−qLO,β ,

B
(1)
Q (q,qLO) = 1

2

∑
p,α,β

(−i D1( p) · σ ,σy)α,β c p+ Q+qLO,α c− p,β ,

�
(1)
− Q(q,qLO) = V1

〈
B

(1)
− Q(q,qLO)

〉
,

�
(1)
Q (q,qLO) = V1

〈
B

(1)
Q (q,qLO)

〉
. (17)

In the present and next sections, we will not treat the full
Hamiltonian H. To understand which of the triplet-pairings
induced by the SDW order is stable, the possible FFLO spatial
modulation of the d-wave SC order parameter � will be
neglected for a while so that we focus on the qLO = 0 term in
H. Hereafter, �(n)

Q (q,qLO = 0) and m(q,qLO = 0) will simply

be written as �
(n)
Q (q) and m(q), respectively. Then, the free

energy density following from our calculation in this section
is divided into three terms:

f = f�,(0) + fm + f�. (18)

In our Pauli-limited treatment, the d-wave SC order parameter
� can be included fully in f through the formula [21]

f�(qLO) = |�|2
|g| + T

2

∞∑
εn=−∞

∑
p,σ

∫ ∞sε

εn

dω Tr
[
iσzĜ

(σ )
ω,(0)( p)

]
,

(19)

where sε = ε/|ε|, and Ĝ
(σ )
ω,(0) denotes the Gor’kov Green’s

function defined in the manner

Ĝ
(σ )
εn,(0)( p) =

[
iεn − ε( p) + σI −σ� p

σ�∗
p −iεn − ε( p) − σI

]−1

= 1

ε( p)2 − (iεn + σI )2 + |� p|2

×
[−iεn − ε( p) − σI σ� p

−σ�∗
p iεn − ε( p) + σI

]

=
[
G(σ )

εn
( p) F (σ )

εn
( p)

F
(σ )
εn

( p) G
(−σ )
εn

( p)

]
(20)

with � p = �w p. Using these expressions, the first term f�,(0)

of Eq. (18) consisting only of � is easily rewritten as

f�,(0) = |�|2
|g| − T

∑
εn>0, p

× ln

[(
ε2
n + [ε( p)]2 + |� p|2 − I 2

)2 + 4ε2
nI

2(
ε2
n + [ε( p)]2 − I 2

)2 + 4ε2
nI

2

]
.

(21)
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On the other hand, the second term fm of Eq. (18) expresses the GL expansion in the SDW order parameter m, while f�

denotes additional terms occurring by taking account of the π -triplet SC order. They will be divided below into several terms like

fm = f (2)
m + f (4)

m , f� = f
(1,1)
�,m + f

(2)
� . (22)

The coupling term (4) or (5) given in Sec. I corresponds to the first term f
(1,1)
�,m of f�. First, using the Green’s functions, f (2)

m and
f (4)

m take the form

f (2)
m =

∑
q

⎡
⎣ 1

U
+ T

2

∞∑
εn=−∞

∑
p,σ,s1=±1

Tr
(
Ĝ

(σ )
εn, (0)( p + Q0 + s1q)Ĝ(−σ )

εn, (0)( p)
)⎤⎦|m(q)|2 (23)

=
∑

q

⎡
⎣ 1

U
− 4T

∑
εn>0, p

ε2
n + I 2 − ε( p)ε( p + Q) − �∗

p� p+ Q

c2
1 + d2

1

c1

⎤
⎦|m(q)|2, (24)

and

f (4)
m = T

4

∞∑
εn=−∞

∑
p,q,σ,s1=±1

Tr
(
Ĝ

(σ )
εn, (0)( p + Q0 + s1q)Ĝ(−σ )

εn, (0)( p)Ĝ(σ )
εn, (0)( p + Q0 + s1q)Ĝ(−σ )

εn, (0)( p)
)|m(q)|4 (25)

= 2T
∑

εn>0, p,q

1(
c2

1 + d2
1

)2

[(
c2

1 − d2
1

)[(
ε2
n + I 2 − ε( p)ε( p + Q) − �∗

p� p+ Q
)2

− ε2
n((ε( p) + ε( p + Q))2 + |� p + � p+ Q|2) + I 2((ε( p) − ε( p + Q))2

+ |� p − � p+ Q|2) − |� pε( p + Q) − � p+ Qε( p)|2] − 2c1d
2
1

]|m(q)|4. (26)

The coefficients c1 and d1 will be defined in Eq. (31) later.
Next, we turn to f�. In the case with the triplet pairing belonging to the irreducible representation �1, the first term f

(1,1)
�,m of

the free energy f� associated with the π -triplet pairing is expressed in terms of D1 = ẑw p as

f
(1,1)
�,m = T

2

∞∑
εn=−∞

∑
p,q,σ,s1=±1

Tr

⎛
⎝∑

j

σA
(1)
j â

(1)
j Ĝ

(σ )
εn, (0)( p + Q0 + s1q)b̂(1)

j Ĝ
(−σ )
εn, (0)( p)B(1)

j + H.c.

⎞
⎠, (27)

where σ0 = 1, ê12 = (σx + iσy)/2, and the coefficients A
(1)
j , â

(1)
j , b̂

(1)
j , and B

(1)
j are defined in Table II below.

The second term f
(2)
� of f� is

f
(2)
� =

∑
q

∣∣�(1)
− Q(q)

∣∣2 + ∣∣�(1)
Q (q)

∣∣2
V1

− T

2

∞∑
εn=−∞

∑
p,q,σ,s1=±1

Tr

⎛
⎝∑

j

A′(1)
j â′(1)

j Ĝ
(σ )
εn, (0)( p + Q0 + s1q)b̂′(1)

j Ĝ
(α′ (1)

j )
εn, (0)( p)B ′(1)

j

⎞
⎠, (28)

where ê21 = (σx − iσy)/2, and the coefficients A′(1)
j , â′(1)

j , b̂′(1)
j , α′(1)

j , and B ′(1)
j are given in Table III.

Rewriting Eqs. (27) and (28), we have

f
(1,1)
�,m = 2T

∑
εn>0, p,q

c1

c2
1 + d2

1

(
(ε( p)�∗

p+ Q − ε( p + Q)�∗
p)(−m(q)w p�

(1)
− Q(q) + m∗(q)w p�

(1)
Q (q)) + H.c.

)
, (29)

f
(2)
� =

∑
q

∣∣�(1)
− Q(q)

∣∣2 + ∣∣�(1)
Q (q)

∣∣2
V1

− 2T
∑

εn>0, p,q

c1

c2
1 + d2

1

(
ε2
n + I 2 + ε( p)ε( p + Q)

)(∣∣w p�
(1)
− Q(q)

∣∣2 + ∣∣w p�
(1)
Q (q)

∣∣2)

+ 2T
∑

εn>0, p,q

w2
p

(
c1

c2
1 + d2

1

�∗
p�

∗
p+ Qw p�

(1)
− Q(q)w p�

(1)
Q (q) + H.c.

)
. (30)

Here,

a1 = [ε( p)]2 + ε2
n + |� p|2 − I 2, a2 = [ε( p + Q)]2 + ε2

n + |� p+ Q|2 − I 2,

b1 = 2εnI, c1 = a1a2 + b2
1, d1 = b1(a2 − a1). (31)
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TABLE II. Definition of the coefficients A
(1)
j , â

(1)
j , b̂

(1)
j , and B

(1)
j

in Eq. (27).

j A
(1)
j â

(1)
j b̂

(1)
j B

(1)
j

1 −w p ê12 σ0 m(q)�(1)
− Q(q)

2 w p σ0 ê12 m∗(q)�(1)
Q (q)

Effects of the π -triplet order on the free energy can be
incorporated by minimizing f� with respect to the π -triplet
order parameters �

(1)
± Q . The resulting �

(1)
± Q is proportional to

the SDW order parameter and given by

TABLE III. Definition of the coefficients A′(1)
j , â′(1)

j , b̂′(1)
j , α′(1)

j ,

and B ′(1)
j in Eq. (28).

j A′(1)
j â′(1)

j b̂′(1)
j α′(1)

j B ′(1)
j

1 w2
p ê12 ê21 −σ |�(1)

− Q(q)|2
2 w2

p ê21 ê12 −σ |�(1)
Q (q)|2

3 w2
p ê12 ê12 −σ �

(1)
− Q(q)�(1)

Q (q)

4 w2
p ê21 ê21 −σ �

(1)∗
− Q(q)�(1)∗

Q (q)

�
(1)
− Q(q) = −2T

∑
εn>0, p(ε( p)�∗

p+ Q − ε( p + Q)�∗
p)c1w p/

(
c2

1 + d2
1

)
V −1

1 − 2T
∑

ε>0, p

(
ε2
n + I 2 + ε( p)ε( p + Q) + � p�

∗
p+ Q

)
w2

pc1/
(
c2

1 + d2
1

)m(q) = −�
(1)
Q (q). (32)

By substituting this into f�, additional terms proportional to |m|2 are created which change, e.g., the field range of the HFLT
phase.

In Fig. 4, an example of the resulting phase diagram is shown. Within the parameter values used in our numerical computations,
the coefficient of the |m|4 term, Eq. (26), is always positive. Thus, a second-order transition signaling the appearance of a nonzero
|m| occurs on the lower (red) solid curve H ∗(T ). Namely, |m|2 is proportional to H − H ∗ just above H ∗(T ). Further, within the
parameter values we have chosen, the denominator of Eq. (32) remains positive so that no nonvanishing π -triplet order occurs
without the presence of the SDW order. Nevertheless, the π -triplet order induced by the SDW order is found to broaden the
HFLT phase.

Although the �1 representation is a candidate of the staggered triplet order in the HFLT phase, this ds vector is parallel to
the c axis and thus, cannot change under an in-plane rotation of the magnetic field H perpendicular to the c axis. That is, an
element neglected in this section needs to be taken into account to explain the switching, detected [15] in the neutron scattering
measurement, of the SDW Q vector sensitive to H . In the next section, we show that the FFLO order neglected in this section
leads to the switching of the SDW Q vector upon the in-plane rotation of the magnetic field direction.

Before ending this section, the resulting phase diagrams in the case with the π -triplet order Ds with s = 3 or 4 will be
discussed. In this case, the original expression of the coupling term corresponding to Eq. (5) is complicated and takes the form

f
(1,1)
�,m = − i T

2
√

2

∞∑
εn=−∞

∑
p,q,σ,s1=±1

Tr

⎛
⎝∑

j

A
(s)
j â

(s)
j Ĝ

(σ )
εn, (0)( p + Q0 + s1q)b̂(s)

j Ĝ
(−σ )
εn, (0)( p)B(s)

j − H.c.

⎞
⎠, (33)

where the expressions of A
(s)
j , â

(s)
j , b̂

(s)
j , and B

(s)
j (s = 3 or 4) are defined in Table IV.

Similarly, f
(2)
� in Eq. (38) is expressed by

f
(2)
� =

∑
q

∣∣�(s)
− Q(q)

∣∣2 + ∣∣�(s)
Q (q)

∣∣2
Vs

− T

4

∞∑
εn=−∞

∑
p,q,σ,s1=±1

Tr

⎛
⎝∑

j

A′(s)
j â′(s)

j Ĝ
(σ )
εn, (0)( p + Q0 + s1q)b̂′(s)

j Ĝ
(α′ (s)

j )
εn, (0)( p)B ′(s)

j

⎞
⎠, (34)

where A′(s)
j , â′(s)

j , b̂′(s)
j , α′(s)

j , and B ′(s)
j are defined in Table V.

Rewriting Eqs. (33) and (34), we have

f
(1,1)
�,m = 2T

∑
εn>0, p,q

(
iDs(θ )|⊥
c2

1 + d2
1

(c1I (�∗
p+ Q − �∗

p) − d1εn(�∗
p+ Q + �∗

p))(−m(q)�(s)
− Q(q) + m∗(q)�(s)

Q (q)) + H.c.

)
,

f
(2)
� =

∑
q

∣∣�(s)
− Q(q)

∣∣2 + ∣∣�(s)
Q (q)

∣∣2
Vs

− 2T
∑

εn>0, p,q

(
[Ds(θ )|⊥]2c1

c2
1 + d2

1

(
ε2
n + ε( p)ε( p + Q) + I 2

)

+ [Ds(θ )|‖]2

e2
1 + g2

1

(
e1
(
ε2
n + ε( p)ε( p + Q) − I 2) + g12εnI

))(∣∣�(s)
− Q(q)

∣∣2 + ∣∣�(s)
Q (q)

∣∣2)

+ 2T
∑

εn>0, p,q

((
[Ds(θ )|⊥]2c1

c2
1 + d2

1

+ [Ds(θ )|‖]2e1

e2
1 + g2

1

)
�∗

p�
∗
p+ Q�

(s)
− Q(q)�(s)

Q (q) + H.c.

)
. (35)
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U

FIG. 4. HFLT phase in the field (H )-temperature (T ) phase
diagram in the Pauli-limited case with no FFLO order assumed.
The used values of the coupling constants are Tc/U = 0.01622 and
Tc/V1 = 0.0075, where Tc is the SC transition temperature in zero
field, and Hp is the Pauli-limiting field at T = 0. The upper (black)
and the lower (red) solid curves are the first-order mean-field SC
transition curve Hc2(T ) and the field-induced second-order transition
line H ∗(T ) above which the HFLT phase with the �1-triplet SC order
is present, respectively, and the green dotted curve is the H ∗(T ) line
in the V1 → 0 limit.

Here, the coefficients a1, a2, b1, c1, and d1 were defined in
Eqs. (35) and (31), and the coefficients e1 and g1 are

e1 = a1a2 − b2
1,

g1 = b1(a2 + a1). (36)

In the same manner as the case of the �1 representation,
the phase diagram is obtained like Fig. 6. As in the �1

representation, the presence of the π -triplet order of the
�3 representation also leads to a broadening of the HFLT
phase. Further, as shown in Fig. 5, the switching of Q vector
upon sweeping the field direction of the type detected in the
experiment [15] occurs. In contrast to the �1 state, however,
the field range in which the HFLT phase accompanied by
the �3 triplet pairing state is realized shows a remarkable
angular dependence. Nevertheless, this triplet pairing state
has no gap nodes along (k,±k,0.5) and thus, is believed to
be different from the triplet pairing state suggested from the
thermal conductivity experiment [17]. In fact, by comparing
Fig. 6 with Fig. 4, and noting the values of the coupling
constants V1 and V3 used in the figures, the field range of the
HFLT phase with �1 is found to be broader than that with �3

under the same value of Vs (s = 1 and 3). This result suggests
that the �1 state is more stable than the �3 one.

TABLE IV. Definition of the quantities A
(s)
j , â

(s)
j , b̂

(s)
j , and B

(s)
j in

Eq. (33).

j A
(s)
j â

(s)
j b̂

(s)
j B

(s)
j

1 Ds(θ )|⊥ ê12 σ0 m(q)�(s)
− Q(q)

2 Ds(θ )|⊥ σ0 ê12 m∗(q)�(s)
Q (q)

TABLE V. Definition of the quantities A′(s)
j , â′(s)

j , b̂′(s)
j , α′(s)

j , and

B ′(s)
j in Eq. (34).

j A
(1)
j â

(1)
j b̂

(1)
j α′(s)

j B
(1)
j

1 [Ds(θ )|⊥]2 ê12 ê21 −σ |�(s)
− Q(q)|2

2 [Ds(θ )|‖]2 ê12 ê21 σ |�(s)
− Q(q)|2

3 [Ds(θ )|⊥]2 ê21 ê12 −σ |�(s)
Q (q)|2

4 [Ds(θ )|‖]2 ê21 ê21 σ |�(s)
Q (q)|2

5 [Ds(θ )|⊥]2 ê12 ê12 −σ �
(s)
− Q(q)�(s)

Q (q)

6 −[Ds(θ )|‖]2 ê12 ê12 σ �
(s)
− Q(q)�(s)

Q (q)

7 [Ds(θ )|⊥]2 ê21 ê21 −σ �
(s)∗
− Q(q)�(s)∗

Q (q)

8 −[Ds(θ )|‖]2 ê21 ê21 σ �
(s)∗
− Q(q)�(s)∗

Q (q)

IV. SWITCHING OF Q VECTOR DUE
TO FFLO MODULATION

In the preceding sections, it has been shown that the
π -triplet pairing state expected to occur theoretically and
suggested from the thermal conductivity data is insensitive
to the in-plane direction of the applied magnetic field and
thus, is not the origin of the switching [15] of the SDW Q
vector upon the in-plane rotation of the magnetic field. It has
been shown elsewhere [16] that the FFLO spatial modulation
parallel to the magnetic field, which is believed to be present
in the HFLT phase on the basis of various experimental facts
[2,3], can become the origin of the switching of the Q vector.
That is, in the notation of Fig. 3, when the in-plane field H
is oriented to any direction between [110] and [100] so that
0 � θ � π/4, the SDW Q is parallel to (k,−k,0.5), while the
SDW Q becomes parallel to (k,k,0.5) when π/4 � θ � π/2.
In this section, the switching of the SDW Q vector is revisited
and will be explained within the Pauli-limited FFLO theory
neglecting the presence of the vortices, because inclusion of the
π -triplet SC order to be done in the next section is performed
for convenience in the Pauli limit.

For the purpose of the present section mentioned above, we
need to take account of a spatial modulation of the d-wave SC
order parameter, while the presence of the π -triplet order will
be neglected. Then, in this section we will use Eq. (10) with
no HTS.

Following previous works and using the expressions of the
d-wave SC and SDW order parameters in the FFLO phase
with a spatial modulation parallel to the magnetic field:

�(R) = �
√

2 cos(qLO · R),

m(q,R) = |m(q)|
√

2 cos(qLO · R + δm), (37)

we will derive the free energy including the gradient terms
here in the form

f = f�(qLO) + fm(qLO)

= f�,(0) + f�,(2) + f�,(4) + · · · + f (2)
m (qLO)

+ f (4)
m (qLO) + · · · , (38)

where the relative phase δm will be determined by minimizing
the free energy (see also the following figures). The first three
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FIG. 5. Normalized free energy f
(1,1)
�,m + f

(2)
� in the �3 representation (a) and �4 representation (b) obtained by using the parameters

H = 0.91Hc, T = 0.1Tc, and Tc/Vs = 0.0033. The solid (dashed) curve is the result in Q ‖ (1,1,0) ( Q ‖ (1,−1,0)) case. For instance,
when 0 � θ � π/4, the free energy with Q ‖ (1,−1,0) is lowered in the �3 representation, while that with Q ‖ (1,1,0) is lower in the �4

representation. So, the �4 representation is found to be inconsistent with the experimental data in CeCoIn5.

terms consist only of the d-wave SC order parameter �(R) with FFLO spatial modulations. Using the expression of the SC free
energy [21]

f�(qLO) =
〈

|�(R)|2
|g| + T

2

∞∑
εn=−∞

∑
p,σ

∫ ∞sε

εn

dω Tr
[
iσzĜ

(σ )
ω ( p,R)

]〉
R

(39)

with 〈 〉R implying the average over the center of mass coordinate R of the Cooper pair and the results on the gradient expansion
for the Green’s function Ĝ(σ ) = Ĝ

(σ )
(0) + Ĝ

(σ )
(1) + Ĝ

(σ )
(2) + Ĝ

(σ )
(3) + Ĝ

(σ )
(4) + · · · , where

Ĝ
(σ )
εn, (m)( p,R) = −iĜ

(σ )
(0)

(
v p · ∇RĜ

(σ )
εn, (m−1)

)
, (40)

(m = 1, 2, 3, or 4), f�,(0), f�,(2), and f�,(4) are expressed [18] as

f�,(0) =
〈 |�(R)|2

|g| − T
∑
εn>0

∑
p

ln

[(
ε2
n + [ε( p)]2 + |� p(R)|2 − I 2

)2 + 4ε2
nI

2(
ε2
n + [ε( p)]2 − I 2

)2 + 4ε2
nI

2

]〉
R
,

f�,(2) =
〈
T

∑
εn>0

∑
p

[
a2

1 − b2
1(

a2
1 + b2

1

)2 |vk · ∇� p(R)|2

+2

3

(
2[ε( p)]2 − ε2

n + I 2 − |� p(R)|2)(a4
1 − 6a2

1b
2
1 + b4

1

) − 4a1b
2
1

(
a2

1 − b2
1

)
(
a2

1 + b2
1

)4 (v p · ∇|� p(R)|2)2

]〉
R
,

f�,(4) �
〈
T

∑
εn>0

∑
p

[
2

3

(
2[ε( p)]2 − ε2

n + I 2 − |� p(R)|2)(a4
1 − 6a2

1b
2
1 + b4

1

) − 4a1b
2
1

(
a2

1 − b2
1

)
(
a2

1 + b2
1

)4 |(v p · ∇)2� p(R)|2
]〉

R

, (41)

where � p(R) = �(R)w p.
Next, the free energy term fm associated with the SDW

order parameter m in Eq. (38) will be derived in the form

fm = f (2)
m (qLO) + f (4)

m (qLO) + · · · .

= f (2,0)
m,qLO

+ f (2,2)
m,qLO

+ · · · . + f (4,0)
m,qLO

+ · · · (42)

expressed as the GL expansion about both of m and the FFLO
wave number qLO. Here, |qLO| is the order parameter of the
FFLO state. It is found that, as is shown in Fig. 9 below, |qLO| in
equilibrium is proportional to

√
H − HLO(T ) when the field-

induced transition entering the FFLO state is a second-order

transition on HLO(T ). This behavior has been found in the
NMR data of Ref. [2] by assuming HLO to coincide with
H ∗(T ) defined in Sec. III (see Fig. 5(b) in Ref. [2]).

First, the O(m2) term

f (2)
m (qLO) =

∑
q

〈[
1

U
+ T

2

∑
p,σ,εn

∑
s1,s2=±1

Tr
(
Ĝ(σ )

εn
( p + Q0

+ s1q + s2qLO,R)Ĝ(−σ )
εn

( p,R)
)]|m(q,R)|2

〉
R

(43)
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FIG. 6. Example of the HFLT phase in the H -T phase diagram in
the Pauli-limited case with the π -triplet order in the �3 representation
but with no FFLO order assumed. The parameter values Tc/U =
0.01622 and Tc/V3 = 0.0033 are used. The θ dependence of the free
energy and of the stable SDW Q vector leads to the θ dependence
of the field range of the HFLT phase, as indicated in the figure.
The dotted curve is the transition line entering the HFLT phase in the
case with no π -triplet order.

will be rewritten in the form expanded with respect to (w.r.t.)
qLO. Using

ε( p + Q + qLO) � ε( p + Q) + qLO · v p+ Q

+ 1

2
(qLO · ∇ p)2ε( p + Q),

∇ p =
(

∂

∂px

,
∂

∂py

,
∂

∂pz

)
� p+ Q+qLO

(R) � � p+ Q(R) + qLO · (∇ p� p+ Q(R))

+ 1

2
(qLO · ∇ p)2� p+ Q(R), (44)

where

Ĝ
(σ )
εn, (0)( p + Q0 + s1q + s2qLO,R)

= Ĝ
(σ )
εn, (0,0)( p + Q0 + s1q,R)

+ Ĝ
(σ )
εn, (0,2)( p + Q0 + s1q,R) + · · · , (45)

the second term on the second row of Eq. (42) is expressed as

f (2,2)
m,qLO

=
〈

T

2

∑
p,q,σ,εn

∑
s1=±1

Tr
[
Ĝ

(σ )
εn, (2)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (0)

× ( p,R) + Ĝ
(σ )
εn, (1)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (1)( p,R)

+Ĝ
(σ )
εn, (0,0)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (2)( p,R) + Ĝ
(σ )
εn, (0,2)

× ( p + Q0 + s1q,R)Ĝ(−σ )
εn, (0)( p,R)

]|m(q,R)|2
〉

R

, (46)

while f (2,0)
m,qLO

and f (4,0)
m,qLO

are given by replacing � in Eqs. (24)
and (26) with �(R) and taking their space average over R.

The procedure for rewriting the cross term f (2,2)
m,qLO

is involved
and will be explained in Appendix. The resulting f (2,2)

m,qLO

 0

 0.5
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 2
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 0.8  0.85  0.9  0.95  1

f m
, q

LO
(2

,2
)  / 

|m
|2  |q

LO
|2  a

H/Hp

T = 0.1Tc

FIG. 7. Field dependencies of f (2,2)
m,qLO

at the temperature T =
0.1Tc when θ (see Fig. 3) is zero (upper blue curve), π/4 (middle
green one), and π/2 (bottom red one). The parameter value Tc/U =
0.01597 was used. At the field H/HP = 0.96 indicated by the arrow,
the configuration of m(R) relative to the FFLO modulation of the
d-wave SC order parameter �(R) = �

√
2 cos(qLO · R) shows such

a structural transition [18,20,22] that, in H/HP < 0.96, δm = π/2,
while δm = 0 in H/HP > 0.96 [see Eq. (37) and Fig. 11(a)].

depends on the relative orientation between qLO, which is
parallel to the magnetic field, and the crystal axis reflected in
the dispersion relation ε( p), that is, on the angle θ defined
in Fig. 3. Its calculated result is shown in Fig. 7. Since no
information on the SDW Q vector is included in f� which
primarily determines the value of qLO, the stable Q direction
at each θ is determined only from Fig. 7 as far as |m| value is
so small that the GL expansion on |m| is justified.

According to the previous work [20], the incommensurate
part q = Q − Q0 of the SDW wave vector tends to become
parallel to Q0. Hence Q favors one of the gap node directions
of �. Further, according to Fig. 7, q favors a more separated di-
rection from the in-plane magnetic field to which the direction
of the FFLO modulation of � is parallel. Therefore the in-plane
component of Q is parallel to [1,−1,0] when 0 � θ � π/4,
while it is directed along [1,1,0] when π/4 � θ � π/2. This
is the explanation on the experimental observation in Ref. [15]
based on the FFLO theory.

The phase diagram following from the analysis in this
section will be shown later [see Fig. 11(a)]. Strictly speaking,
the phase diagram also depends upon θ . However, as far
as the FFLO wave number is so small that the coupling between
the SDW and FFLO orderings can be regarded as being weak,
such a θ dependence of the phase diagram is expected to be
negligibly small.

The structural transition at H = 0.96HP indicated in Fig. 7
should be reflected in some quantities. In the field dependence
of the magnitude |m| of the SDW order parameter shown in
Fig. 8, the structure transition is reflected as a visible upturn
of the |m(H )| curve. It should be stressed that such an upturn
of the field dependence can be seen in the internal field, corre-
sponding to |m|, taken from NMR data in Ref. [24] (see a fea-
ture around 10.8(T) in Fig. 2 of Ref. [24]). Note that the internal
field shown there [24] has an upwardly curved field variation
in higher fields, although, conventionally, the magnitude of the
order parameter tends to saturate far from the phase boundary.
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those in Figs. 7 and 11(a).

Such a remarkable anomaly at about 11 (T) has also been seen
previously in the data associated with the magnetization [22].

In Fig. 9, the field variation of another order parameter
qLO characterizing the HFLT phase is shown. Since qLO is
inversely proportional to the distance between the neighboring
FFLO nodal planes, the field dependence of |qLO| shows that
of the number of excess quasi particles occurring in the FFLO
state with the one-dimensional spatial modulation parallel
to the field. The fact [2] that the excess DOS in the HFLT
phase detected experimentally is proportional to

√
H − H ∗

near the H ∗(T )-line strongly suggests the presence of the
FFLO modulation in the HFLT phase. A further reduction
of |qLO| due to inclusion of impurities was argued in Ref. [4]
to result in the detected suppression [3] of the ordering itself
forming the HFLT phase.

V. HFLT PHASE WITH π -TRIPLET PAIRING ORDER

In the preceding sections, we have shown that the switching
of the SDW Q vector upon rotaing the magnetic field in the
basal plane is explained by the presence of the FFLO spatial
modulation parallel to the magnetic field, and that the recent
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FIG. 9. Field dependence of |qLO| at T = 0.1Tc. The used
parameter values are the same as those in Figs. 7 and 11(a). Here,
the parameter a normalizing |qLO| is the lattice constant in the basal
plane. Note that, in spite of the absence of impurities in the present
model, the |qLO|-value is notably small.

thermal conductivity data indicate the presence of the π -triplet
order D1 in the �1 representation. In this section, we examine
how the presence of the D1 order affects the phase boundaries
associated with the HFLT phase.

For this purpose, we only have to take account of the
three novel orders, FFLO, SDW, and the π -triplet ones,
altogether. Since, in the present theory, the π -triplet order is the
secondary order induced by the SDW order which the FFLO
spatial modulation enhances [10,20], any direct coupling of
the π -triplet order to the FFLO order may be neglected. Under
this assumption, the mean-field analysis roughly explained in
Sec. III can straightforwardly be performed, because one has
only, as done in Sec. III, to minimize the free energy w.r.t. the
π -triplet order. To perform this in the lowest order in qLO, the
free energy terms f m and f �, which take the place of fm and
f� in Eq. (22), respectively, will be considered. Here, f m (f �)
is the average of fm(R) (f�(R)) over R, where fm(R) (f�(R))
is given by fm (f�) in Eq. (22) with the order parameters m

and � replaced simply by m(R) and �(R), respectively. Then,
minimization over the R-dependent π -triplet order parameter
�

(1)
Q (q; R) leads to

�
(1)
− Q(q,R) = −2T

∑
εn>0, p(ε( p)�∗

p+ Q(R) − ε( p + Q)�∗
p(R))w pc1/

(
c2

1 + d2
1

)
V −1

1 − 2T
∑

εn>0, p

(
ε2
n + I 2 + ε( p)ε( p + Q) + � p(R)�∗

p+ Q(R)
)
w2

pc1/
(
c2

1 + d2
1

)m(q,R). (47)

We note that, as far as the R dependencies are concerned,
this expression can simply be written as

�
(1)
− Q(q,R) = C(R)�∗(R)m(q,R), (48)

where the coefficient C(R) depends on |�(R)|2 and includes
a spacial dependence due to the higher order terms of the GL
expansion in �(R). However, the R dependence of C(R) is
a quantitatively weak effect so that C may be regarded as a
constant. Thus, in the low field region of the HFLT phase where
the SDW order parameter has the out-of-phase configuration,
δm = π/2, with �(R), �(1) behaves like sin(2qLO · R), while

it takes the form 1 − cos(2qLO · R) in higher fields. The
resulting structural transition line [18,20,22,24] separating the
two configuration, sketched in Fig. 10, from each other is
expressed by the thin dotted line in Fig. 11.

By substituting Eq. (47) into f �, an additional term to f m

is obtained. The resulting free energy composed only of �

and m leads to the phase diagram shown in Fig. 11(b). For
comparison, the corresponding result with no π -triplet order
included is also presented in Fig. 11(a).

It can be seen from the figures that inclusion of the π -triplet
order leads to diminishing of the pure FFLO region with no
SDW order and makes the concave form of the second-order
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FIG. 10. Spatial modulation of �
(1)
− Q(q,R) in the ỹ direction, parallel to the in-plane field direction, in the cases where the SDW order

parameter m(R) shows the (1) in-phase (δm = 0) and (2) out-of-phase (δm = π/2) modulation with the FFLO variation �(R) = �
√

2 cos(qLO ·
R) of the d-wave SC order parameter.

transition curve on entering the SDW phase a convex one
which is consistent with the experimental result [1,5,17]. We
argue that this change of the high field phase diagram due to
inclusion of the π -triplet order will be an improvement on the
theoretical description of the HFLT phase of CeCoIn5. Another
reduction of the pure FFLO region can be expected in higher
fields, i.e., at higher temperatures, by including the quantum
SDW critical fluctuation [20,23].

VI. SUMMARY AND DISCUSSION

In the present work, we use the Pauli-limited model
neglecting the presence of the vortices and have extended
the theory based on the strong paramagnetic pair-breaking
(PPB) of the HFLT phase of the d-wave superconductor
CeCoIn5 to the case including the π -triplet SC pairing order
which may accompany the PPB-induced SDW order. It has
been shown that the switching of the SDW Q vector upon
rotating the magnetic field H parallel to the basal plane
cannot be explained based only on the presence of the stable
π -triplet order of the type suggested from the recent thermal
conductivity measurement [17], and that, as pointed out
previously [16], the presence of the FFLO spatial modulation
parallel to H of the d-wave SC order parameter leads to the
switching of the Q vector. Further, due to the presence of
the π -triplet order, further agreement on the phase diagram

between the experimental data and the result of the present
theory based on the strong PPB have been reached.

In the present theory, the FFLO state with no SDW
order inevitably appears at higher temperatures although,
as suggested in Sec. V, there are mechanisms leading to
a shrinkage of this region. In CeCoIn5, the appearance of
the SDW order seems to occur at almost the same field
as that of the FFLO modulation [2] at least at low enough
temperatures. However, a different NMR experiment seems to
have suggested the presence of the FFLO order with no SDW
order [24] at lower fields and higher temperatures. As argued
in Ref. [18], the presence of the FFLO state with no SDW
order should be seen more clearly in experiments performed
under a magnetic field tilted from the a-b plane.

Regarding the resulting π -triplet order, we need to give
some comments associated with the thermal conductivity
experiment [17]. The thermal conductivity sees an additional
DOS due to the Doppler shift of the quasiparticles [25]. This
Doppler shift is given in the present context by the scalar
product between the QP velocity v p and the SDW Q vector
under the definition of the linearized SC gap function which is,
in the case of the π -triplet order of our interest, d1( p) defined
in Sec. I, or, in the tight-binding model, d1 for Q = (k,±k,0.5)
is replaced by d̃1( p) = (0,0,sinpx ∓ sinpy) = D1( p − Q/2).
That is, although one feels as if the switching of the SDW Q
vector between the two directions (q,±q,0.5) induces that
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FIG. 11. H -T phase diagram (a) obtained using the parameter value Tc/U = 0.01597 with no π -triplet order and (b) obtained using
the parameters Tc/U = 0.01654 and Tc/V1 = 0.01125 and incorporating the π -triplet order D1. The parameter values were chosen so that
the FFLO transition (dotted black) curve remains unchanged irrespective of the presence or absence of the π -triplet order. In these high fields,
the Hc2-transition on the thick solid (black) curve is of first order in the mean-field approximation. The second-order transition line H ∗(T )
(thick dashed blue curve) at which |m| begins to become nonzero is shifted to higher temperatures and became convex by including the nonzero
|D1| though it was concave with no π -triplet order. The thin solid (green) line which separates the in-phase configuration of the SDW order
parameter m from its out-of-phase one is shifted to lower fields by including the π -triplet order.
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between the two triplet order parameters of d̃1 with different
gap nodes, such a switching of the triplet order cannot be seen
in the alternative representation D1( p) of the same triplet order
(see Sec. I).

It has been argued elsewhere [26] that the switching of
the SDW Q vector on rotating the in-plane magnetic field
can be explained just by incorporating effects of a spin-orbit
coupling on the band structure. However, it is unclear whether
this approach leads to a quantitativey reasonable effect as
far as the field-induced vortices are neglected, since it is
known [27] that the presence of the vortices, neglected in

the work [26], favors the SDW Q vector parallel to the
magnetic field in contrast to the observation [15]. It should
be stressed that, as mentioned in the preceding sections, there
are experimental facts consistent with the presence of a spatial
modulation parallel to the magnetic field in the HFLT phase
[2,3,22,24].
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APPENDIX

To evaluate f (2,2)
m,qLO

, let us first expand the normal and anomalous Green’s functions in powers of qLO. The O(q2
LO) term of the

normal Green’s function

G
(σ )
εn, (0)( p + Q + qLO,R) = −iεn − ε( p + Q + qLO) − σI

ε2
n + ε2( p + Q + qLO) + |� p+ Q+qLO

(R)|2 − I 2 − iσ2εnI
, (A1)

takes the form

G
(σ )
εn, (0,2)( p + Q + qLO,R) = − iεn + ε( p + Q) + σI

(a2 − iσb1)3
[2ε( p + Q)qLO · v p+ Q + qLO · (∇ p|� p+ Q(R)|2)]2

+ iεn + ε( p + Q) + σI

2(a2 − iσb1)2
[2ε( p + Q)(qLO · ∇ p)2ε( p + Q) + 2(qLO · v p+ Q)2

+(qLO · ∇ p)2|� p+ Q(R)|2] + qLO · v p+ Q

(a2 − iσb1)2
[2ε( p + Q)qLO · v p+ Q + qLO(∇ p|� p+ Q(R)|2)]

− (qLO · ∇ p)2ε( p + Q)

2(a2 − iσb1)
. (A2)

Similarly, the O(q2
LO) term of the anomalous Green’s function

F
(σ )
εn, (0)( p + Q + qLO,R) =

−σ�∗
p+ Q+qLO

(R)

ε2
n + ε2( p + Q + qLO) + |� p+ Q+qLO

(R)|2 − I 2 − iσ2εnI
, (A3)

is expressed in the form

F
(σ )
εn, (0,2)( p + Q + qLO,R) = − σ�∗

p+ Q(R)

(a2 − iσb1)3
[2ε( p + Q)qLO · v p+ Q + qLO · (∇ p|� p+ Q(R)|2)]2

+ σ�∗
p+ Q(R)

2(a2 − iσb1)2
[2ε( p + Q)(qLO · ∇ p)2ε( p + Q) + 2(qLO · v p+ Q)2 + (qLO · ∇ p)2|� p+ Q(R)|2]

−σqLO · (∇ p�
∗
p+ Q(R))

(a2 − iσb1)2
[2ε( p + Q)qLO · v p+ Q + qLO · (∇ p|� p+ Q(R)|2)]

−σ (qLO · ∇ p)2�∗
p+ Q(R)

2(a2 − iσb1)
, (A4)

where

a2 = ε2
n + ε2( p + Q) + |� p+ Q(R)|2 − I 2, b1 = 2εnI. (A5)

Using them, the first term of f (2,2)
m,qLO

takes the form

〈
T

2

∑
p,σ,εn

∑
s1=±1

Tr
[
Ĝ

(σ )
εn, (2)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (0)( p,R)
]|m(q,R)|2

〉
sp

≡ 〈C(2,0)(q,R)|m(q,R)|2〉sp, (A6)
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where

C(2,0)(q,R) = 12T
∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)2

c2
51 + d2

51

[{
ε( p + Q)ε( p)

[
3ε2

n − ε2( p + Q) + 3|� p+ Q(R)|2 − 3I 2
]

− [
ε2
n − �∗

p+ Q(R)� p(R) + I 2
][

ε2
n − 3ε2( p + Q) + |� p+ Q(R)|2 − I 2

]}
c51

+ [
ε2
n − 3ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
b1d51

]
+ 4T

∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)2

c2
41 + d2

41

[
ε2
n − 4ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
c41

− 8T
∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)(� pv p+ Q · ∇�∗
p+ Q(R))

c2
41 + d2

41

[[
ε2
n − 2ε2( p + Q) + |� p+ Q(R)|2 − I 2]c41 − b1d41

]

− 4T
∑
p,n>0

(v p+ Q · ∇)2|� p+ Q(R)|2
c2

41 + d2
41

[{
ε( p + Q)ε( p)

[
3ε2

n + ε2( p + Q) + 3|� p+ Q(R)|2 − 3I 2
]

− [
ε2
n − �∗

p+ Q(R)� p(R) + I 2
][

ε2
n − 3ε2( p + Q) + |� p+ Q(R)|2 − I 2

]}
c41

+ [
ε2
n − 3ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) − I 2]b1d41
]

− 4T
∑
p,n>0

|v p+ Q · ∇� p+ Q(R)|2
c2

31 + d2
31

[
ε2
n − ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
c31

+ 8T
∑
p,n>0

� p+ Q(R)(v p+ Q(R) · ∇)2�∗
p+ Q(R)

c2
31 + d2

31

ε( p + Q)ε( p)c31

+ 4T
∑
p,n>0

� p(R)(v p+ Q · ∇)2�∗
p+ Q(R)

c2
31 + d2

31

[[
ε2
n − ε2( p + Q) + |� p+ Q(R)|2 − I 2

]
c31 − b1d31

]
, (A7)

The corresponding second term is〈
T

2

∑
p,σ,εn

∑
s1=±1

Tr
[
Ĝ

(σ )
εn, (1)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (1)( p,R)
]|m(q,R)|2

〉
sp

≡ 〈C(1,1)(q,R)|m(q,R)|2〉sp, (A8)

where

C(1,1)(q,R) = −4T
∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)(v p · ∇|� p(R)|2)

c2
33 + d2

33

[{[
ε2
n − ε2( p + Q) + |� p+ Q(R)|2 − I 2

]
× [

ε2
n − ε2( p) + |� p(R)|2 − I 2

] − 4
(
ε2
n − �∗

p+ Q(R)� p(R) + I 2
)
ε( p + Q)ε( p) + 4ε2

nI
2
}
c33

− [
ε2( p + Q) − ε2( p) − |� p+ Q(R)|2 + |� p(R)|2]b1d51

]
+ 2T

∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)(v p · ∇|� p(R)|2)

c2
32 + d2

32

[[
ε2
n − ε2( p + Q) + |� p+ Q(R)|2 − I 2

]
c32 − b1d32

]

+ 8T
∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)(�∗
p+ Q(R)v p · ∇� p(R))

c2
32 + d2

32

ε( p + Q)ε( p)c32

+ 2T
∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)(v p · ∇|� p(R)|2)

c2
23 + d2

23

[[
ε2
n − ε2( p) + |� p(R)|2 − I 2

]
c23 + b1d23

]

+ 8T
∑
p,n>0

(v p · ∇|� p(R)|2)(�∗
p(R)v p+ Q · ∇� p+ Q(R))

c2
23 + d2

23

ε( p + Q)ε( p)c23

− T
∑
p,n>0

(v p+ Q · ∇|� p+ Q(R)|2)(v p · ∇|� p(R)|2)

c2
22 + d2

22

c22

− 4T
∑
p,n>0

(v p+ Q · ∇�∗
p+ Q(R))(v p · ∇� p(R))

c2
22 + d2

22

[
ε2
n + ε( p + Q)ε( p) + I 2

]
c22. (A9)
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Further, its third term becomes〈
T

2

∑
p,σ,εn

∑
s1=±1

Tr
[
Ĝ

(σ )
εn, (0,0)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (2)( p,R)
]|m(q,R)|2

〉
sp

≡ 〈C(0,2)(q,R)|m(q,R)|2〉sp, (A10)

where

C(0,2)(q,R) = 12T
∑
p,n>0

(v p · ∇|� p(R)|2)2

c2
15 + d2

15

[{
ε( p + Q)ε( p)

[
3ε2

n − ε2( p) + 3|� p(R)|2 − 3I 2]
− [

ε2
n − �∗

p+ Q(R)� p(R) + I 2][ε2
n − 3ε2( p) + |� p(R)|2 − I 2]}c15

− [
ε2
n − 3ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2]b1d15
]

+ 4T
∑
p,n>0

(v p · ∇|� p(R)|2)2

c2
14 + d2

14

[
ε2
n − 4ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
c14

− 8T
∑
p,n>0

(v p · ∇|� p(R)|2)(�∗
p+ Q(R)v p · ∇� p(R))

c2
14 + d2

14

[[
ε2
n − 2ε2( p) + |� p(R)|2 − I 2

]
c14 + b1d14

]

− 4T
∑
p,n>0

(v p · ∇)2|� p(R)|2
c2

14 + d2
14

[{
ε( p + Q)ε( p)

[
3ε2

n − ε2( p) + 3|� p(R)|2 − 3I 2
]

− [
ε2
n − �∗

p+ Q(R)� p(R) + I 2
][

ε2
n − 3ε2( p) + |� p(R)|2 − I 2

]}
c14

− [
ε2
n − 3ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) − I 2
]
b1d14

]
− 4T

∑
p,n>0

|v p · ∇� p(R)|2
c2

13 + d2
13

[
ε2
n − ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
c13

+ 8T
∑
p,n>0

� p(R)(v p · ∇)2�∗
p(R)

c2
13 + d2

13

ε( p + Q)ε( p)c13

+ 4T
∑
p,n>0

�∗
p+ Q(R)(v p · ∇)2� p(R)

c2
31 + d2

31

[[
ε2
n − ε2( p) + |� p(R)|2 − I 2

]
c13 + b1d13

]
. (A11)

Finally, the fourth term is〈
T

2

∑
p,σ,εn

∑
s1=±1

Tr
[
Ĝ

(σ )
εn, (0,2)( p + Q0 + s1q,R)Ĝ(−σ )

εn, (0)( p,R)
]|m(q,R)|2

〉
sp

≡ 〈C(2)(q,R)|m(q,R)|2〉sp, (A12)

where

C(2)(q,R) = −4T
∑
p,n>0

[2qLO · v p+ Qε( p + Q) + qLO · (∇ p|� p+ Q(R)|2)]2

c2
31 + d2

31

× [
ε2
n − ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2]c31

+ 2T
∑
p,n>0

2ε( p + Q)(qLO · ∇ p)2ε( p + Q) + (qLO · ∇ p)2|� p+ Q(R)|2
c2

21 + d2
21

× [
ε2
n − ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
c21

+ 4T
∑
p,n>0

[qLO · v p+ Q]2

c2
21 + d2

21

[
ε2
n − 3ε( p + Q)ε( p) − �∗

p+ Q(R)� p(R) + I 2
]
c21

+ 2T
∑
p,n>0

ε( p)(qLO · ∇ p)2ε( p + Q) + � p(R)(qLO · ∇ p)2�∗
p+ Q(R)

c2
11 + d2

11

c11

− 4T
∑
p,n>0

c21

c2
21 + d2

21

[
(qLO · v p+ Q)[qLO · (∇ p|� p+ Q(R)|2)]ε( p)
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+ 2� p(R)[qLO · ∇ p�
∗
p+ Q(R)](qLO · v p+ Q)ε( p + Q)

+� p(R)[qLO · (∇ p|� p+ Q(R)|2)][qLO · (∇ p�
∗
p+ Q(R))]

]
. (A13)

The coefficients appeared in the above expressions are given by

a1 = ε2
n + ε2( p) + |� p(R)|2 − I 2,

a2 = ε2
n + ε2( p + Q) + |� p+ Q(R)|2 − I 2,

b1 = 2εnI,

c11 = a2a1 + b2
1,

d11 = (a2 − a1)b1,

c21 = (
a2

2 − b2
1

)
a1 + (2a2b1)b1,

d21 = (
a2

2 − b2
1

)
b1 − (2a2b1)a1,

c31 = (
a3

2 − 3a2b
2
1

)
a1 + (

3a2
2b1 − b3

1

)
b1,

d31 = (
a3

2 − 3a2b
2
1

)
b1 − (

3a2
2b1 − b3

1

)
a1,

c41 = (
a4

2 − 6a2
2b

2
1 + b4

1

)
a1 + (

4a3
2b1 − 4a2b
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