
PHYSICAL REVIEW B 95, 224441 (2017)

Spontaneous magnetization of quantum XY spin model in joint presence of quenched and
annealed disorder

Anindita Bera,1,2,3 Debraj Rakshit,2,3,4 Aditi Sen(De),2,3 and Ujjwal Sen2,3

1Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, India
2Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211 019, India

3Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra 400 094, India
4Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02-668 Warsaw, Poland

(Received 22 July 2016; revised manuscript received 26 April 2017; published 30 June 2017)

We investigate equilibrium statistical properties of the isotropic quantum XY spin-1/2 model in an external
magnetic field when the interaction and field parts are subjected to quenched or annealed disorder or both.
The randomness present in the system are termed annealed or quenched depending on the relation between
two different time scales—the time scale associated with the equilibration of the randomness and the time of
observation. Within a mean-field framework, we study the effects of disorders on spontaneous magnetization,
both by perturbative and numerical techniques. Our primary interest is to understand the differences between
quenched and annealed cases, and also to investigate the interplay when both of them are present in a system. We
find that the magnetization survives in the presence of a unidirectional random field, irrespective of its nature, i.e.,
whether it is quenched or annealed. However, the field breaks the circular symmetry of the magnetization, and the
system magnetizes in specific directions, parallel or transverse to the applied magnetic field. Interestingly, while
the transverse magnetization is affected by the annealed disordered field, the parallel one remains unfazed by the
same. Moreover, the annealed disorder present in the interaction term does not affect the system’s spontaneous
magnetization and the corresponding critical temperature, irrespective of the presence or absence of quenched or
annealed disorder in the field term. We carry out a comparative study of these and all other different combinations
of the disorders in the interaction and field terms, and point out their generic features.
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I. INTRODUCTION

Disorder is an unavoidable feature of condensed matter
and atomic many-body systems, in both classical as well
as quantum domains [1]. There are long-standing quests to
understand several nontrivial quantum phenomena caused by
the presence of disorder. Some of the prominent examples in
the quantum case are disorder induced localizations [2–4], high
Tc superconductivity [5], and novel quantum phases [6–8].

For disordered parameters in a physical system, two typical
situations may arise depending on the interrelation between
the two fundamental time scales associated with the disor-
dered parameter, viz. the time scale over which the disorder
configuration equilibrates and the time scale associated with
observation of the physical quantities of interest [1,6,9–12].
For the cases where the system’s disorder configuration
remains effectively frozen throughout the entire observation
process, the disorder is considered to be “quenched”. In
such cases, one obtains a “functional” free energy as the
logarithm of the partition function, for a given realization of
the quenched random parameter. This functional free energy
is utilized to obtain functional spin-averaged observables for
the given realization of the quenched random parameter. The
quenched averaged observables are obtained by averaging,
over the distribution of the quenched disorder, of the functional
observables. However, there can be a separate situation where
the observation takes place during the equilibration process
of the disorder parameters, so that the time scale associated
with the configurational change is of the order or within a few
orders of the observation time. In such cases, the randomness
of the corresponding system parameters should be considered
to be “annealed” and the partition function has to be averaged

over several random realizations, so that the annealed averaged
free energy is obtained by taking the logarithm of the averaged
partition function.

There has been continuous efforts to understand effects of
disorder in quantum systems [13–18]. A particular reason of
recent interest in such systems is also due to the fact that
current technology allows us to realize artificial randomness
in a controlled way, in for example ultracold atoms trapped in
optical lattices [13]. A considerable amount of effort has been
dedicated to investigate disordered systems that are quenched
[4,15–18], and in particular to understand the effects of such
disorder on the universal dynamics in the vicinity of quantum
phase transitions [15], a useful test which is given by the Harris
criterion [19]. Unlike quenched disorder, the universality class
of a phase transition is usually not affected by the presence
of annealed disorder, as the partition function after averaging
over random realizations can be replaced by one corresponding
to an effective model which is free from the disorder. In other
instances, quenched disorder spin systems have been studied to
understand “glassy” properties in type II superconductors [20],
to demonstrate breakdown of thermalization in the presence of
disorder [4], to achieve quantum advantages due to the intro-
duction of the disorder [16], and to explore disorder induced
quantum phenomena such as “order from disorder” [16,21].
Significant works have also been carried out for studying the
consequences of annealed disorder in the spin systems as
well [22,23]. Moreover, efforts have been directed towards
understanding system properties at equilibrium when the
nature of the disorder changes from quenched to annealed [11].

In this respect, an important question, which to our
knowledge is yet to be dealt with, is how the thermodynamical
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quantities respond in joint presence of quenched and annealed
disorders. It is for example possible to inquire about the prop-
erties of a quantum spin system governed by the Hamiltonian
H = Hint + Hfield, where the disorder introduced in one set
of parameters, say the couplings in Hint, remain quenched
during the observation process, while the equilibrating time
scales of another set, say the field parameters in Hfield, is of the
same or near order as the observation time scale, so that the
latter collection forms an annealed set of parameters. The main
focus of this paper is to study the equilibrium properties, such
as magnetization and critical temperatures, of such systems,
and compare between them and with systems having only
quenched or only annealed disorder or systems devoid of
disorder.

Spontaneous magnetization in higher-dimensional quan-
tum XY model in the presence of an unidirectional quenched
random field has been considered with a lot of interest in
recent times. It has been shown that spontaneous magnetization
perishes when a small random magnetic field with appropriate
symmetry is introduced in the XY spin systems [17,24,25].
However, it persists in the absence of the appropriate symmetry
of the external random field [18,26]. Interestingly, it has been
shown that a uniaxial random field may help the system to
magnetize even in two dimensions [18,27]. Recently, mean-
field approach [28,29] has been adapted to look into the
aspects of spontaneous magnetizations and critical scalings
in quenched disordered spin models [26].

In this work, the models we examine exhibit spontaneous
magnetization in the absence of disorder, and the primary
interest of our work is to understand the effect on the
spontaneous magnetization and the corresponding critical
temperatures due to the joint presence of two types of disorder,
viz. quenched and annealed. We study the quantum spin-1/2
XY models where the system Hamiltonian has two parameters
that are considered to be disordered. They are, respectively, the
interaction and the field parameters. The interaction parameter
is considered to be annealed disordered or quenched disordered
or ordered. The transverse magnetic field is again chosen from
these three options. We analyze the patterns of spontaneous
magnetization when the interaction-field pair is in any of
the nine possible combinations with respect to their disorder.
The quantum spin-1/2 XY model in higher dimensions and
especially with disorder cannot be solved analytically. Hence,
numerical or approximate methods have to be employed for
such investigations. In this work, the mean-field method is
used for the study. Presence of randomness in the interaction
strength preserves isotropic symmetry of the system, while
a small random field, even with zero mean, breaks the
same. In spite of the presence of the disordered fields, the
system does magnetize in either the parallel or perpendicular
direction to the applied random field. We derive analytical
expressions for the critical temperatures and near-critical
magnetizations for all the cases. Our analysis reveals, for
example, that although an annealed disordered field affects
the transverse magnetization, the magnetization parallel to the
applied field remains unaltered by the same. Furthermore, an
annealed disordered interaction does not have any effect on the
system’s spontaneous magnetization and the corresponding
critical temperature, irrespective of the presence or absence of
quenched or annealed disorder in the field. The magnetization

survives quenched randomness, although it always gets shrunk,
whether or not there is an accompanying annealed disorder in
another parameter of the system. However, we find that there
can be situations where the critical temperature is not affected
by the presence of quenched disorder.

The rest of the paper is arranged as follows. In Sec. II
we present a general recapitulation of the mechanism for
obtaining the annealed and the quenched averaged values of
physical observables. In Sec. III we introduce the system and
its mean-field treatment. We also discuss about the various
situations depending on the nature of the disorder parameters
and the segment of the Hamiltonian in which the disorder is
located. In Sec. IV we present a detailed analysis for a quantum
spin-1/2 model in joint presence of quenched and annealed
disorders. Section V tabulates the analytical expressions for
the critical temperatures and scalings of the magnetizations
near the critical points for the different types of disorder in the
quantum spin-1/2 model. We conclude in Sec. VI.

II. ANNEALED AND QUENCHED DISORDERS

In this section we briefly discuss the mechanism for computing
the annealed and quenched averaged values of the observables.
As mentioned earlier, the distinction between quenched and
annealed disorders is determined by relative comparison
of two different time scales of the physical system under
consideration, viz. the relaxation time associated with the
equilibration of the disorders, say τ1, and the time necessary
for the required observation on the system, say τ2. For the cases
where τ1 is of the same or near order of magnitude of τ2, the
statistical properties of the system at equilibrium is obtained
via annealed averaging, which is calculated by averaging of
the partition function Z over several random realizations. The
free energy for a system with the annealed disorder is given as

F = −(1/β) ln〈Z〉, (1)

where β = 1/(κBT ), with κB being the Boltzmann constant
and T being the absolute temperature. Here, and in the
rest of the paper, the notation 〈·〉 shall imply an average of
the argument over the relevant disorder degrees of freedom.
However, if τ1 � τ2, i.e., the impurities remain trapped in
random but fixed positions during the observation time, the
statistical properties of the system at equilibrium is obtained
via quenched averaging. In case of quenched averaging, the
logarithm of the partition function for a given realization of the
quenched disorder parameters, instead of the partition function
itself, is considered for finding the functional spin-averaged
observables for the given realization of the quenched disorder.
The averaging over the quenched random variable is performed
at this stage to obtain the quenched averaged observable. Let
us note here that for both types of disorders, as well as for the
ordered systems, the observation time is assumed to be much
longer than the relaxation of the spin degrees of freedom.

Let us consider a general Hamiltonian H = H({ai},{qj }),
where {ai} and {qj } are two sets of system parameters that
are respectively annealed and quenched disordered. We in-
troduce the functional partition function Z({ai},{qj },{λk}) =
Tr [e−β{H({ai },{qj })+

∑
k λkAk}], where the term

∑
k λkAk is an

auxiliary function. The auxiliary function is used later for
obtaining the expectation values of the operator Ai by taking
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derivatives with respect to λi at λk = 0 ∀k, where Z has been
implicitly assumed to be a differentiable function of the λk’s.
The functional free energyF , after performing configurational
averaging over the annealed disorder for an arbitrary fixed
realization of the {qj }, reads

F({qj },{λk}) = − 1

β
ln

{∫ ∏
i

daiPi(ai)Z({ai},{qj },{λk})
}

,

(2)

where Pi(ai) represent the probability density functions
of the annealed parameters. The thermodynamic functional
average of the observable Ak , averaged over the spin and
annealed disorder degrees of freedom, for the fixed {qj }, is
∂F/∂λk|{λi }=0. The spin- as well as annealed and quenched
disorder-averaged Ak is∫ ∏

j

dqjPj (qj )
∂F
∂λk

|{λi }=0, (3)

where Pj (qj ) denotes the probability density functions of the
quenched disordered parameters.

III. SYSTEM HAMILTONIAN AND
MEAN-FIELD TREATMENT

We investigate the isotropic quantum XY spin model in
an external magnetic field with disorder in the interaction
part or in the field part or in both, within a mean-field
approximation. We are primarily interested in drawing a
comparative analysis on the effect of disorder on spontaneous
magnetization and their scalings near the critical point as a
function of temperature, with different possible combinations
of disorders. For example, a possible combination is quenched
disorder in the coupling terms and annealed disorder in the
field terms. In this section we introduce the system and its
mean-field treatment.

The general form of the Hamiltonian of the ferromagnetic
quantum XY model in the presence of disorders in both the
interaction and the coupling parts is given by HXY(η̃ij ,ηi) =
Hint(η̃ij ) + Hext(ηi), where

Hint(η̃ij ) = −
∑

(i,j )∈S

(J ′ + ε̃η̃ij )
[
σ i

xσ
j
x + σ i

yσ
j
y

]
,

Hext(ηi) = −ε

N∑
i=1

ηiσ
i
y . (4)

Here the coupling constant J ′ > 0. The indices i and j denote
the sites of an arbitrary d-dimensional lattice and σα

i ,α = x,y,
are the Pauli matrices at the ith site. N is the total number
of lattice sites. The set S denotes a subset of the set of all
(unordered) pairs of lattice sites. Both ε̃ and ε are non-negative
parameters, having the dimension of energy that quantify
the strengths of the corresponding random parameters. The
unidirectional random field is chosen to be directed along
the y axis. η̃ij are independent and identically distributed
(dimensionless) Gaussian random variables with zero mean
and variance 1/f . ηi are the same but with unit variance. The
constant f is a dimensionless quantity that depends on the

Hamiltonian and the lattice on which it is defined. We shall
discuss it further in the next paragraph.

In such a system, the mean-field approximation can be ob-
tained as follows. In the Hamiltonian, we replace the operator
σ

j
x by a real number mx , and σ

j
y by my . That is, we approximate

the interaction term by −∑
(i,j )∈S(J ′ + ε̃η̃ij )(mxσ

i
x + myσ

i
y),

where mx and my are spin- as well as disorder-averaged
magnetizations of the system at absolute temperature T . mx

and my are therefore mean-field variables, as yet unknown,
to be obtained from the self-consistency equations of the
mean-field theory. The interaction term can be further rewritten
as −∑N

i=1(J + ε̃η̃i)(mxσ
i
x + myσ

i
y), where J = J ′f and

η̃i are Gaussian random variables with zero mean and unit
variance. Note therefore that f is the number of different j ’s
for a given i in the set S. For nearest-neighbor interactions
in one-dimension, f = 1, while for the same in the two-
dimensional square lattice, f = 2. Hence, within the mean-
field approximation, the Hamiltonian HXY can be written as

HXY(η̃,η) = −(J + ε̃η̃)(mxσx + myσy) − εησy. (5)

Note that in Eq. (5) the Hamiltonian corresponding to the
ordered system can be obtained by simply setting ε̃ = ε = 0.
η and η̃ are independent Gaussian random variables with zero
mean and unit variance. The quantities ε and ε̃ are chosen
to be small compared to J . The functional partition function
of the system in the canonical equilibrium state at absolute
temperature T is given by

Z(η̃,η,{λk}) = Tr[e−β{HXY(η̃,η)+∑
k λkAk}]. (6)

Note that for the cases, where disorder is present in either
the interaction part or the field part, the functional partition
function reduces to Z(η̃,{λk}) [Z(η,{λk})] for ε = 0 [ε̃ = 0].

Now let us consider three different categories:
Category (i): Both the interaction as well as the field terms

are annealed disordered, or any of them is so, while the other
is ordered.

Category (ii): Both the interaction and the field terms are
quenched disordered, or any one of them is so, while the other
is ordered.

Category (iii): The interaction and field terms are, respec-
tively, quenched and annealed disordered or vice versa.
As mentioned earlier, for the cases within the first category,
the free energy is obtained by performing a disorder average
over the partition function. In contrast, for the cases within
the second category, the functional free energy is obtained
for a given realization of the quenched disorder(s), which is
followed by finding the relevant derivatives with respect to
the λk and taking the limit as {λk} → 0. These derivatives
provide the functional spin averages for the observables Ak

for the given realization of the disorder. Performing a disorder
average of these functional spin averages of the observables
provides us with the quenched averaged physical observables.

For the situations within the third category, first a configu-
rational averaging of the partition function over the annealed
parameters for fixed realization of quenched randomness is
performed. This is followed by taking the logarithm to obtain
the functional free energy for the fixed realization of the
quenched randomness. Derivatives with respect to the relevant
λk and subsequent limits {λk} → 0 provide the functional
spin- and annealed disorder-averaged observables. Quenched
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disorder averaging is performed only at this last stage to
obtain the annealed as well as quenched disorder-averaged
observables. As an example, let us consider a quantum spin
magnetic system in the presence of quenched randomness
in the parameter associated with the interaction part η̃ and
annealed randomness in the parameter associated with the field
part η. In this case, the functional free energy after performing
the annealed disorder averaging for a fixed realization of
quenched randomness is given by

F(η̃,{λk}) = − 1

β
√

2π�
ln

{ ∫ ∞

−∞
dηe− η2

2�

× Tr[e−β{HXY(η̃,η)+∑
k λkAk}]

}
, (7)

where � represents the standard deviation of the Gaussian dis-
tributed annealed disorder with zero mean. For convenience,
we alternatively represent Eq. (7) as

F(η̃,{λk}) = − 1

β
ln〈Tr[e−β{HXY(η̃,η)+∑

k λkAk}]〉η. (8)

The functional spin- and annealed disorder-averaged value for
the observable Ak is

∂

∂λk

F(η̃,{λk})|{λk}→0. (9)

The annealed as well as quenched disorder-averaged Ak is

1√
2π�̃

∫ ∞

−∞
dη̃e− η̃2

2�̃

∂

∂λk

F(η̃,{λk})|{λk}→0, (10)

which we will represent, for short, as〈
∂

∂λk

F(η̃,{λk})|{λk}→0

〉
η̃

, (11)

where �̃ represents the standard deviation of the Gaussian
distributed quenched disorder with zero mean. In the following
section we present a detailed analysis of the spontaneous
magnetization and critical scalings of the quantum spin-1/2
spin model for this representative case by the formalism
described here.

IV. QUANTUM XY SPIN-1/2 MODEL IN JOINT PRESENCE
OF QUENCHED AND ANNEALED DISORDERS

We now investigate the behavior of spontaneous magne-
tizations of the isotropic quantum spin-1/2 XY model in
the presence of both quenched and annealed disorders. This
corresponds to the category (iii) of the preceding section.
Our system Hamiltonian is given by Eq. (5). The field and
interaction parts are subjected to annealed and quenched
disorders, respectively. Starting from Eq. (7) and following
straightforward algebraic steps, the components of magneti-
zation along the x and y axes can be obtained by solving for
common zeros of the following pair of functions:

f ε̃,ε
x ( �m) = 〈[〈cosh(βk)〉η]−1〈mx(J+ε̃η̃) sinh(βk)/k〉η〉η̃ − mx

(12)

and

f ε̃,ε
y ( �m) = 〈[〈cosh(βk)〉η]−1〈[my(J + ε̃η̃) + εη]

× sinh(βk)/k〉η〉η̃ − my, (13)

where k =
√

[mx(J + ε̃η̃)]2 + [my(J + ε̃η̃) + εη]2 and �m =
(mx,my). We perform a perturbative analysis for solving the
coupled set of equations formed by equating the functions
f ε̃,ε

x and f ε̃,ε
y to zero. The perturbative approach helps us to

derive the exact analytical expressions for the near-critical
temperature and scaling of magnetization. Moreover, we carry
out numerical analysis, which helps us to look into effects of
disorder in the system properties as functions of temperature,
in near-critical as well as far-from-critical regimes.

A. Critical point and scaling of magnetization near criticality

When strengths of the random parameters are small, it turns
out that perturbative analyses yield a great deal of insight about
the system’s behavior. Such analyses, in particular, provide
quantitative values of critical temperatures and near-critical
scalings of magnetization. Bivariate Taylor series expansions
of Eqs. (12) and (13) around ε/J and ε̃/J at ε = 0 and ε̃ = 0
give the leading order behaviors of f ε̃,ε

x ( �m) and f ε̃,ε
y ( �m) as

f ε̃,ε
x ( �m) = ax + 1

2
J 2bx

(
ε̃

J

)2

+ 1

2
J 2cx

(
ε

J

)2

+ · · · (14)

and

f ε̃,ε
y ( �m) = ay + 1

2
J 2by

(
ε̃

J

)2

+ 1

2
J 2cy

(
ε

J

)2

+ · · · ,

(15)

where

ax = mx

m
tanh[βJm] − mx, (16)

ay = my

m
tanh[βJm] − my, (17)

bx = −2β2mxm tanh[βJm]

cosh[βJm]2
, (18)

by = −2β2mym tanh[βJm]

cosh[βJm]2
, (19)

cx = mxm
2
y

Jm4

[
3 tanh[βJm]

Jm
+ β(tanh[βJm]2 − 3)

]

+ mx

Jm2

[
β

cosh[βJm]2
− tanh[βJm]

Jm

]
, (20)

cy = m2
xmy

Jm4

[
−3 tanh[βJm]

Jm
+ β(3 − tanh[βJm]2)

]
,

(21)

with m = | �m| =
√

m2
x + m2

y .

The ordered system with vanishing ε̃ and ε has a continuous
(circular) symmetry, which implies that magnetization behaves
uniformly in all possible directions. The continuous symmetry
of the system is broken in the presence of the unidirectional
annealed disorder. The possible directions of magnetizations
can be deduced forthwith via a contour analysis [26]. This is
done by identifying the zero-contour lines corresponding to
the functions f ε̃,ε

x ( �m) and f ε̃,ε
y ( �m) [see Eqs. (14) and (15)],

and the intersection points of the lines are solutions of the
magnetization. See Fig. 1. Contour analysis suggest two pos-
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FIG. 1. Contour plot showing directions of magnetization in the
presence of the disorder. Zero contour lines corresponding to f ε̃,ε

x ( �m)
and f ε̃,ε

y ( �m) in Eqs. (14) (solid red) and (15) (dotted blue) for
ε/J = 0.2, ε̃/J = 0.05, and J β = 2, as functions of mx and my .
All quantities are dimensionless.

sible solutions: The system magnetizes either in the transverse
direction of the external annealed field, i.e., mx �= 0,my = 0
(case I) or in the parallel direction of the random field, i.e.,
mx = 0,my �= 0 (case II). By setting �m = (m cos φ,m sin φ),
the transverse and the parallel magnetization correspond to
φ = 0 and π/2, respectively. For ease of reference, we will
henceforth use m⊥ for mx (m‖ for my) to refer to the transverse
(parallel) magnetization.

In order to derive the expressions for the critical temperature
and the scalings of the magnetizations near criticality, we
perform another round of Taylor expansions in Eqs. (14) and
(15) around m = 0. The leading order behavior of the functions
f ε̃,ε

x ( �m) and f ε̃,ε
y ( �m) for small m are given by

f ε̃,ε
x ( �m) =

[
−1 + J

(
β − ε2β3

3

)]
m cos φ

+ 1

3!

[
2

5
J β3[J 2(−5 + 4ε2β2) − 15ε̃2]

]

×m3 cos3 φ + O(m5)

(22)

and

f ε̃,ε
y ( �m) = (−1 + J β)m sin φ

+ 1

3!
[−2Jβ3(J 2 + 3ε̃2)]m3 sin3 φ + O(m5).

(23)

Now as discussed earlier in context of the contour analysis,
the allowed values of φ are 0 (case I) and π/2 (case II).
For transverse magnetization, φ = 0 and f ε̃,ε

y ( �m) vanishes
identically. Equation (22) leads us to

m⊥ = ±
√

5

√
3(J β − 1) − J ε2β3

J β3[J 2(5 − 4ε2β2) + 15ε̃2]
. (24)

The system magnetizes in the perpendicular direction only
below a certain critical temperature. This can be obtained by
setting m⊥ = 0, where the critical temperature is given by

βc,⊥ = 1

J + ε2

3J 3
. (25)

Similarly, the parallel magnetization can be obtained by
setting φ = π/2 in Eqs. (22) and (23). For this case, the
expression in Eq. (22) vanishes identically, and by equating
the expression in Eq. (23) to zero, we obtain

m‖ = ±
√

3

√
J β − 1

J β3(J 2 + 3ε̃2)
. (26)

Setting m‖ = 0, we find the critical temperature to be given by

βc,‖ = 1

J . (27)

Note that from the set of Eqs. (24)–(27), one can recover the
results for the ordered system by setting ε̃ = 0 and ε = 0.
We find that for case being studied in this section, i.e., for
a system with quenched randomness in the interaction term
and annealed randomness in the field term, both parallel and
transverse magnetizations survive the onslaught of the defects
in the system as modeled by the disordered parameters in
the Hamiltonian. Interestingly, the critical temperatures are
not affected by the presence of the quenched disorder (in
the interaction terms). Moreover, the annealed randomness
in the field term does not influence the parallel critical temper-
ature, although it lowers the transverse critical temperature.
Our analysis also reveals that both transverse and parallel
magnetizations are lowered in magnitude compared to the
ordered system due to the presence of quenched disorder.
However, it is only the transverse magnetization on which
the annealed randomness has an impact, and the effect is to
reduce the magnetization, while the parallel magnetization
remains unfazed in the presence of the annealed disorder in
the field term.

B. Away from critical point

Away from the critical point, the perturbative approach
fails. We numerically find out the roots of the coupled set
of equations, obtained by setting the expressions in Eqs. (12)
and (13) equal to zero, i.e., f ε̃,ε

x ( �m) = 0 and f ε̃,ε
y ( �m) = 0.

We perform the configurational averaging for 8000 random
realizations for each type of disorder, viz. η and η̃. As predicted
by the perturbative approach, the numerical simulations also
indicate two possible directions of magnetization—the system
can either magnetize along the transverse direction of the
external annealed disordered field or it can magnetize in the
direction parallel to it.

In Fig. 2 we show the results obtained from numerical
analysis for the transverse magnetization, i.e., m⊥ is nonzero
and m‖ = 0 for ε/J = 0.1 and ε̃/J = 0.15. At high tem-
perature (above the critical temperature), the system does
not magnetize. For β > βc,⊥, the system magnetizes in the
direction which is transverse to the applied random field.
For the ordered system, the critical temperature corresponds
to Jβ = 1. The spontaneous magnetization persists in the
presence of disorder, albeit with a reduced critical temperature.
The behavior of parallel magnetization m|| obtained from
the numerical simulations also confirms the trends from the
perturbative derivations.
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FIG. 2. Spontaneous transverse magnetization in the joint pres-
ence of quenched and annealed disorders. The plot shows numerical
results for transverse magnetization in the presence of annealed
disorder in the field term and quenched disorder in the interaction
term, and is compared to the same in the pure system. Blue
pluses correspond to the magnetization of the pure system and red
circles correspond to the transverse magnetization in the presence
of annealed disorder in the field term and quenched disorder in the
interaction term, obtained by solving for roots of Eqs. (12) and (13)
with ε/J = 0.1 and ε̃/J = 0.15. All quantities are dimensionless.
The vertical axis represents the transverse magnetization for the
disordered case, and the magnetization in the pure case.

V. OTHER COMBINATIONS OF QUENCHED AND
ANNEALED DISORDERS

To perform comparative studies between different kinds of
disordered systems, we shall now adopt similar techniques
as in the preceding section. Let us now consider all possible
combinations of the three categories as mentioned in Sec. III,
obtained by considering different types of disorders in the
interaction and the field terms of the Hamiltonian in Eq. (5).
One of these cases has already been discussed in the last
section. We summarize our results in Table I that considers

all such possible combinations and also includes cases where
disorder is absent. We introduce the following notations for
convenience: 〈η〉a (〈η̃〉a) implies that the disorder in the field
(interaction) term is annealed. Moreover, the same symbol also
denotes the mean of the corresponding annealed distribution.
On the other hand, 〈η〉q (〈η̃〉q) implies that the disorder in the
field (interaction) term is quenched, and the same symbol also
denotes the mean of the corresponding quenched distribution.
The variances of the distributions of all the disordered random
variables are taken to be unity. We also use following
shorthand notation: a1 = J β − 1, a2 = 3(1 − J β) + J ε2β3,
a3 = 1 − J β + J β3ε2, b1 = −5 + 4ε2β2, b2 = 4ε2β2 − 1,
b3 = J 2 + 3ε̃2.

Here we briefly describe the results summarized in Table I.
Case 1 corresponds to the case when the system is free from any
kind of disorder. The isotropic quantum XY model in absence
of any external field manifests a spontaneous magnetization
which has a continuous circular symmetry. The spontaneous
magnetization occurs below a critical temperature constrained
by the condition β = 1/J .

Let us now discuss the cases that belong to category (i),
as described in Sec. III. As expected, the system retains its
circular symmetry in the presence of an annealed disorder in
the interaction part (case 2). Surprisingly, the presence of an
annealed disorder in the interaction part neither disturbs the
magnitude of the magnetization nor does it shift the critical
temperature. However, when the clean system is subjected
to an annealed randomness, only in the field term (case 3),
the situation changes. The circular symmetry of the system
is broken and the system now possesses magnetization in
the direction either parallel or transverse to the applied
field. Although the magnitude of the parallel magnetization
m‖ and corresponding critical temperature (κBβc,‖)−1 remain
unaltered due to this annealed field, the magnitude of m⊥ as
well as the corresponding critical temperature are lowered
compared to the ordered system. We find that the results
in case 4, where annealed disorder is present both in the
interaction and the field terms, are identical with those of

TABLE I. A comparison of the magnetizations and the critical temperatures for the different combinations of disorders. m⊥ and m‖ denotes,
respectively, the magnetizations transverse and parallel to the applied random field. βc,⊥ and βc,‖ are proportional to the inverse of the critical
temperatures in the transverse and parallel directions, respectively.

Case Interaction term Field term m⊥ m‖ βc,⊥ βc,‖

1 η̃ = 0 η = 0 ±√
3
√

a1
J 3β3 ±√

3
√

a1
J 3β3

1
J

1
J

2 〈η̃〉a = 0 η = 0 ±√
3
√

a1
J 3β3 ±√

3
√

a1
J 3β3

1
J

1
J

3 η̃ = 0 〈η〉a = 0 ±√
5
√

a2
b1J 3β3 ±√

3
√

a1
J 3β3

1
J + ε2

3J 3
1
J

4 〈η̃〉a = 0 〈η〉a = 0 ±√
5
√

a2
b1J 3β3 ±√

3
√

a1
J 3β3

1
J + ε2

3J 3
1
J

5 〈η̃〉q = 0 η = 0 ±√
3
√

a1
b3J β3 ±√

3
√

a1
b3J β3

1
J

1
J

6 η̃ = 0 〈η〉q = 0 ±√
5
√

a2
b1J 3β3 ±√

3
√

a3
b2J 3β3

1
J + ε2

3J 3
1
J + ε2

J 3

7 〈η̃〉q = 0 〈η〉q = 0 ±√
5
√

a2
J β3[b1J 2−15ε̃2]

±√
3
√

a3
J β3(b2J 2−3ε̃2)

1
J + ε2

3J 3
1
J + ε2

J 3

8 〈η̃〉a = 0 〈η〉q = 0 ±√
5
√

a2
b1J 3β3 ±√

3
√

a3
b2J 3β3

1
J + ε2

3J 3
1
J + ε2

J 3

9 〈η̃〉q = 0 〈η〉a = 0 ±√
5
√

a2
J β3[b1J 2−15ε̃2]

±√
3
√

a1
b3J β3

1
J + ε2

3J 3
1
J
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case 3. This is intuitively understandable from our analyses in
cases 1 and 2, where the presence of an annealed disorder in
the interaction term has no effect on the magnetizations and
critical temperatures of the system in the mean-field limit.

Let us now look into the cases that belongs to category (ii) of
Sec. III. Case 5 represents the situation when there is quenched
randomness in the interaction term. The system preserves
continuous symmetry of the spontaneous magnetizations,
the critical temperature remains unaltered. However, the
magnetization gets affected and shrinks in magnitude. For the
case where interaction is ordered but the field is quenched
disordered (case 6), the continuous symmetry is broken, the
system exhibits transverse and parallel magnetizations, albeit
with a lowered value compared to the magnetization in the
clean system and requires lower temperatures to magnetize.
Interestingly the effect of disorder is more pronounced in the
parallel direction than in the transverse direction. Finally, we
find that the behavior of the system with quenched randomness
in both interaction and field parts (case 7) is qualitatively
similar to the previous case.

Finally, we consider the cases in category (iii) of Sec. III.
For the cases in this category, annealed and quenched disorders
are both introduced in the system—one in the interaction term
and another in the field term. One of such scenarios (case 9)
was considered at length in Sec. IV. The other one is case 8.
Consistent with what we have seen in previous cases, the
annealed disordered interaction does not have any effect on
the magnetizations and the critical temperatures. Any disorder
effect in this case is only due to the quenched disorder present
in the field term. Therefore, the perturbative formulas in this
case are identical with case 6, where there was no disorder
present in the interaction term.

VI. CONCLUSIONS

In summary, this work examines quantum spin-1/2 XY
models with continuous and broken continuous isotropic
symmetries within the mean-field framework, and investigates
the effect on spontaneous magnetization due to the presence

of disorders in external field or/and in the couplings. The
disorders we consider can be annealed or quenched in nature.

A combined approach of perturbative analysis and nu-
merical simulation has been adopted for characterizing the
spontaneous magnetizations in the systems. We derive exact
analytical expressions, within a perturbative approach, for
the critical temperatures and near-critical scalings of mag-
netization corresponding to the various combinations of the
disorders, and carry out a comparative study. The results
obtained within the perturbative theory are found to match
with those obtained from the numerical simulations. A key
focus has been on systems that exhibit a joint presence
of annealed and quenched disorders, and we discuss the
corresponding effect on spontaneous magnetizations and their
critical temperatures. We find that spontaneous magnetization
persists in the presence of randomness in these models.
The ordered system as well as the disordered systems with
randomness only in couplings, exhibit magnetization for all
possible orientations due to the continuous circular symmetry.
The circular symmetry breaks down in the presence of an
infinitesimal unidirectional disordered field. In the presence
of the random field (with zero mean), which can be annealed
or quenched, the system still exhibits magnetization for two
selective orientations—parallel or transverse to the external
field. The parallel magnetization remains untouched while the
transverse one survives, but is decreased, with the introduction
of an annealed disordered field. Moreover, the annealed
disorder present in the interaction term does not affect the
system’s spontaneous magnetization and the corresponding
critical temperature, irrespective of the presence or absence of
quenched or annealed disorder in the field term.
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