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Dynamical charge density waves rule the phase diagram of cuprates

S. Caprara,1,2 C. Di Castro,1,2 G. Seibold,3 and M. Grilli1,2

1Dipartimento di Fisica, Università di Roma “La Sapienza,” P.le Aldo Moro 5, 00185 Roma, Italy
2ISC-CNR and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Unità di Roma “Sapienza”

3Institut für Physik, BTU Cottbus-Senftenberg - PBox 101344, D-03013 Cottbus, Germany
(Received 19 October 2016; revised manuscript received 23 March 2017; published 14 June 2017)

In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature
superconducting cuprates and are now the most investigated among the competing orders in the still hot debate
on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various
theoretical proposals. We here relate our mean-field instability line T 0

CDW of a strongly correlated Fermi liquid
to the pseudogap T ∗(p) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce
strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the
characteristic time of the probes, we account for the complex experimental temperature versus doping phase
diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different
experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points
(QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these
fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first
necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show
that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott
insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as
seen by the experiments.

DOI: 10.1103/PhysRevB.95.224511

I. INTRODUCTION

The phase diagram of high-temperature superconducting
cuprates (HTSC) is quite rich and indicates the coexistence of
and the competition between different physical mechanisms.
First of all, strong electron-electron correlations give rise to an
antiferromagnetic (AF) Mott insulating phase when the CuO2

planes are half-filled (one hole per unit cell). Although the
AF phase is rapidly disrupted by doping, nearly critical spin
fluctuations extend their action in the metallic phase. A major
distinctive feature is then a pseudogap phase occurring below
the doping-dependent temperature T ∗(p) [in the prototypical
HTSC family YBa2Cu3Oy (YBCO) T ∗ ∼ 220–250 K at
doping p ∼ 0.1–0.12 and rapidly decreases merging with the
SC Tc around optimal doping and seems to vanish at doping
p∗ ≈ 0.19]. The pseudogap phase is characterized by the
occurrence of many anomalies like the formation of Fermi
arcs extending from the nodal region and the suppression
of quasiparticle states around the M points of the Fermi
surface, the suppression of the paramagnetic spin susceptibility
and the detection of charge density wave (CDW) fluctuations
by the fast x-ray probe [1–4], which transform into long-range
ordered phase as also detected by the slow probe NMR
[5,6], when superconductivity is suppressed by high magnetic
fields. An intense debate is ongoing about the sources of this
pseudogap phase with essentially two opposite points of view.
Since the early times the idea was put forward (mostly by P. W.
Anderson [7]) that these systems are strongly correlated doped
Mott insulators, where the large electron-electron repulsion
and the consequent short-range AF correlations, inside the low
dimensional layered structure of the cuprates render these sys-
tems intrinsically different from standard metals ruled by the
Landau Fermi liquid (FL) paradigm. In this framework, many
variants have been proposed ranging from the Luttinger liquid

and the resonating-valence-bond paradigms [7] and its gauge-
field relatives [8], to the doped d-wave Mott state [9] to the
fractionalized Fermi liquid [10]. The occurrence of this non-FL
phase may imply a drastic rearrangement of the fermionic
states: while far from the Mott state a FL is present with a large
Fermi surface containing nh = 1 + p holes per unit cell in the
CuO2 planes, approaching the Mott state the metallic character
is given by just p carriers residing in four hole pockets in
the so-called nodal regions (π/2a)(±1, ± 1) of the Brillouin
zone [8–10]. According to Ref. [10], T ∗ marks a topological
transition related to this change of Fermi surface dimensions.

The other point of view is that in two dimensions, strong
correlations and the short-range AF correlations of a doped
Mott insulator are not enough per se to spoil the Landau FL
[11] and to establish the onset at high doping of the anomalous
behavior of the metallic cuprates. This, instead, should be
marked by the proximity to some form of instability ending
at zero temperature into a second-order transition (quantum
critical point, QCP). In this case the incipient order, which
at low or zero temperature has an intrinsic quantum (and
therefore dynamic) character produces strong long-ranged and
long-lived fluctuations. In turn, these mixed quantum-thermal
fluctuations mediate strong scattering between the quasiparti-
cles spoiling the FL character of (some of) the quasiparticles,
possibly mediating a strong superconducting pairing. In this
“quantum criticality” scenario a crucial role is obviously
played by the type of order that the system would like to
realize. Although many proposals have been put forward, the
old evidences of charge density waves (CDW) [12–14] have
been strongly revived by the recent ubiquitous observations of
charge density waves (CDWs) in all HTSC families.

The observed CDWs (see, e.g., Refs. [1–6,15–22]) appear
as a long-ranged phase under special circumstances only,
like when high magnetic fields suppress superconductivity
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FIG. 1. Summary YBCO phase diagram. Increasing reddish hue
corresponds to more well-defined CDW amplitude correlations.
Experimental curves: orange dashed line: superconducting critical
temperature Tc(p); magenta squares: pseudogap crossover line (from
Ref. [23], but see also Fig. 6 of Ref. [24]); green circles: CDW
onset temperature from x-ray scattering experiments [4,22]; light
blue squares: static CDW order as obtained from NMR [5,6], which
coincides with the onset of the FS reconstruction as detected by RH

measurements [18]. On the optimal/overdoped side the magenta solid
line tracks the mean-field CDW transition temperature identifying the
region below which CDW fluctuations (of both modulus and phase)
become prominent. The blue solid line is the static CDW transition
line taking quantum/thermal fluctuations beyond mean-field into
account. The intermediate green solid curve reports the dynamical
CDW onset for probes having characteristic frequency ωpr = 50 K
(see text). On the underdoped side, the blue dot-dashed line represents
the CDW transition ruled by phase fluctuations of the CDW order
parameter (see text). In the region below, the blue solid line (and
of the thin dotted line as a guide to the eye) and above the blue
dot-dashed line the modulus of the CDW order parameter is finite,
while phase fluctuations destroy the static order (possibly leaving a
vestigial nematic order). The thick green dot-dashed line marks the
dynamical onset observed by dynamical probes. This line is similar to
the green solid line, but only phase fluctuations are involved here. The
magenta dot marks the endpoint of the pseudogap crossover line at
p∗ ≈ 0.19, identified with the endpoint of the mean-field transition,
p∗ = p0

c . The solid blue dot is the true CDW-QCP at pc ≈ 0.16 (with
fluctuations taken into account), while the blue circle at p′

c ≈ 0.08 is
the low-doping QCP where the CDW phase stiffness vanishes.

[5,6,15]. Figure 1 reports the phase diagram of YBCO, where
the light-blue squares mark the onset of this static CDW order
as detected by NMR [5,6], over a doping range where Hall
experiments (see Ref. [18] and references therein) detect a
Fermi surface reconstruction, which is there attributed to CDW
order. Dynamical onset of CDWs, theoretically predicted long
ago [12,13,25,26], has been observed via x-ray spectroscopies
[1–4,22] (green circles in Fig. 1). Recent Hall effect mea-
surements indicate that a Fermi-surface reconstruction takes
place in YBCO [18] and La2−xSrxCuO4 (LSCO) [27] at low
temperature starting at doping p′

c ≈ 0.08 and ending into a
QCP at pc ≈ 0.16. On the other hand, the number of carriers
changes rapidly between pc ≈ 0.16 and p∗ ≈ 0.19, where
T ∗(p) extrapolates to zero, with a clear connection to the

above “Mottness” versus “quantum-criticality” issue discussed
above. pc and p∗ are distinct and from the “Mottness” point
of view one may argue that, while p∗ marks the physical onset
of a novel non-FL metallic phase, pc is the start of the CDW
phase, which is a mere “epiphenomenon” occurring “on top” of
the more fundamental non-FL state. Conversely, as supporters
of the second point of view, we stress the close proximity of
pc and p∗ claiming that CDW play the central role with their
QCP at pc = 0.16, while p∗ is a crossover doping marking
the region where, among other characteristic properties of the
pseudogap, the strong CDW fluctuations appear before the
QCP is met.

We exploit the recent experimental data to shape a coherent
scenario based on the “quantum critical” point of view, which
rationalizes the following issues: (a) how the different CDW
onset curves and corresponding seemingly different QCPs
are related to one another? (b) Are the CDWs related or
unrelated to the pseudogap onset temperature T ∗(p)? (c) Can
CDWs account for the rapid changes of the Hall number
seen in experiments? (d) Which is the mechanism leading
to the disappearance of the CDWs at low doping with yet
another QCP located at p′

c ≈ 0.08, as detected for YBCO in
Ref. [18]? We concentrate our analysis on YBCO, for which
the most complete set of experiments has been collected. Our
results in comparison with experiments are summarized in
the phase diagram of Fig. 1 and can be directly extended
to Bi2Sr2CaCu2O8+x (Bi2212) (see, e.g., Refs. [3,20]), and
Bi2Sr2−xLaxCuO6+δ , Bi2Sr2−xLaxCuO6+δ (Bi2201). As far as
LSCO is concerned, due to the strong similarity of behavior
with YBCO in the optimal and high doping regime, all the
results connected with the strongly correlated Fermi liquid
instability are valid. At low doping a particular care has to be
taken due to the strict relation between the spin and charge
modulation vectors [28,29].

Our paper is organized as follows: Sec. II initially revisits
the frustrated phase separation mechanism underlying the
formation of incommensurate CDW in strongly correlated
systems. From this starting point, a new analysis is carried
out explaining why the strong correlations of HTSC favor the
occurrence of CDW along the observed directions of the Cu-O
bonds. The dynamical character of the CDW fluctuations is
then analyzed to explain why probes with different character-
istic time scales may detect different CDW onset temperatures.
Section III provides a possible explanation for the rapid change
in carrier density observed by Hall experiments based on the
strongly anisotropic scattering induced by CDW fluctuations.
In Sec. IV, again starting form the strongly correlated character
of cuprates, we propose a mechanism to explain why CDW
tend to weaken and disappear in the low-doping region of the
phase diagram. In Sec. V, we discuss our findings and we
present our concluding remarks.

II. THE OPTIMAL/OVERDOPED PHASE DIAGRAM:
DYNAMICAL CDW CROSSOVERS AND CDW

TRANSITION

Before addressing the above (a)–(d) issues, we revisit the
frustrated phase separation mechanism, which was proposed
long ago [30,31] as the formation mechanism of CDW, giving
rise to a QCP around optimal doping [25]. The region around
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FIG. 2. Sketch of the ingredients determining the CDW insta-
bility and its wave vector. (a) Upper panel: Lindhard polarization
function �(q) with q along the (1,0) or (0,1) directions. Lower panel,
black solid line: residual interaction V (q) among quasiparticles,
arising from the sum of the Coulomb repulsion (red dotted line), the
short-range residual repulsion U (q) (red dashed line), and a nearly
momentum independent attraction λ shifting downwards the repulsive
interaction. The instability occurs when V (qc) = −�−1(qc). (b)
Same as (a), but in the (1, ±1) directions, where U (q) is stronger
and the same λ is not enough to render the system unstable:
V (q) > −�−1(q) for all q’s.

optimal doping is naturally described within a Fermi-liquid
picture and CDWs occur as a second-order instability. The
correlated character of the Fermi liquid is described within a
standard Slave-boson/Gutzwiller approach, where the resid-
ual interaction among the quasiparticles V (q) = U (q) − λ +
Vc(q) arises from three distinct contributions (see Appendix
A): U (q) is a short-range residual repulsion stemming from
the large repulsion of a one-band Hubbard model, λ is a local
short-range attraction triggering charge segregation, due to a
local phonon [25], to the instantaneous magnetic interaction
present in doped antiferromagnets [32], or to both mechanisms,
and Vc(q) is the long-range part of the Coulomb repulsion.
Notice that even if phonons are involved in λ, they are not
directly related with pairing. The screening processes are
described by the Lindhard polarization bubble �(q,ωn) for
quasiparticles having a renormalized band structure fitting
the dispersion obtained from angle-resolved photoemission
spectroscopy (ARPES) experiments. The CDW instability
is found as a divergence of the density-density correlation
function, when 1 + V (q)�(q,ωn) = 0 at ωn = 0 and q = qc

[12,25,26]. For its pictorial representation see Fig. 2. In our
mechanisms, strong correlations favor the CDW instability
along the (1,0) or (0,1) Cu-O bond directions, in agreement
with hard x-ray experiments [22]. Indeed, these are the
directions along which the short-range repulsion [see Fig. 2(a)
and Appendix A] is smaller, making the instability of the
frustrated phase separation due to the local effective attraction
λ easier. This shows that the frustrated phase separation
mechanism naturally exploits the strongly correlated nature
of HTSC to account for the occurrence of CDW along the
ubiquitously observed (1,0) or (0,1) directions.

Expanding V (q) and �(q,ωn) around q = qc and ωn = 0
one obtains the standard quantum-critical charge-fluctuation
propagator (see Appendix A):

D(q,ωn) = [
m0 + ν(q) + |ωn| + ω2

n

/
�

]−1
, (1)

where m0 ∝ ξ−2
0 ∝ 1 + V (qc)�(qc,0) is the mean-field mass

of the fluctuations, ξ0 is the mean-field CDW correlation
length, ν(q) ≈ ν̄|q − qc|2, ν̄ is an electronic energy scale (we
work with dimensionless momenta, measured in inverse lattice
spacings 1/a), and � is a frequency cutoff. The mean-field
instability line T 0

CDW(p) (magenta solid line in Fig. 1) is char-
acterized by a vanishing m0. This is the well-known frustrated-
phase-separation instability [30,31] underlying the formation
of CDWs near optimal doping [12,25,26]. We notice that,
although λ might have a magnetic contribution, the present
mechanism of CDW formation, contrary to other proposals
[33–36], does not require the proximity to a magnetic QCP.
The same CDW-mediated interactions are also active in the
Cooper channel, providing a high-temperature d-wave pairing
mechanism [37]. Therefore this region of the phase diagram
is characterized also by the gradual onset of CDW-mediated
pairing fluctuations, with reducing temperature and/or doping.

The microscopic parameters of the model are adjusted
to fix the mean-field QCP at p0

c ≈ 0.19, while the temper-
ature dependence of the mean-field instability line T 0

CDW(p)
arises from the Lindhard function, without further adjustable
parameters, and tracks the pseudogap onset line T ∗(p). In
our scheme, below T 0

CDW(p), CDW long-range order would
occur, were it not for quantum-critical fluctuations especially
relevant because of the quasi-bidimensionality of the cuprates.
In real systems, where strong fluctuations are present, below
this line, CDW fluctuations become increasingly long-ranged
and long-lived, and start to suppress the quasiparticle states
preferably in the antinodal regions of the Fermi surface (see
Ref. [38] and Appendix D). This spread of the quasiparticle
spectral weight away from the Fermi surface gives rise to
the density of states suppression characterizing the pseudogap
onset temperature T ∗. This explains the connection of our
theoretical mean-field line T 0

CDW(p) with T ∗(p). Of course
there is no intrinsic cutoff to CDW fluctuations, and these may
extend at even higher temperatures than T 0

CDW(p), but with
shorter and shorter range and time scales.

The fluctuation suppression of the mean-field critical line
T 0

CDW(p) is obtained by the self-consistent evaluation of the
correction to the mean-field mass m0, due to the fluctuator (1)
(see Methods, Fig. 5),

m = m0 + uT
∑

n

∫ 


0
dν

N (ν)

m + ν + |ωn| + ω2
n/�

, (2)

where u is the strength of the coupling between CDW
fluctuations, N (ν) is the density of states corresponding
to the dispersion law ν(q) and 
 is an ultraviolet cutoff,
corresponding to a momentum cutoff q̄ ∼ 1/a.

One can numerically solve the self-consistent expression
(2), finding the conditions for the instability m = 0 and the
dependence of m on temperature and doping. In a two-
dimensional system, as a single CuO2 plane of cuprates,
N (ν) is constant for ν → 0. This leads to a finite shift of
the two-dimensional QCP at T = 0, but the correction to
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the critical line at finite T is divergent, consistently with
the absence of long-range order in two dimensions for a
two-component order parameter (as in the incommensurate
CDW case). However, cuprates are layered systems and the
planes are weakly coupled. This allows for an ordering at
finite temperature TCDW(p), which arises in the solution of
Eq. (2) for m = 0, provided N (ν) assumes a three-dimensional
form N (ν) ∼ √

ν below some energy scale ν⊥ related to
the inter-plane coupling (see Methods). TCDW(p) is so much
reduced (see blue solid line in Fig. 1) with respect to the mean-
field line T 0

CDW(p), that it occurs below the superconducting
dome. Superconductivity therefore appears as the stabilizing
phase against CDW long-range order. This explains why the
experimental data corresponding to long-range CDWs are
only detected for magnetic fields large enough to weaken
the superconducting phase [15]. These experiments also allow
to estimate ν⊥. Figure 1 displays the m(TCDW) = 0 blue line
obtained with ν⊥ = 10 K.

We now address the issue (a) of why different probes
identify different CDW onset temperatures. The key point is
the dynamical character of the CDW fluctuations. A probe with
long characteristic time scale (like, e.g., NMR or NQR) will
only detect static order, otherwise the fluctuating CDWs aver-
age to zero during the probing time. This is why these probes
identify a true phase-transition line m(TCDW,p) = 0 at high
magnetic field (of course, if in real systems pinning intervenes
to create locally a static order, this can be detected by local
static probes even at larger temperatures and low magnetic
fields. This seems to be the case in recent NMR experiments
[19]). On the other hand, a fast probe with a short probing time
τpr takes a fast snapshot of the fluctuating system and finds a
seemingly higher transition temperature when the CDW order
is still dynamical, as long as the CDW characteristic time scale
τCDW ∝ ξ 2 ∝ m−1 is longer than τpr, thus acting as an infrared
cutoff and diminishing the reduction effect of the fluctuations
on the onset temperature. We identify the dynamical onset line
as the line where m ≈ ωpr = τ−1

pr . The theoretical green solid
line in Fig. 1 obtained in this way with a mass m ≈ ωpr = 50 K,
represents the dynamical onset of CDWs observed with a fast
probe, e.g., x-ray spectroscopy [the green circles in Fig. 1, as
measured in Refs. [4,22]. Actually, RIXS and REXS experi-
ments are even faster and upon increasing the signal-to-noise
ratio we expect that CDW could be revealed at substantially
higher temperatures (possibly even higher than T ∗). We thus
solved the experimental puzzle (a)] with a unified explanation
of how different onset lines for CDWs are detected, running
from the long-range order to the fast fluctuations.

III. CDW-QCP INTERPRETATION OF HALL TRANSPORT

According to issue (c), recent Hall experiments [18] show
a rapid increase of the Hall number in a narrow doping range
from nH = p at p � 0.16 up to nH = 1 + p for doping larger
than the pseudogap zero temperature onset point p∗. Such
crossover has been attributed to a large Fermi surface at p > p∗
as observed with ARPES and the formation of hole pockets
for p < p∗ due to either the establishment of a new metallic
phase like a d-wave Mott insulator [9,41] or a “topological
metal” [42], or some more conventional kind of order as, e.g.,
a spin spiral [43]. In all these scenarios p∗ is unrelated to
CDWs whose QCP is then placed at the lower doping value pc.

Here, instead, we keep a minimal framework showing that
the crossover behavior of the Hall number can be explained
by the increasingly strong fluctuations starting below T ∗(p)
and approaching the nearby CDW-QCP. In particular, we
exploit the strong momentum dependence of the effective
quasiparticle interaction mediated by the CDW propagator
Eq. (1) which naturally splits the Fermi surface in hot and cold
regions: the quasiparticles in the hot regions (φ = 0,π/2) are
connected by q ∼ qc and interact strongly, while the scattering
in the cold regions stays weak. This results in a marked
anisotropy of the quasiparticle scattering rate [44]

(φ) = {
−1

max + [0 + �(φ)]−1
}−1

, (3)

with

�(φ) = Im
2 T 2(φ)

1 +
√

1 − i T
M(φ)

, (4)

and 2(φ) = 2[1 + α cos2(2φ)]. The expression of �(φ)
is derived from the quasiparticle self-energy near hot spots
in models with spin [45] or charge [44] nearly critical
fluctuations. Here, M(φ) = m(T ) + ν̄ sin2(2φ) is the energy
scale below which the quasiparticles have a Fermi-liquid
behavior and is minimal at the hot spots. The anisotropy of
(φ) is enhanced by approaching the CDW criticality, where
m(T ) vanishes. The resulting fits of RH as a function of
temperature are reported in Fig. 3(a), while the related hole
densities are reported in Fig. 3(b) by the blue circles, in
good agreement with the experimental values (red squares)
[18]. Interestingly, we also find a good agreement with the
resistivity curves [see Fig. 7 in Methods] in contrast to a similar
analysis in Ref. [18]. The inset of Fig. 3(a) also shows that the
anisotropic component of scattering strongly increases with
approaching pc ≈ 0.16 so that the dominating contribution to
nH is coming from the nodal regions.

The anomalous singular scattering is a general consequence
of the CDW-QCP and it must occur when this is approached,
as it has indeed been measured by quantum oscillations in
Ref. [46], and corresponds to the region of Fermi surface
reconstruction and of anomalous behavior of the Hall number.
Hence, coming from high temperatures, our CDW-QCP
scenario predicts a significant increase of RH upon crossing
T 0

CDW, i.e., according to our identification, the pseudogap
temperature, at which, as mentioned above, the same CDW
scattering starts to deplete spectral weight from the antinodal
Fermi surface states [38] [see also Appendix D]. However, it is
important to note that our analysis does not incorporate pairing
fluctuations, which have been shown [39,40] to be relevant in
a certain temperature window Tc < T < Tpair < T ∗.

In the present context we speculate that, if long-range
superconducting order is suppressed by strong magnetic
fields, pairing fluctuations extend down to T = 0 in contrast
to the anisotropic scattering from Eq. (4), which vanishes
in this limit (even though the vanishing of m(T ) tempers
this reduction). Therefore, upon lowering temperature, the
increasing contribution of pairing fluctuations will counteract
the decrease in the CDW anisotropic quasiparticle scattering
and thus eliminate the downturn of the RH curves in Fig. 3
in the limit T → 0 as is observed in Nd-codoped LSCO [47]
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FIG. 3. Analysis of Hall constant and hole density within the
CDW-QCP scenario. (a) Fits of RH vs T of the low-field (empty
circles) and high-field (filled circles) measures at various dopings
(data taken from Ref. [18]) using the anisotropic scattering model of
Eqs. (3) and (4). The anisotropy parameter α2 is reported in the inset.
(b) (Adapted from Ref. [18]) Doping evolution of the hole density
extracted from RH measurements in Ref. [18]. The experimental
points in the range 0.16 � p � 0.205 are the red rectangles with error
bars, while the blue circles are the values of nH extracted from the
fits based on the microscopic anisotropic scattering model. The Fermi
surfaces in the various doping regimes are schematically depicted
above: (from left to right) hole pockets in the strongly correlated
region near the Mott transition, Fermi surface reconstruction with
electron pockets in the CDW region; large Fermi surface for p > pc ≈
0.16 with dashed (hot) regions where for T < T 0

CDW the anisotropic
CDW scattering suppresses the quasiparticle states; for T < Tpair this
suppression is enhanced by CDW-mediated pairing and fluctuations
may lead to the formation of Fermi arc features [39,40]; large Fermi
surface in the region far from the CDW-QCP, where CDW scattering
is weak and the Fermi-surface states are cold.

where RH can be measured to much lower temperatures than
in YBCO where the measures end at T = 40 K.

IV. THE UNDERDOPED PHASE DIAGRAM:
THE ROLE OF CDW PHASE FLUCTUATIONS

In all the models proposed so far (including ours), were it
not for the competing superconducting phase, the critical line
for static CDWs monotonically increases with underdoping

<| |>=0
<| ( )|> 0

2 T

D pr( )
D0

pc
, pc p*

<|Ψ| θ>≠0

D

ω )
θ

FIG. 4. Schematic view of the phase diagram. The solid magenta
line on the right is the mean-field instability line, while the dashed
one on the left is the BKT transition temperature as obtained from
the bare CDW phase stiffness T 0

CDW = π

2 D0 (see magenta dashed
line and thin solid blue line in the inset). The thick solid blue line is
the transition line obtained by fluctuations correcting the mean-field
instability line. Below this line, the amplitude of the CDW order
parameter is finite 〈|�(0)|〉 �= 0. The analogous line on the left is
dashed and arises from the thermal and quantum phase fluctuations
reducing the phase stiffness (see blue dashed line in the inset at fixed
doping). The intermediate lines arise when fluctuation corrections
are cut off in the infrared limit. The green solid line is for amplitude
and phase fluctuations, partially reducing T 0

CDW. Below this line, the
static average of the CDW order parameter amplitude vanishes, but it
is finite for long time intervals tested by fast probes, 〈|�(ω > ωpr)|〉 �=
0: the green dashed line is the onset temperature Tons corresponding
to a phase stiffness, which is less reduced because of an infrared
cutoff to phase fluctuations (also reported as a green line in the inset
for a fixed doping). (Inset) CDW phase stiffness at fixed doping
as a function of temperature. The magenta dashed line is the bare
stiffness D0. The blue dashed is the stiffness D corrected by phase
fluctuations. Disregarding the discontinuity at the BKT transition, the
phase stiffness vanishes at Tθ (dotted blue line). Green dashed line:
same as the blue line, but the fluctuations have an infrared momentum
cutoff ωpr/cθ to mimic the stiffness on time scales shorter than ω−1

pr .

and saturates to a finite value at low doping (see Figs. 1 and 4
below the solid blue line). This is at odds with the experiments,
where CDWs appear below a dome-shaped critical line ending
into a QCP at low doping p′

c = 0.08 [18,48]. In our model
we solve this inconsistency taking into account the role of
the dynamical fluctuations of the phase θ of the CDW order
parameter �(r) = |�(r)|eiθ(r) at low doping.

A well-known feature of CDWs [49] is that their phase
stiffness is proportional to the strength of the metallic character
(like, e.g., high Fermi velocity, high quasiparticle DOS, etc.),
which is strongly reduced in the proximity of the Mott
transition. Thus the experimentally observed reduction of
the CDW critical (or onset) temperatures in the underdoped
region appears as a crossover from a transition ruled by the
vanishing of the amplitude of the CDW order parameter 〈�〉 =
〈|�(r)|〉 = 0 to a transition controlled by the suppression of
the stiffness, due to fluctuations of the phase θ . In this region
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(below the solid blue line and above the dashed blue line in
Fig. 4), the translational symmetry is restored by the sliding
motion of the CDW, with the sliding CDW possibly oriented
along the a or b direction of the CuO2 planes, thereby marking
a nematic breaking of the C4 symmetry of the lattice. This
situation is reminiscent of the so-called vestigial charge order
[29,50], obtained in a different context.

The effect of the phase fluctuations on the CDW dynamics
is customarily described by the XY -like action

SXY = 1

8

∑
q,ωm

[
D0q

2 + χω2
m

]
θ (q,ωm)θ (−q,ωm),

where D0 is the bare stiffness, and the coefficient χ determines
the speed cθ = √

D0/χ of the phase fluctuations [49]. As long
as the CDW critical temperature is larger than the interplane
coupling (≈10 K in the optimal doping region), we can take
this transition to be of the Berezinski-Kosterlitz-Thouless
(BKT) type. According to the above arguments, the phase
stiffness D0 ∝ p and therefore the bare critical temperature
of the BKT transition obtained from the usual condition
T 0

CDW = π
2 D0 (see magenta line in the inset of Fig. 4) is also

proportional to doping T 0
CDW = T̄ p (magenta dashed line in

Fig. 4).
However, similarly to what happens on the high-doping

side to the mean-field critical temperature, whatever is the
bare T 0

CDW, this is reduced by the quantum and thermal
phase fluctuations. Within the XY model with soundlike phase
fluctuation modes one obtains the perturbative expression of
the depleted stiffness [51]:

D = D0 − uθ cθ

2π
2
θ

∫ 
θ

0
dq q2[1 + b(cθq)], (5)

where 
θ ∼ 1/a is a momentum cutoff (hereafter we take

θ = 1) and b(z) = [ez/T − 1]−1 is the Bose function. Starting
from different D0 at the different doping and calculating the
perturbative corrections with a doping-independent coupling
uθ , we reduce the bare BKT transition temperature to TCDW =
π
2 D, which vanishes at a value of p = p′

c, thereby answering
issue (d) in the Introduction. The various physically relevant
combinations of the microscopic parameters can be reduced to
two effective parameters only (see Appendix C), the position of
the QCP, which can be fixed by experiments at p′

c ≈ 0.08 and
the slope of the TCDW(p) curve. Numerically solving Eq. (5)
we obtain the dashed blue line in Fig. 1.

Above the static TCDW the phase fluctuates dynamically
and, similarly to what happens in the high-doping region, a
fast probe may detect a seemingly ordered state. This occurs
as long as the phase correlation time τθ is longer than the
characteristic time scale of the probe. Again, we mimic this
effect with an infrared cutoff ωpr, i.e., a lower limit ωpr/cθ > 0
in the integral in Eq. (5). The reduced effect of quantum and
thermal fluctuations leads to a larger stiffness and, in turn,
a CDW onset at a higher temperature. For ωpr = 50 K, we
find the green dot-dashed line in Fig. 1, that matches with the
same ωpr the analogous line found in the optimal/overdoped
region. The joint onset line then accounts for the dome-shaped
TCDW(p) onset temperature found by x-ray scattering [issue
(a) in Introduction].

The prediction of a low-doping CDW-QCP due to the
vanishing of the CDW phase stiffness raises the obvious
issue of a possible direct observation of the associated strong
phase modes in the vicinity of the transition. Since the phasons
are optically active [52], optical conductivity is a natural tool
to this purpose, but the contribution to the planar optical
conductivity from overdamped CDW modes has already
been theoretically investigated [53] and it turns out that this
contribution is likely overshadowed by the wealth of planar
single particle excitations. On the other hand, the optical
conductivity along the c-axis σc(ω) could be much more suited
to identify the effects. In fact, the observed resonance in bilayer
(and threelayer) cuprates [54], which has been previously
attributed to transverse (Josephson) plasma modes (TPM) [55]
might also be associated with intralayer-coupled phason modes
which generate a dipole moment along the c direction [56]. The
proposed experiment is not a smoking gun experiment, but it
would be a valid contribution to test our scenario since the
expected specific doping and temperature scaling properties
[53] could be a useful test on the origin of this optical feature.

V. DISCUSSION AND CONCLUSIONS

We addressed several key issues of cuprates, and yet other
issues remain open. First of all, to be as simple as possible, we
considered the single-band Hubbard model. Although attempts
have been made to treat (approximately) the intracell charge
distribution also in this model [57], this model is not naturally
taylored to consider the intracell CuO2 structure. We thus
purposely decided to keep outside the scope of our paper
the interesting question of the internal d-wave structure of
the CDW order parameter recently detected both in resonant
x-ray scattering [58] and STM [21,59] experiments.

We also ignored the effect of disorder, which may lo-
cally render the CDW fluctuations static [60] and therefore
observable by NMR well above the true static transition
line [19]. Nevertheless our scenario is a good starting point
to address these remaining open issues since it provides
a unified scheme based on a robust and generic frustrated
phase-separation mechanism to explain all the (a)–(d) issues
listed in the introduction. The direction of the critical CDW
wave vector, which is a natural test on the validity of the
various proposed CDW mechanisms, is determined here by
the generic strong-correlation effect encoded in the residual
interaction among the Fermi-liquid quasiparticles V (q), after
renormalizing the Fermi Liquid via the slave boson approach.
At and above optimum doping, the transition is ruled by
quantum and thermal CDW fluctuations, whereas at low
doping phase fluctuations control the reduction of the stiffness
and determine the transition. Our main result is that only
one bona fide dome-shaped CDW transition line is present,
ending into two CDW-QCPs. The low doping one at p′

c ≈ 0.08
marks the onset of a static CDW order as revealed by Fermi
surface reconstruction with electron pockets. The CDW phase
ends at higher doping pc ≈ 0.16, above which fluctuations
destroy again the static order. The whole region below our
mean-field line (theoretically related to T ∗ since it tracks its
behavior) is characterized by increasingly stronger fluctuations
for doping pc < p < p∗ ≈ 0.19. Nonetheless, depending on
the probe characteristic time scale, fast probes, like x rays,
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detect different onset lines TCDW(p), well accounted for within
our dynamical CDW fluctuation approach. Extrapolating
these lines to low temperature may erroneously lead to a
misplacement of the real CDW-QCPs. This unifying picture is
also supported by the fact that, although different experiments
mark distinct onsets for the static CDW transition (under
strong magnetic fields) and for the dynamical regime detected
by x rays, the same in-plane modulation vector is observed
[61] denoting their common origin. The experiment on the
c-axis optical conductivity on multilayer systems, suggested
in Sec. IV, could further support the relevance of CDW phase
fluctuations in determining the low-doping transition line.

Within our scenario the effective quasiparticle interactions
are strongly anisotropic as a result of the anisotropy of CDW
fluctuations mediating them. Starting below T ∗(p), this scat-
tering accounts for a progressive increase of RH as observed in
Hall experiments. Although in YBCO the situation is not yet
settled, this anisotropic scattering may be supported by other
mechanisms (like pair fluctuations) to reconstruct the Fermi
surface arcs and pockets with effective hole number eventually
tending to p as it likely occurs in other cuprate families [47].
The interplay between CDW fluctuations and pairing is an
old issue [37], which might also explain why under the action
of increasingly stronger magnetic fields the superconducting
dome splits in two smaller domes (see Fig. 4(b) in Ref. [62]),
showing that superconductivity survives longer in the critical
regions associated to the two QCPs at p′

c = 0.08 and pc =
0.16. This tight relationship between superconductivity and
CDW criticality as it clearly emerges from these experiments
further supports CDW quantum criticality in the cuprates phase
diagram.
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APPENDIX A: THE MICROSCOPIC MODEL:
MEAN-FIELD AND FLUCTUATION CORRECTED

CDW INSTABILITY

We first obtain a mean-field phase diagram within the
random-phase approximation (RPA) for correlated single-
band quasiparticles. Specifically, we assume that a strong
Hubbard-like local repulsion U can be treated with a standard
slave-boson/Gutzwiller (SB/G) approach [38,63], leading to a
Fermi-liquid scheme where the quasiparticles are effectively
described by the Hamiltonian

H =
∑
k,σ

Ekc
†
k,σ ck,σ + 1

2

∑
q

V (q)ρqρ−q,

where c
†
k,σ (ck,σ ) creates (annihilates) a quasiparticle

with momentum k and spin projection σ . The band
takes a tight-binding form Ek = −2t(cos kx + cos ky) +
4t ′ cos kx cos ky − μ (we take a unit lattice spacing a =
1 on the CuO2 planes of the cuprates, so that momenta

are dimensionless), with nearest (t) and next-to-nearest (t ′)
neighbor hopping terms and μ is the chemical potential.
ρq = ∑

k,σ c
†
k+q,σ ck,σ is the Fourier transform of the density

operator, and V (q) is the residual density-density interaction
between the quasiparticles. In particular, we find that V (q) =
U (q) − λ + Vc(q) arises from three contributions, each with a
clear physical meaning:

U (q) = U0 + U1(2 − cos qx − cos qy)

+U2(1 − cos qx cos qy)

is a short-range residual repulsion between the quasiparticles;
λ is a generic local attraction that would drive a phase
separation instability of the quasiparticles, were it not for the
presence of a long-range Coulomb repulsion

Vc(q) = vc√
G2

q − 1
,

which is the Fourier transform of the long-range Coulomb
interaction, projected onto a single CuO2 plane, preventing
phase separation of the charged electrons. The coupling
constant is vc = e2d/(2ε⊥), and

Gq = 1 + ε‖d2

ε⊥
(2 − cos qx − cos qy).

Here, e is the electron charge, d is the interlayer distance
(in units of the lattice spacing on the CuO2 planes), ε‖ and
ε⊥ are the components of the dielectric tensor for a system
with tetragonal symmetry, along the principal axes parallel
and perpendicular to the CuO2 planes, respectively. For the
sake of definiteness we fix for YBCO, ε⊥ = 5, ε‖ = 20. As
we shall see, the Coulomb repulsion changes the electronic
phase-separation instability at q = 0 into a CDW instability at
some finite vave vector q = qc.

Within a SB/G approach, the quasiparticle dispersion
is suppressed by the hole doping p, i.e., t = tbare p and
t ′ = t ′bare p. For YBCO, suitable values are tbare = 0.3 eV and
t ′/t = −0.45.

At a given doping p, the chemical potential μ is fixed by
the equation

2

N

∑
k

f (Ek) = 1 − p,

where N is the number of k vectors within the first Brillouin
zone of the CuO2 planes, and f (z) = (1 + ez/T )−1 is the Fermi
distribution function at a temperature T . The parameters of the
short-range repulsion are then found as [38] U0 = −4μ/p,

U1 = tbare

pN

∑
k

(cos kx + cos ky)f (Ek)

and

U2 = 4t ′bare

pN

∑
k

cos kx cos ky f (Ek).

The Coulomb interaction prevents the segregation of
charged quasiparticles on large scales, driven by λ, while lead-
ing to a finite-wavelength instability at q = qc. These are the
basic ingredients of the so-called frustrated-phase-separation
mechanism [30,31] underlying the formation of CDW near
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(b)(b)(a)

FIG. 5. Feynman diagrams for the CDW field. (a) Four-leg vertex
representing the interaction between CDW fields. (b) First-order self-
energy correction to the CDW fluctuation propagator.

optimal doping [25]. We notice that, while this model has
been considered in the past to describe a phonon-mediated
short-range attraction, λ can well describe any short-ranged
(i.e., weakly momentum dependent) attraction possibly arising
from nearest-neighbor magnetic [64], Coulombic [65,66]
or/and phononic [25,67] mechanisms. The intraband screening
processes can be described by the standard quasiparticle
Lindhard polarization bubble

�(q,ωn) = −
∑
k,σ

f (Ek+q) − f (Ek)

Ek+q − Ek + iωn

, (A1)

where ωn are bosonic Masubara frequencies. Electronic charge
instabilities within the RPA approximation are found by
imposing a divergent density-density response, i.e., a vanishing
denominator 1 + V (qc)�(qc,0) = 0 first occurring at some
finite q = qc. To find the RPA instability line we first adjust
λ and Vc to match the instability point with the doping
p = p∗ ≈ 0.19 at which the pseudogap crossover line T ∗(p)
extracted from resistivity data extrapolates for T → 0. Once
the parameters of V (q) are fixed, the instability is found at
finite T by considering the T dependence of the polarization
bubble Eq. (A1) only. The resulting instability line is given
by the magenta line in Fig. 1, remarkably fitting the entire
experimental T ∗(p) line.

Expanding V (q) and �(q,ωn) around qc and ωn = 0, one
obtains the standard expression (1) for the quantum-critical
charge fluctuation propagator [25,53]. The frequency cutoff �

is related to the characteristic energy scale of the short-range
interaction mediators (e.g., for phonons of typical energy
ω0, � ∼ ω2

0/t ∼ ω0/5 ∼ 10 meV [53]). Above the mean-
field QCP, the mass term m0 ∝ ξ−2 ∼ T 2 increases, due to
reduction of the correlation length ξ .

This behavior is modified by the first perturbative correction
beyond RPA. Within the standard derivation of a Ginzburg-
Landau description of criticality in fermion systems [68,69],
this correction comes from the u�4 interaction between charge
fluctuation fields �, which is depicted in Fig. 5(a). The mass
correction comes from the contraction of two legs and is
represented by the diagram in Fig. 5(b).

To obtain the blue solid line in Fig. 1 we solved Eq. (2)
fixing 
 = 1800 K and �̄ = 130 K according to the values
obtained fitting Raman spectra in Ref. [70]. Then the cou-
pling u = 600 K (corresponding to a dimensionless coupling
u/
 = 1/3) was adjusted to match the shifted QCP with the
experimental value pc ≈ 0.16. The green line in Fig. 1 is
instead obtained by setting m = ωpr = 50 K.

APPENDIX B: HALL COEFFICIENT WITHIN
THE CDW-QCP MODEL

The in-plane longitudinal and transverse conductivities
have been derived in Ref. [71] and read

σxx = e2

π3h̄

2π

d

∫
dφ

kF vF cos2(φ)

(φ)
, (B1)

σxy = e3H

π3h̄2

2π

d

∫
dφ

vF cos(φ)

(φ)

∂

∂φ

vF sin(φ)

(φ)
, (B2)

where (φ) is the anisotropic scattering rate along the Fermi
surface (φ denotes the angle between the in-plane momentum
and its x − direction). Following the analysis of Ref. [18], we
neglect the dependence of Fermi momentum kF and Fermi
velocity vF on φ and evaluate these quantities from

vF = h̄kF

m∗ , kF =
√

2π (1 + p)

a
,

with hole doping p and an effective mass m∗ = 4.1 me. The
in-plane lattice constant for YBCO is taken as a = 3.85 Å and
the distance between planes is d = 3.2 Å. The Hall coefficient
and longitudinal resistivity are then

RH = σxy

σ 2
xx + σ 2

xy

1

H
,

ρxx = σxx

σ 2
xx + σ 2

xy

, (B3)

which we calculated in the H → 0 limit. As discussed in the
main text our model for the anisotropic scattering rate Eq. (3)
is derived from the self-energy for quasiparticles subject to
quantum critical fluctuations in the spin [45] or charge [44]
channel. It is limited by a maximum scattering rate max =
vF /a and impurity scattering is considered via a (doping
independent) elastic scattering rate which we fix to 0 =
0.86 THz. The specific form for the quantum critical scattering
Eq. (4) comprises an anisotropic and doping dependent mass
M(φ) = m0(T ) + ν̄ sin2(2φ) which is minimized at the hot
spots for CDW scattering, i.e., around the antinodal points
φ = 0,π/2. The parameter ν̄ = 480 K is an electronic energy
scale [53], whereas m0(T ) is obtained self-consistently by
solving Eq. (2).

The dashed lines in Fig. 6 report the temperature dependent
mass for four doping values, as determined from Eq. (2) in the
calculations for the phase diagram reported in Fig. 1. However,
since our theory is only valid in the quantum critical region we
cutoff the mass at a value mmax = 255 K, which yields the solid
lines in Fig. 6. Moreover, for doping p = 0.19 we also cutoff
the divergence at low temperature which is due to a reentrant
behavior caused by the nearby van Hove singularity. We want
to stress that these cutoffs do not influence on our main con-
clusion, which is drawn from the significant doping dependent
change of RH at T = 50 K, but allow us to fit RH over a larger
temperature interval as shown in Fig. 3 of the main text.

The only fit parameters for the four doping values are the
overall coupling 2 and the parameter α [cf. Eq. (4)], which
governs the anisotropy of the coupling to the quantum critical
CDW fluctuations. The doping dependence of these parameters
is shown in the inset to Fig. 7. The anisotropy parameter α

strongly increases upon approaching the QCP and determines
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FIG. 6. Dashed lines: temperature dependence of the mass term
m0(T ) as determined from Eq. (2) for the four doping values
considered in the paper. Solid lines include a cutoff mmax = 255 K
and mmin = 112 K (for p = 0.19).

the total coupling as shown in the inset to Fig. 3 in the main text.
For the same parameter values Fig. 7 reports the temperature
dependence of the longitudinal conductivity as compared to
the high-field normal state data from Ref. [18]. Despite an
offset between the data and the results of our calculation
(not surprising due to the simplicity of our model), we find
an improved agreement in comparison to the calculations
carried out in Ref. [18] [see their Fig. 9(d)], which was based
on a scattering model which anisotropy increases linearly in
temperature whereas at higher temperature a Fermi liquid type
T 2 contribution dominates. In our model, the low-temperature
regime is usually Fermi liquid like (except at the QCP),
whereas the linear temperature regime is intermediate before
crossing over to a

√
T -like behavior. Even more importantly,

the anisotropic scattering model adopted in Ref. [18] did
not consider the critical temperature and doping dependence
of the mass of the scattering mediator obtained by us via
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FIG. 7. Fits of the longitudinal resistivity Eq. (B3) as compared
to the high-field normal state data (full dots) from Ref. [18]. (Inset)
Doping dependence of the fit parameters α (solid circles) and 2

(solid squares).

an independent analysis (see Fig. 6). This improvement,
leading to a spread in temperature between the calculated ρ’s
substantially lower than in Fig. 9(d) of Ref. [18], indicates that
criticality is a crucial ingredient in this region of the phase
diagram and that the anisotropic scattering model cannot be
ruled out as simply as it is claimed there.

As discussed in the main text, we disregard here the addi-
tional effect of pair fluctuations. While this will likely reduce
the request of strong anisotropic CDW-mediated scattering
(the parameter α) it naturally reduces the value of resistivity
improving the agreement between calculated and experimental
resistivity).

APPENDIX C: CDW SUPPRESSION BY PHASE
FLUCTUATIONS

We started from a bare CDW phase stiffness D0 = Ap

linearly increasing with doping as a result of strong cor-
relations near the Mott-Hubbard transition. In the absence
of experimental indications on the value of A, we took
A = 5800 K, which fixes D0 = 580 K at p = 0.1. This choice
is rather immaterial in the forthcoming discussion, where we
highlight the dependence of the outcomes of our calculations
on quantities that can be accessed by experiments. Of course,
any experimental determination of D0 is accommodated by a
change of the other model parameters, so as to keep fixed the
measurable quantities.

The reduction of the stiffness in Eq. (5) can be cast in a more
convenient way by using the semiclassical approximation for
the Bose function b(z) ≈ T/z yielding

D(T ) = D0

[
1 − uθcθ
θ

6πD0

(
1 + 3T

2cθ
θ

)]
.

The BKT transition is obtained when D = 2T/π . We point
out that, even if this transition were not ruled by the two-
dimensional BKT physics, Eq. (5) nonetheless implies a
transition at a temperature Tθ , where the D vanishes (see blue
dotted line in the inset of Fig. 4). Tθ is obviously higher than
TBKT, where D is still finite.

We define the dimensionless quantity T̃ = 3T/(2cθ
θ ) and
the dimensionless bare BKT temperature T̃0 = 3T0/(2cθ
θ ),
using the characteristic energy scale of the phase mode cθ
θ as
an energy unit. Taking for the sake of convenience ũ = uθ/8,
we obtain from the above equation the condition for the BKT
transition temperature suppressed by phase fluctuations, T̃ =
T̃0 − ũ(1 + T̃ ). Within this approximation, the critical BKT
line is then

T̃ = T̃0 − ũ

1 + ũ
,

while from the definition of T̃0 and cθ , we find T̃0 = β
√

p with
β = 3

√
Aχ/(2
θ ). The condition for a QCP where the BKT

transition temperature vanishes is then given by T̃0 = ũ, which
also defines the critical doping p′

c ≈ 0.08 fixed by experiments
[18]. Expanding around this value, we find the equation for the
critical line

T̃ = ũ

2(1 + ũ)
√

p′
c

(p − p′
c).
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The slope of the physical TCDW(p) line is obtained by
reintroducing the characteristic energy scale cθ
θ ,

cθ
θ ũ

2(1 + ũ)
√

p′
c

,

and is fixed by fitting the data (light-blue squares in Fig. 1). In
this way, the various physically relevant combinations of the
microscopic parameters have been reduced to two effective
parameters only, the position of the QCP and the slope
of the TCDW(p) curve, which can be fixed by experiments.
Specifically, we obtain the dashed blue line in Fig. 1 with
ũ = 4.5, and the characteristic energy scale cθ = 850

√
p K

and numerically solving the full expression Eq. (5).

APPENDIX D: INFLUENCE OF CDW SCATTERING ON
THE FERMI SURFACE QUASIPARTICLE WEIGHT

The hamiltonian of an electronic system subject to CDW
scattering is given by

H =
∑
k,σ

εkc
†
k,σ ck,σ +

∑
k,q,σ

g(q)c†k+q,σ ck,σ , (D1)

where g(q) = 1/N
∑

n eiqRnV (Rn) is the Fourier transform of
a local charge modulation potential V (Rn).

We assume g(q) to be enhanced at the four equivalent wave
vectors (±QCDW,0) and (0, ± QCDW):

g(q) = g0

∑
i=1,4



2 + αi
q

, (D2)

where  corresponds to the inverse of the CDW correla-
tion length and α1,2

q = 2 − cos(qx ± QCDW) − cos(qy), α3,4
q =

2 − cos(qx) − cos(qy ± QCDW). Figure 8 shows the function
g(q) for  = 0.3[1/a] and QCDW = 2π/6[1/a] similar to
the parameters used in Ref. [38]. Upon diagonalizing the
Hamiltonian Eq. (D1) one obtains the Fermi surface reported
in panel (b) of Fig. 8. Clearly the CDW scattering reduces
strongly the spectral weight around the antinodal regions,
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FIG. 8. (a) The function g(q) of Eq. (D2), which describes the
momentum structure of CDW scattering. (b) The resulting Fermi
surface for doping n = 0.15.

while any shadow features produced by the CDW scattering
are well below the scale of visibility. This is all we need
to identify the onset of CDW fluctuations TCDW0 with the
pseudogap crossover temperature T ∗. At lower temperature,
the situation is much more involved and one might speculate
that CDW interplay with pairing (see, e.g., Ref. [40]) leading
to the formation of Fermi arcs.
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