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Unexpectedly marginal effect of electronic correlations on ultrafast demagnetization
after femtosecond laser-pulse excitation
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The treatment of ultrafast demagnetization after femtosecond laser-pulse excitation of a ferromagnetic film is
usually done by a theory based on Fermi’s golden rule which neglects the effects of electronic correlations. In
the present paper the contribution of spin-flip electron-phonon scatterings to the ultrafast demagnetization of Ni
is calculated by this theory and by the density-matrix theory in which the correlations are taken into account.
The unexpected result is that the correlations which are essential for the ultrafast dynamics of nonmagnetic
phenomena have only a marginal effect for the considered magnetic problem. From this point of view the use of
Fermi’s golden rule in all former papers on ultrafast demagnetization is justified.

DOI: 10.1103/PhysRevB.95.224439

I. INTRODUCTION

When a ferromagnetic film is excited by an optical
femtosecond (fs) laser pulse, an ultrafast demagnetization on
a time scale of about 100 fs can be observed, followed by a
remagnetization back to the initial equilibrium state on a longer
time scale [1–3]. In spite of many experimental and theoretical
investigations the detailed mechanisms for this effect are
not yet totally clear. Spin-flip processes during scattering of
electrons at other electrons [4,5] or at quasiparticles (phonons
[6–8], magnons [9]) are possible mechanisms.

So far these scatterings have been described in all former
papers worldwide by a combination of Fermi’s golden rule
with Boltzmann’s rate equation (FB theory). There are three
preconditions for the application of Fermi’s golden rule.
First, it is a first-order perturbation theory which neglects the
memory of the system at time t to states at former times,
i.e., it makes a Markov approximation. It has been shown in
the literature on ultrafast dynamics of nonmagnetic phenomena
that non-Markovian effects may be relevant [10,11]. Second, it
is valid for a time scale considerably larger than the oscillation
time of the time-periodic perturbation because only then
the Sinc function occurring in the perturbation theory can
be replaced by Dirac’s delta functional. However, the time
scale of about 100 fs is shorter than typical oscillation times
of the quasiparticles. Third, it is a theory for the occupation
numbers (leading to rate equations) and does not take into
account the effect of electronic correlations which we will
introduce below and which have been shown in the literature
to be essential for the ultrafast dynamics of nonmagnetic
situations [12,13]. In the present paper we calculate the
demagnetization and remagnetization due to spin-flip electron-
phonon scatterings, once using the FB theory and once using a
density-matrix theory (DM) [14]. In the density-matrix theory
the effect of electronic correlations is taken into account.
From this point of view it improves the FB theory. In our
density-matrix theory we also use a Markov approximation
and a long-time limit which replaces the Sinc function by a δ

functional. This means that we do not study the influence of
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these two latter approximations. Instead, we will investigate
the influence of the electronic correlations. We will show
that this influence is unexpectedly marginal for the magnetic
problem of ultrafast demagnetization. This is the first study
of electronic correlations in the sense of a DM theory for a
magnetic system. In the literature it has been shown [6–8] that
spin-flip electron-phonon scatterings yield a non-negligible
contribution to the ultrafast demagnetization after laser pulses
although they cannot explain the whole effect quantitatively.
We confine ourselves to study the effect of electronic corre-
lations just for these electron-phonon scatterings, for which a
rather simple form of the scattering matrix elements can be
derived (see below). The scope of the paper is not to give
a complete theory of ultrafast magnetization dynamics, but to
investigate the effect of electronic correlations for an important
and mathematically tractable contribution to it. There are
papers on magnetic systems in which the effect of electronic
correlations in the sense of a band theory are studied, by using
a Hubbard Hamiltonian which introduces larger electronic
correlations in the sense of a band theory than those included
in a density functional theory. The electronic correlations
of the density-matrix theory are different quantities from
the electronic correlations in the sense of a band theory
(see Sec. III). Therefore we investigate in our paper f the effect
of electronic correlations in the sense of the density-matrix
theory on dynamic magnetic processes.

II. MODELS FOR ELECTRON AND PHONON SPECTRA

For fcc Ni we model the electronic bands by a Stoner-split
modified tight-binding model which contains only two bands,
one for spin-up majority electrons (j = 1) and one for spin-
down minority electrons (j = 2) which are constantly shifted
against each other by the exchange splitting. For the energies
εk,j of the single-electron states |k,j 〉 with the wave vector k
we use

εk,j = ξk

(
−t

∑
γ

e−ik·Rγ

)
+ U

nj

N
. (1)

Here the Rγ are the position vectors of the nearest-neighbor
atoms of an arbitrarily picked out central atom, U is the
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Hubbard parameter describing the on-site Coulomb interaction
between the electrons, nj is the number of electrons per atom
in band j , and N = n1 + n2. In reality the exchange splitting
is different for different k. However, it would be far too time-
consuming to take this into account in the quantum kinetic
calculations by an ab initio density functional calculation.
In this sense we compare the results of the density-matrix
theory with those of the FB theory for this electronic model.
For the parameter t we use the value t = 2.7 eV [15]. The
quantity ξk is a correction factor which enlarges the number of
available states close to the Fermi level εF [16]. The correction
factor is required to fulfill for our model the Stoner criterion
for a stable ferromagnetic state. We assume that in Ni we
have ten valence states per atom which are hybridizations
between two atomic s states and eight atomic d states. For
our model with two bands, therefore, each band can be filled
with a maximum of ten electrons. During demagnetization the
magnetization decreases, i.e., the exchange splitting decreases.
This is taken into account in the calculation, i.e., the band
structure is dynamically adapted (nj changes in time). We
fit the parameter U to the value 0.41 eV in order to get the
correct Curie temperature TC = 627.24 K for fcc Ni. The
magnetic moment per atom at 293 K then is 0.55μB which
is only a bit different from the experimental result of 0.616 μB

(which includes also a small contribution of the electron orbital
moment, neglected in our model).

For the phonons we use a model [16] where all branches
of the vibrational spectrum are replaced by three branches
(one longitudinal and two transversal) with the same linear
dispersion relation ωq,λ = c|q| where λ is the polarization
index, λ = 1,2,3. We insert for the velocity the value found in
the literature for the transversal phonons in magnetic Ni.

III. CALCULATIONS BY DENSITY-MATRIX THEORY

The time dependence of the demagnetization is obtained by
calculating the occupation numbers f (εk,j ,t) = 〈Ĉ†

k,j Ĉk,j 〉(t).
Neglecting the contribution of the electronic orbital moments,
the z component of the magnetic moment per atom is given by

mz(t) = [n1(t) − n2(t)]μB

=
∑

k

(〈Ĉ†
k,1Ĉk,1〉(t) − 〈Ĉ†

k,2Ĉk,2〉(t))μB. (2)

The Ĉ
†
k,j and Ĉk,j are operators which create and annihilate

an electron in state |k,j 〉. We now discuss the equation of
motion for 〈Ĉ†

k,j Ĉk,j 〉 using Heisenberg’s picture of quantum
mechanics where the operators are time dependent, yielding

d

dt
〈Ĉ†

k,j Ĉk,j 〉 =
〈
dĈ

†
k,j

dt
Ĉk,j

〉
+

〈
Ĉ

†
k,j

dĈk,j

dt

〉
, (3)

with

dĈ
†
k,j

dt
= i

h̄
[Ĥ ,Ĉ

†
k,j ],

dĈk,j

dt
= i

h̄
[Ĥ ,Ĉk,j ]. (4)

The operator Ĥ is the Hamiltonian,

Ĥ = Ĥe + Ĥph + Ĥe-ph, (5)

with the electronic part

Ĥe =
∑
k,j

εk,j Ĉ
†
k,j Ĉk,j , (6)

the phononic part

Ĥph =
∑
q,λ

h̄ωq,λb̂
†
q,λb̂q,λ, (7)

and with the Hamiltonian for the scattering of electrons at
phonons (which will be introduced below). The operators b̂

†
q,λ

and b̂q,λ create and annihilate phonons with wave vectors q
and polarization vectors eq,λ, respectively.

The equations for 〈Ĉ†
k,j Ĉk,j 〉 and for 〈b̂†q,λb̂q,λ〉 contain

expectation values of products of three operators. For them
also equations of motion can be derived which contain
expectation values of products of four operators, etc. This
hierarchy of infinitely many coupled equations is terminated
by a decoupling procedure [10,17]. We apply the decoupling
by approximating the expectation values of products of four
operators by products of all nonvanishing expectation values
of lower-order products of these operators.

The electronic part Ĥe of Ĥ is specified by Eq. (1).
The phononic part Ĥph is specified by the above discussed
vibrational model with three branches and ωq,λ = c|q|. For
the electron-phonon operator we use

Ĥe-ph =
∑
k,j,j ′

∑
q,λ

gλ(q)[(1 − asf )δjj ′ + asf ]Ĉ ′†
k+q,j b̂q,λĈk,j

+
∑
k,j,j ′

∑
q,λ

g∗
λ(q)[(1−asf )δjj ′+asf ]Ĉ†

k,j ′ b̂
†
q,λĈk+q,j ,

(8)

with j,j ′ = 1,2, which describes scattering processes from
|k,j 〉 to |k + q,j′〉 by absorbing a phonon and from |k + q,j〉
to |k,j ′〉 by emitting a phonon. In Eq. (8) the quantity gλ(q)
is the scattering matrix element calculated in Ref. [18] for
scatterings without spin flips. This electron-phonon scattering
operator is generalized in Eq. (8) because Ĥ includes the
dependence of the matrix element on the spin states of the
initial and final electronic states. If the scattering process
changes the electron state from the spin-up band (j = 1) to the
spin-down band (j = 2) or the other way around, then gλ(q) is
multiplied by asf = √

asf where asf is in the probability for
a spin-flip scattering. If the electron remains in the same band
(j = j ′), then gλ(q) is multiplied by 1. We use

√
asf because

the scattering rate is determined by the absolute square of
the matrix element. The value of asf is determined [2] from
a fit of the microscopic three-temperature model of ultrafast
demagnetization to experimental data, yielding [2] asf = 0.19
for fcc Ni.

The equation of motion for 〈Ĉ†
k,1Ĉk,1〉 obtained after

decoupling contains for our two-band model on the right-hand
side the expectation values 〈Ĉ†

k+q,1b̂q,λĈk,1〉, 〈Ĉ†
k+q,2b̂q,λĈk,1〉,

〈Ĉ†
k−q,1b̂

†
q,λĈk,1〉, and 〈Ĉ†

k−q,2b̂
†
q,λĈk,1〉 and the Hermitian

conjugates. The equation of motion for 〈Ĉ†
k,2Ĉk,2〉 has the

same form, but the index “1” is replaced everywhere by “2”
and “2” is replaced everywhere by “1”. We denote these
expectation values by the symbol y(t). The equations of motion
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for y(t) have the general form of a first-order inhomogeneous
differential equation with, respectively, an inhomogeneity
F (q,λ,k,j,j′,t),

dy(t)

dt
t − i�y(t) = F (q,λ,k,j,j′,t), (9)

where the inhomogeneity F and the frequency � is different
for the different expectation values introduced above, with,
e.g., � = (1/h̄)(εk+q,1 − εk,1 − h̄ωq,λ) for 〈Ĉ†

k+q,1b̂q,λĈk,1〉.
In the following we do not try to get the exact solution

of Eq. (9), but we solve this equation by the use of a
Markov approximation. Thereby we write the expectation
values occurring in dy(t)

dt
t (we show representative examples

below) as products of a factor which varies slowly in time with
an exponential:

〈Ĉ†
k,i Ĉk,j 〉(t) = f̃

ij

k (t) = f̃
ij

k (t)e(i/h̄)(εk,i−εk,j )(t−t0), (10)

〈Ĉ†
k′,i b̂q,λĈk,j 〉(t) = s

ijλ

k′,q,k(t)

= s̃
ijλ

k′,q,q,k(t)e(i/h̄)(εk′,i−εk,j −h̄ωq,λ)(t−t0). (11)

The reason for this is the fact that without Ĥe-ph in the
Hamiltonian the time developments would be given by the fast
oscillating exponentials in Eqs. (10) and (11), whereas when
including the small part Ĥe-ph we get additional slow time
dependencies expressed by f̃

ij

k (t) and s̃
ijλ

k′,q,q,k(t) in the sense

of an interaction picture. The expectation values 〈Ĉ†
k,i Ĉk,j �=i〉

are called correlations. In the band theory based, e.g., on the
density functional theory the electronic correlation energy

describes the difference between the true total electronic
energy and the electronic energy in Hartree-Fock approx-
imation. It results from the Coulomb interactions between
the electrons. This interaction is taken into account by two
contributions. The first contribution describes the mean effect
of the Coulomb interactions of an electron with all the
other electrons, and this contribution is represented by the
Hartree energy in the Hartree-Fock approximation. The second
contribution is the deviation of the real Coulomb interaction
energy from the mean Coulomb interaction energy, and this
contribution is represented by the electronic correlation energy.
The electronic energy thereby is written in terms of the
distributions 〈Ĉ†

k,j Ĉk,j 〉. In contrast, electronic correlations

in the density-matrix theory are defined as 〈Ĉ†
k,i Ĉk,j 〉 for

i �= j . These expectation values do not appear in the energy
expression of the band theory. Their values are also affected
by the electronic correlations in the sense of a band theory, but
they do not enter the energy expression of this theory. In our
density-matrix theory the electronic correlations result from
the spin-flip scatterings of electrons at phonons which yield
a nonzero 〈Ĉ†

k,i Ĉk,j 〉 for i �= j . So, altogether, the electronic
correlations in the sense of a band theory and those in the sense
of our density-matrix theory have different physical origins,
and they are described by different expectation values.

Using Eq. (9) the equation of motion for s̃
ijλ

k+q,q,k(t)
may be derived. It contains on the right-hand side an
expression with the expectation values f 11

k , f 11
k+q, f 21

k ,
and f 12

k+q, and the whole expression is multiplied by
exp[−(i/h̄)(εk+q,1 − εk,1 − h̄ωq,λ)(t − t0)]. Inserting Eq. (10)
introduces further exponentials. Altogether this gives

s̃11λ
k+q,q,k(t) = s̃11λ

k+q,q,k(t0) + i

h̄

∫ t

t0

dt ′[Ã(t ′)e−(i/h̄)(εk+q,1−εk,1−h̄ωq,λ)(t ′−t0) + B̃(t ′)e−(i/h̄)(εk+q,1−εk,2−h̄ωq,λ)(t ′−t0)

+ C̃(t ′)e−(i/h̄)(εk+q,2−εk,1−h̄ωq,λ)(t ′−t0) + D̃(t ′)e−(i/h̄)(εk+q,2−εk,2−h̄ωq,λ)(t ′−t0)], (12)

with Ã(t), B̃(t), C̃(t), and D̃(t) which are slowly varying in time because they contain as time-dependent quantities only the
various f̃

ij

k (t), and which can therefore be put in front of the integral (Markov approximation). We now make the same long-time
approximation as in Fermi’s golden rule, i.e., we represent the Sinc functions which result from the integrations over the
exponentials in Eq. (12) after the tilded quantities have been put in front of the integral by δ functionals. The final result is

s̃11λ
k+q,q,k(t) = s̃11λ

k+q,q,k(t0) + π
i

h̄
Ã(t)δ(εk+q,1 − εk,1 − h̄ωq,λ) + π

i

h̄
B̃(t)δ(εk+q,1 − εk,2 − h̄ωq,λ)

+π
i

h̄
C̃(t)δ(εk+q,2 − εk,1 − h̄ωq,λ) + π

i

h̄
D̃(t)δ(εk+q,2 − εk,2 − h̄ωq,λ). (13)

To calculate mz(t) according to Eq. (2) with the final results for
〈Ĉ†

k,i Ĉk,j 〉 which contain the s̃11λ
k+q,q,k(t) with the δ functionals

of Eq. (13) and the expectation values of products of the other
three operators listed before Eq. (9) (which are calculated in
the same way as 〈Ĉ†

k+q,1b̂q,λĈk,1〉), we use a discrete k-point
grid. As a result we cannot just replace the δ functionals by the
corresponding Kronecker deltas, because then more or less
all Kronecker deltas would yield zero. Therefore the deltas
are replaced by Gaussian curves with a smoothing parameter
σ [19]. In principle one then should test for convergence of
the results for mz(t) with respect to the number of k points

in the grid and σ , thereby keeping σN1 constant, where N1 is
the number of k points in one direction of the Brillouin zone.
However, this would be too time-consuming. We therefore
have done the calculation only for N1 = 40 and σ = 4 mRy,
which are typical values used in the literature.

We now perform two types of calculations. In the first
type we start with a Fermi-Dirac distribution at T = 300 K
for 〈Ĉ†

k,j Ĉk,j 〉, a Bose-Einstein distribution at T = 300 K for

〈b̂†q,λb̂q,λ〉, and zero correlations 〈Ĉ†
k,j Ĉk,j ′ �=j 〉. Then the code

runs until we reach the stationary thermodynamic equilibrium
state for all expectation values. In this stationary state the
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correlations are nonzero; they have been built by the spin-flip
electron-phonon scatterings. In the second type we start with
the state directly after the action of the laser pulse. This state
is described by the Elliott-Yafet scenario [2,3] in which it
is assumed that the laser beam produces a nonequilibrium
situation in which directly after the pulse the magnetic moment
mz is still the magnetic moment mz(t0) we had before the pulse,
and the 〈Ĉ†

k,j Ĉk,j 〉 are given by nonequilibrium Fermi-Dirac
distributions fFD(εk,j ,μj ,Te) where the chemical potentials are
different for spin-up and spin-down electrons and where the
electron temperature Te is increased. In our simulation we use
a typical value [2] of Te = 600 K. The μj are determined from
two equations. First we demand that mz(t0) = μB[n1(t0) −
n2(t0)] where n1,2(t0) can be calculated by using fFD and
the electron density of the states for our tight-binding model.
Second, we demand N = n1(t0) + n2(t0) = 10 in the case of
Ni. Optical photons have typical energies of about 2 eV, and
therefore they can excite electrons with that excitation energy.
The excited electron system then thermalizes very quickly by
electron-electron scatterings, leading to the increased electron
temperature Te, for which we insert 600 K which corresponds
to a thermal energy of about 0.05 eV. These thermalized excited
electrons show spin-flip scatterings either at other electrons
[4,5] or at phonons [6–8] or at magnons [9], and this leads to
modifications of the lengths of the atomic magnetic moments.
This is the accepted picture of the Elliott-Yafet scenario
which has been used in most of the theoretical studies of
ultrafast demagnetization, also in Ni. There may also be other
contributions to the ultrafast demagnetization, for instance,
electronic spin currents for the case of superdiffusion [20]
of excited mainly spin-up electrons from the sample to a
conducting substrate which we neglect in our calculations,
i.e., we implicitly assume an insulating substrate. As soon as
electrons are excited by transitions to other electronic bands,
the electronic correlations in the sense of a DM theory come
into play. To investigate their effect, it is therefore good to
use the Elliott-Yafet scenario. One future project of research
may be to question the validity of the so far widely accepted
Elliott-Yafet scenario. However, this is not within the scope of
the present paper. The scope is to study the effect of electronic
correlations for cases of the magnetization dynamics in which
electrons are excited by transitions to other electronic bands.
For Ni the electronic correlations in the sense of a band theory
are small because the Hubbard parameter is small. But this
does not mean that the electronic correlations in the sense of
the DM theory are automatically also small.

For the phononic correlations 〈b̂†q,λb̂q,λ′ �=λ〉 we start with

zero. We fix the phononic occupation numbers 〈b̂†q,λb̂q,λ〉 to
the Bose-Einstein distribution with Tph = 300 K. Thereby we
assume that the laser photons do not directly excite phonons.
Furthermore, the fixing of the phononic distributions mimics
the fact that in reality the heat delivered by the laser pulse
is transferred from the sample to the surroundings, so that
for very long times the phonon and the electron temperatures
are equal and given by the temperature T = 300 K at which
the experiment is performed. Therefore at the end we have
mz(t)/mz(t0) = 1. For the initial values of the electronic
correlations we use the values obtained at the end of the
first type of calculation, i.e., we assume that the laser beam

does not influence the correlations strongly. In reality there is
some influence of the laser photons on the correlations.
In principle this could be taken into account by explicitly
including the electron- photon interaction in the Hamiltonian,
e.g., in dipole approximation. However, the main purpose of
our theory is to compare the results of the density-matrix
calculations with those of the FB theory. As long as the density-
matrix calculations give results which agree qualitatively with
the experimental results, we can compare the results of the
two theories for the model situation that the laser photons
do not directly influence the correlations. We thus start with
a situation directly after the action of the laser pulse with
initial values of the distributions according to the Elliott-Yafet
scenario and with initial values for the correlations resulting
from our type 1 calculation after having reached the stationary
situation. If for this model situation the density-matrix theory
and the FB theory give very similar results, this would
certainly also be the case for a situation in which we take into
account the direct influence of the photons on the correlations,
i.e., for which we start with slightly modified initial values for
the correlations.

IV. RESULTS

Figure 1 shows the results for mz(t)/mz(t0). There is
a fast demagnetization and a remagnetization on a larger
time scale, as in the experiments. There are oscillations in
time with a period of roughly 20 fs with amplitudes which
increase in time so that they are more clearly visible in the
remagnetization process. When the final stationary state is
reached, then the amplitude does not increase any longer.
Of course we cannot expect that the experimental results
for Ni are perfectly reproduced by our theory, because we
consider only the contribution of spin-flip electron-phonon
scatterings, whereas in reality there may be other contributions
(see the first paragraph), and because we use simple models
for the electronic band structure and for the phonons. More
important is the comparison between the results obtained with
the density-matrix formalism and those we get by using the
FB theory. The FB results are obtained by setting the various
electronic correlations to zero at all times. When doing this, the
density-matrix equations for 〈Ĉ†

k,j Ĉk,j 〉 are then the same as
those used in a FB theory [21]. As shown in Fig. 1, both types
of calculations give very similar results. The main difference
is the oscillations in mz(t) obtained by the density-matrix
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FIG. 1. mz(t)
mz(t0) of fcc Ni after excitation with a femtosecond

optical laser pulse. Red: Results of the density-matrix calculation.
Blue: Results of the Fermi-Boltzmann theory.
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theory, which result from the correlations neglected in the
FB theory. In the experiments no oscillations are seen. There
may be three reasons for this. First, the time resolution of
the measurement (e.g., by time-resolved magneto-optical Kerr
effect measurements [1,2]) may not be good enough. Second,
the very fast oscillations may be suppressed by damping of
the magnetization dynamics which occur in reality but are
not taken into account in our theory. Third, in reality the
exchange splitting between the bands depends on k, leading
to different oscillation frequencies in the correlation terms,
so that destructive interferences might reduce the oscillation
amplitude of mz(t).

So far we have investigated the behavior of the total mag-
netic moment after femtosecond laser pulses. This quantity is
related to the electronic spin moments averaged over all the
electrons involved in the process. We have also investigated
spectrally resolved quantities by looking at the 〈Ĉ†

k,j Ĉk,j 〉 for
values of k which correspond to energies εk,j in various ranges
of about 0.01 Ry around the Fermi energy. For these quantities
the results of the two calculations are also very similar, which
shows that the correlations have only a very small influence
on the occupations of the spin states.

V. CONCLUSIONS

To conclude, we have applied the density-matrix theory to
a problem in magnetism by calculating the contribution of
spin-flip electron-phonon scatterings to the demagnetization
and the following remagnetization of the magnetic moment

of fcc Ni after excitation with a femtosecond optical laser
pulse. The results are very similar to those obtained by the
Fermi-Boltzmann theory which neglects the quantum-kinetic
electronic correlations. This shows that for the ultrafast demag-
netization the electronic correlations are not very important, in
contrast to other physical phenomena where the correlations
are important (see above). From this point of view the use of
the FB theory for a description of the ultrafast magnetization
phenomena after laser-pulse excitation in all former papers in
the literature is justified. This finding is a very important result
from the viewpoint of fundamental physics which is of interest
for all people working on ultrafast dynamic phenomena. In
the Fermi-Boltzmann theory a Markov approximation is used.
We used a Markov approximation also in our density-matrix
theory. The hope is that the results of the two theories would
be very similar also when avoiding the Markov approximation
in the density-matrix theory. To test this is a future project of
our research. We hope that our paper will initiate the following
possible extensions of the theory: (a) The investigation whether
the effect of electronic correlations is marginal also for the
other contributions to ultrafast demagnetization (see the first
paragraph). (b) The application of the theory to other systems,
e.g., Fe [22], where the values of U are larger, i.e., the
electronic correlations in the sense of a band theory are
stronger. As mentioned before, this does not automatically
mean that the electronic correlations in the sense of a DM
theory are also stronger. These latter electronic correlations
depend, among others, on the degree of excitations of the
electrons to other bands which is of course different between Ni
and Fe, for instance. (c) The application of the theory for other
values of the duration and photon energy of the laser pulse.
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