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We describe a mechanism for insulator-to-metal transition triggered by spin canting following femtosecond
laser excitation of insulating antiferromagnetic (AFM) states of colossal magnetoresistive (CMR) manganites.
We show that photoexcitation of composite fermion quasiparticles dressed by spin fluctuations results in the
population of a broad metallic conduction band due to canting of the AFM background spins via strong electron-
spin local correlation. By inducing spin canting, photoexcitation can increase the quasiparticle energy dispersion
and quench the charge excitation energy gap. This increases the critical Jahn-Teller (JT) lattice displacement
required to maintain an insulating state. We present femtosecond-resolved pump-probe measurements showing
biexponential relaxation of the differential reflectivity below the AFM transition temperature. We observe a
nonlinear dependence of the ratio of the femtosecond and picosecond relaxation component amplitudes at
the same pump fluence threshold where we observe femtosecond magnetization photoexcitation. We attribute
this correlation between nonlinear femtosecond spin and charge dynamics to spin/charge/lattice coupling and
population inversion between the polaronic majority carriers and metallic quasielectron minority carriers as the
lattice displacement becomes smaller than the critical value required to maintain an insulating state following
laser-induced spin canting.
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I. INTRODUCTION

The spin- and charge-ordered phases of quantum materials
are traditionally switched by tuning static parameters such as
chemical dopants, pressure, or magnetic fields. Spontaneous
coherence induced in this way, e.g., between many-body states
separated by the Mott-Hubbard insulator gap, can establish
new ordered phases via equilibrium phase transitions. The
question then arises whether nonequilibrium phase transitions
can be similarly triggered by laser-induced charge fluctuations
[1,2] and nonthermal populations of many-body states [3]. In
this way, femtosecond (fs) laser pulses can be used to create
a quasi-instantaneous electronic “initial condition” for nona-
diabatic time evolution prior to lattice thermalization [4–8].
The physical properties of complex materials such as the man-
ganites [9] are governed by collective order and fluctuations of
coupled degrees of freedom [10–14]. This results in elementary
excitations and order parameters with coupled charge, orbital,
spin, and lattice components, which makes it difficult to
underpin their microscopic composition [8,15–19]. In the
manganites, while strong coupling of electronic, magnetic, and
lattice degrees of freedom is believed to be responsible for the
emergence of coexisting insulating/lattice-distorted/AFM and
metallic/undistorted/FM nanoscale regions [9], the relevant
quasiparticles have not been fully characterized yet [19]. Some
theoretical studies have proposed that the sensitivity to the
nonthermal electronic perturbations leading to the CMR phase
transition from AFM/insulating to FM/metallic state may be
due to delocalized electrons with mobility mediated by classi-
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cal spin canting [15,20,21], which coexist with the polaronic
carriers that dominate in the insulating ground state [22–24].

In quantum materials, two different pathways may lead to a
photoinduced phase transition [25]: (1) the electronic pathway,
triggered by photoexcitation and subsequent relaxation of elec-
tronic and spin populations can also change the lattice potential
in the excited state, and (2) the lattice pathway, which may lead
to a delayed crystallographic phase transition that typically
completes within picosecond (ps) time scales [26]. Here we
are mostly interested in the first stage of the time-dependent
process, which is initiated by fs laser excitations of AFM insu-
lating systems such as the manganites. In VO2 [25] and TiSe2

[8] systems, experiments have shown that a highly nonequilib-
rium initial condition is set by quasi-instantaneous electronic
processes induced by the photocarriers, which can lead to
metastable states prior to an insulator-to-metal phase transition
[8,27]. For example, in the TiSe2 insulator, the electronic com-
ponent of the charge density wave order parameter is quenched
quasi-instantaneously while the lattice component persists
[8]. This results in a nonequilibrium state with lattice order
similar to equilibrium, whose properties are controlled by the
photoinduced change in the local electronic density matrix [8].
In VO2, a metastable metallic phase with the monoclinic lattice
structure of the insulating phase is observed after the electronic
component has switched from insulating to metallic [27]. Here,
we investigate the possible role in a nonequilibrium phase tran-
sition of spin fluctuations driven by photocarrier populations
interacting with a deformable spin and lattice medium.

In low-bandwidth insulating manganites such as the
Pr0.7Ca0.3MnO3 system (PCMO) studied experimentally here,
metallic phases cannot be accessed by tuning the temperature
[9]. An AFM insulator to FM metal equilibrium phase
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transition can, however, be induced nonthermally, e.g., by
applying a strong magnetic field, which leads to CMR. While
in equilibrium a magnetic field simultaneously changes the
coupled electronic, magnetic, and lattice order components,
several ultrafast spectroscopy experiments [13,14,28–36] have
observed nonthermal fs charge and/or spin dynamics prior
to electron-lattice relaxation. While a new lattice structure
seems to be established after ps time scales, electronic, orbital,
and magnetic orders have been observed to change much
faster. Photoinduced nonequilibrium phase transitions are
typically characterized by a nonlinear threshold dependence
of the measured properties on the pump laser fluence. The
time evolution of the charge, orbital, lattice, and magnetic
components of a complex order parameter can be separately
monitored with fs x-ray diffraction (XRD) [28,29]. The fs
dynamics of AFM order is less understood, as it may involve
an AFM → FM transition initiated by charge excitations.
Reference [4] reported a threshold increase of the fs-resolved
magneto-optical Kerr (MOKE) and circular dichroism (MCD)
signals at 100-fs time delays, which is absent at ps time delays
and only appears below the AFM transition (Neel) temperature
when a small magnetic field breaks the symmetry. This fs
nonlinearity was interpreted in terms of an AFM → FM
transition that occurs prior to the ps spin-lattice relaxation
[4]. It was proposed that quantum femtosecond magnetism [6]
and FM correlation may arise from both laser-driven charge
fluctuations and non-thermal electronic populations. However,
the microscopic link between spin and charge excitations in
the fs temporal regime requires further clarification.

Few ultrafast spectroscopy experiments suggest a link be-
tween fs spin and charge laser-induced dynamics of an AFM-
ordered insulating phase. The magneto-optical Kerr measure-
ments by Miyasaka et al. [30] show that ultrafast excitation of
the charge degrees of freedom of the Nd0.5Sr0.5MnO3 CE-type
AFM ground state leads to a ps AFM → FM transition. The
initial increase of the magnetic moment within 1 ps was
attributed to nonthermal spin-flip electronic scattering in the
excited state. This is followed by a much slower magnetization
increase due to spin-lattice thermalization, which slows down
close to the AFM transition temperature. Matsubara et al.
[31] argued that a ps phase transition develops in several
steps following fs photoexcitation of the Gd0.55Sr0.45MnO3

AFM/CO/OO ground state. First, a metallic state develops
after 100 fs and decays within 1 ps, while the magnetization
grows within 500 fs and decays within 10 ps. The fast magne-
tization component increases with pump intensity, indicating
that it arises from a microscopic mechanism that involves
the excited photoelectrons. Okimoto et al. [32] observed that
100-fs photoexcitation of Gd0.55Sr0.45MnO3 leads to metallic
behavior of the conductivity within 200 fs. The insulator
gap decreases within 100-fs time scales, well before lattice
thermalization, and triggers the subsequent dynamics. The
differential reflectivity displayed two relaxation components,
fast (∼280 fs) and slow (1 ps). For low intensity, the ps
component was smaller than the fs component and increased
linearly with pump power, while the fast fs component
dominated for high intensity. Wall et al. [33] studied the A-type
AFM insulating state of LaMnO3, where the spins align in
FM planes that are AFM-coupled along the perpendicular c

axis. They found that the amplitude and damping of coherent

lattice vibrations exhibit a sharp discontinuity at the Neel
temperature, unlike for the background signal that showed
smooth dependence on temperature. The observation of a
∼50–100-fs relaxation component of the differential reflec-
tivity indicates that an ultrafast spin-correlation mechanism
is at work in the photoexcited state during nonthermal time
scales, where electronic processes and the tunneling between
the AFM-coupled FM planes can play an important role.

Pulsed X-ray measurements of the individual order param-
eter components can distinguish electronic, lattice, and spin
signals. Forst et al. [29] measured the time evolution of the
magnetic and orbital order of the LaSrMnO manganite and
compared the results between midinfrared (tuned at 92 meV)
and near-infrared (tuned at 1.5 eV) pump photoexcitation.
While the near-infrared photoexcitation of the electronic
degrees of freedom changes the AFM order on a fast 250-fs
time scale, the midinfrared excitation of lattice degrees of
freedom leads to much slower (∼10 ps) dynamics. This
experimental result indicates that fs changes in the magnetic
properties triggered by spin-photoelectron coupling should be
distinguished from the slower spin-lattice relaxation. Ehrke
et al. [34] studied the La0.5Sr1.5MnO4 AFM state with ultrafast
XRD and showed that, while fs photoexcitation melts the
AFM spin order, the orbital order is only partly reduced.
This observation was attributed to a metastable FM state
induced by the charge redistribution between different lattice
sites following fs laser excitation. Unlike in the conventional
double-exchange mechanism [37], the charge excitations were
found to change the short-range magnetic correlations and cant
the AFM spins prior to melting of the JT-distorted lattice.
Beaud et al. [28] used time-resolved XRD to show that
the dynamics of the phase transformation may be described
phenomenologically by a single time-dependent parameter
determined by the photocarrier populations. They proposed
that a phenomenological potential with time-dependent spring
constant can describe the dynamics based on classical equa-
tions of motion for three coupled lattice modes. Matsuzaki
et al. [35] studied the ultrafast dynamics of charge and orbital
order melting in Nd0.5Ca0.5MnO3 by using 20-fs pulses with
low intensity and concluded that, although charge order melts
within 30 fs via strong electronic correlations, the oxygen
displacements associated with the orbitally ordered ordered
phase persist and are only released later. Polli et al. [13]
found that melting of the charge order in PCMO occurs
noninstantaneously within 50 fs, later than in Nd0.5Ca0.5MnO3.
This delayed charge response was attributed to cooperative
and nonlinear effects for high pump intensities. Finally, Singla
et al. [36] reported a 18-fs bottleneck for the loss of orbital
order following photoexcitation of La0.5Sr1.5MnO4 with 4-fs
laser pulses. The observation of a threshold in the fluence
dependence of the JT phonon amplitude is consistent with a
cooperative response for high photocarrier density.

To interpret ultrafast spectroscopy experiments such as the
above, a quantum theory of coupled spin and charge dynamics
in systems with deformable spin and lattice backgrounds is
needed. Model Hamiltonians studied with different theoretical
techniques must be used to make progress in understanding
strongly correlated systems [38]. In this paper, we propose
a possible mechanism for photoinduced insulator to metal
transition triggered by transient spin canting that changes the
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excited quasiparticle energy dispersions, which is based on the
interplay between a quasi-instantaneous electronic/magnetic
pathway and a delayed lattice pathway. We discuss the possible
role of “soft” composite fermion quasiparticle energy bands
that are modified by fs laser excitation and strong electron-
magnon quantum fluctuations. We note that the latter have
been observed to significantly change the spin-wave energy
dispersion and lifetimes in metallic manganites [39–41]. Our
calculations are based on a generalized tight-binding model
taken from the manganite literature [9,19]. We treat the local
Mn + O multielectron configurations and strong magnetic
exchange correlations by introducing Hubbard composite
fermion operators [17,42]. We present numerical results for
a CE-type AFM/CO/OO unit cell showing strong coupling of
the AFM chains and planes that characterize the insulating
states of the manganites [9,19,21] due to quantum spin
fluctuations coupled to the charge excitations. In particular,
such strong electron-magnon coupling delocalizes the excited
quasiparticles due to the deformation of the AFM spin
background during the electronic hopping. We show that
the nonperturbative dependence of the quasiparticle energy
dispersions on local spin canting leads to a broad metallic
conduction band and quenching of the insulator energy gap.
As a result, the critical value of the Jahn-Teller (JT) lattice
displacement necessary for stabilizing an insulating state
increases, which can lead to an ultrafast transition to a metallic
state following photoexcitation of FM correlation.

The experimental observation of threshold nonlinear depen-
dence of pump-probe signals on the pump fluence is typically
associated with photoinduced phase transitions. Here, we
present experimental results showing a threshold nonlinear
pump-fluence dependence of both fs differential reflectivity
and fs magneto-optical signals below the transition to AFM
order. In particular, the ratio of the amplitudes of the “fast”
(fs) and “slow” (ps) relaxation components of a two-step
biexponential relaxation of the differential reflectivity signal
below the Neel temperature grows nonlinearly with pump–
fluence close to the threshold for fs AFM → FM switching
observed in both Kerr effect (MOKE) and magnetic circular
dichroism (MCD) signals at ∼100 fs. We propose that a pos-
sible interpretation of the above experimental nonlinearities
involves an inverted photoexcited state above a pump fluence
threshold, where fast, mobile, metallic quasielectrons dressed
by quantum spin fluctuations coexist with the polaronic
carriers that populate the ground state. Laser excitation then
results in ultrafast charge redistribution between JT-distorted
and undistorted sites, which changes the energy gap, spin
properties, and lattice distortions.

The paper is organized as follows. In Sec. II, we out-
line our theoretical model and discuss its relevance to the
manganites. In Sec. III, we discuss the photoexcitation of
spin dynamics and present a quantum kinetic calculation of
nonadiabatic FM short-range correlation arising from quantum
spin fluctuations. In Sec. IV, we present our quantum kinetic
theoretical formulation of the charge-spin coupled dynamics of
composite fermion quasiparticles. In Sec. V, we calculate the
itinerant quasiparticle energy dispersions within a Hubbard-I
mean-field approximation and compare with bare electrons
and holes moving in an adiabatically decoupled classical spin
background. In Sec. VI, we propose a theoretical picture of

a fs photoinduced insulator to metal transition driven by spin
dynamics. In Sec. VII, we present fs-resolved pump-probe
experimental results showing the emergence of two different
(fs and ps) relaxation components below the AFM transition
temperature, whose amplitude ratio displays a nonlinear
dependence at the pump fluence threshold necessary for fs
magnetization photogeneration. In Sec. VIII, we discuss our
conclusions and implications of our results and, lastly, we
summarize the theoretical calculations in Appendix.

II. THE MODEL AND ITS RELATION
TO THE MANGANITES

Our generalized tight-binding model is based on Hubbard
operators that describe charge excitations bertween the local
multielectron configurations [17]. We assume that the charge
at each site i fluctuates between multielectron configurations
|iαM〉, with total spin (J,M), and |im〉, with total spin
(S,m). The above electronic configurations are assumed to
be eigenstates of the local Hamiltonian [17] that describes
all on-site interactions, including the strong electron-lattice
and magnetic exchange (Hund’s rule) interactions. In the
manganites, these correspond to Mn + O hybridized states
analogous to the Zhang-Rice local singlet between the O hole
and the Cu2+ ion in the Cu-oxide superconductors [43], which
can justify the use of a generalized tight-binding model [19]
and is consistent with the ab initio results of Ref. [44].

The motion of an itinerant spin-1/2 electron is restricted
by its strong magnetic exchange interaction JH with the
localized spins on each site [37] and by the energy barrier EJT

between JT-distorted and undistorted site local configurations.
JH originates from Hund’s rule and typically exceeds the
kinetic energy bandwidth (strong coupling limit) [9,21].
We describe such strong local FM correlation between the
itinerant and localized electron spins by introducing magnetic
Hubbard bands [17,42] characterized by the total spin quantum
numbers (J,M) and note that the population of J = S − 1/2
states is suppressed. The local electron-lattice interaction is
characterized by two different parameters: (i) ratio of the
JT energy barrier EJT over the electron hopping energy t

and (ii) adiabaticity parameter, given by the ratio of phonon
energy h̄ωph over t [21]. In the manganites, the JT phonon
energy (∼70 meV) is smaller that the electron hopping energy
(t ∼ 200 meV) [9], which implies that hopping between sites
is faster than the lattice rearrangements that accompany it
[21]. Similar to previous works [9,45,46], we can then assume
that the electronic energy levels depend on classical lattice
coordinates.

In our calculations, the AFM order was modelled with a
CE-AFM unit cell. Such insulating ground state with charge
order (CO) and orbital order (OO) is observed, e.g., in the
PCMO manganite studied experimentally here and in several
half-doped manganites. The unit cell, Fig. 1(a), consists of
inequivalent alternating “bridge” and “corner” lattice sites
populated by Mn + O octahedra with different charge, spin, and
JT distortions as observed experimentally [47]. These Mn + O
clusters order along charge-modulated zigzag chains with FM
spins [9,44]. Different chains are AFM-coupled and stacked in
AFM-coupled planes [Fig. 1(a)]. The JT distortions stabilize
OO by splitting the degenerate states at the bridge sites, which
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FIG. 1. (a) Illustration of the intersite electronic excitations in
the CE-AFM/CO/OO three-dimensional unit cell considered here,
which consists of 16 sites in two stacked AFM planes and two AFM-
coupled FM zigzag chains with alternating JT-distorted (bridge)
and undistorted (corner) sites [9]. (b) Hopping of a composite
fermion quasiparticle between two AFM sites induces quantum spin
canting by forming a local state with total spin M = S − 1/2 and
J = S + 1/2. Such intersite charge-spin coupling is described by the
Hubbard oparator amplitudes 〈ê†

α′σ ′ (i ′M ′)êασ (iM)〉 as discussed in
the text. (c) Calculated time-dependence of the total z-component
Sz(t) of the two AFM core spins discussed in the text, driven by the
coupling of a 100-fs optical field pulse, for population lifetime T1 = 1
ps and different Rabi energies d0.

enhances the population of the Mn 3d orbitals pointing along
the zigzag chain [9,44]. As several experiments report that
the Mn valence is similar between bridge and corner sites,
the charge modulation most likely involves the total charge
of the Mn + O local clusters, rather than Mn3+/Mn4+ ions as
originally thought [9]. For example, the calculations of Ferrari
et al. [44] suggest that, in the less distorted corner sites of the
zigzag FM chain, the role of the Mn4+ core spin is played
by a Mn atom strongly hybridized with spin-polarized oxygen
holes. On the other hand, the bridge sites are populated by a
Mn3+ ion surrounded by a JT-distorted oxygen octahedron. In
our model, we describe the Mn + O corner states in terms of
“core spin” states |im〉, m = −S, · · · ,S, with S ≈ 3/2 [44].
In the bridge sites, we consider an electronic configuration
|iαM〉, M = −J · · · J , with total spin J = S + 1/2 ≈ 2,
whose energy is lower by EJT as compared to the corner site
configurations due to the JT lattice distortion.

The main purpose of this paper is to discuss the possible
role of spin fluctuations in laser-induced insulator → metal
and AFM → FM nonequilibrium phase transitions. Within
classical spin scenarios, the itinerant electrons move on top
of an adiabatically decoupled spin background with their
spins FM-locked to the localized electron spins at each site:
M = S + 1/2 and m = S. Such an adiabatic picture assumes
that the electronic hopping fluctuations occur on a time scale
faster than the spin dynamics, so the spins always point along
the spin canting classical angles θi . For AFM-coupled chains as
in the CE-AFM state Fig. 1(a), spin conservation then restricts
the electronic motion inside a single FM chain for large JH ,
due to the magnetic exchange energy cost for creating an
antiparallel spin configuration [9]. On the other hand, quantum
spin fluctuations allow the electrons to hop on sites with

antiparallel spins by flipping the localized spins via JH S±
i · s∓

i .
The electrons can then form states with J = S + 1/2 but M =
S − 1/2 or smaller via electron-magnon quantum fluctuations
[39–41].

The motion of an itinerant electron is restricted by spin-
exchange, electron-lattice, and Mn + O local correlations. To
take this into account, we project the electron operator in terms
of composite fermion excitations with total charge e, which are
created by the Hubbard operators [17,42],

ê†ασ (iM) = |iαM〉
〈
i,M − σ

2

∣∣∣∣, (1)

on each site i, where σ = ±1 labels the z-component of the
local excitation total spin (h̄ = 1). These Hubbard operators
obey the noncanonical anticommutation relations [17,18].

[ê†α′σ ′(i ′M ′),êασ (iM)]+

= δii ′

[
δ
M ′,M+ σ ′−σ

2
|iα′M ′〉〈iαM| + δM ′,M δα,α′

×
∣∣∣∣i,M − σ

2

〉〈
i,M ′ − σ ′

2

∣∣∣∣
]
. (2)

For sufficiently large JH , the J = S + 1/2 local populations
dominate (lower magnetic Hubbard band) and

|iαM〉 =
√

S + M + 1
2

2S + 1

∣∣∣∣iα; ↑ M − 1

2

〉

+
√

S − M + 1
2

2S + 1

∣∣∣∣iα; ↓ M + 1

2

〉
, (3)

where M = −J, . . . ,J and α labels the eigenstates of the JT
and all other local interactions on site i. For our purposes
here, the details of these states are not crucial. Assuming that
electrons hop between sites faster than the lattice distortions
that accompany this hopping, as in the limit h̄ωph/t � 1 [21],
we can approximate |iα; σ/2,M − σ/2〉 ≈ c

†
iασ |i,M − σ

2 〉,
where c

†
iασ creates a bare electron with spin σ/2 in state α

(σ = ±1). We then project the bare electrons as follows [17]:

c
†
ασ i ≈ ê†ασ (i) =

∑
M

Fσ (M) ê†ασ (iM), (4)

where we introduced the Clebsch-Gordan coefficients

Fσ (M) = 〈iαM|c†ασ i |iM − σ/2〉 =
√

S + 1
2 + σM

2S + 1
. (5)

The projected Hamiltonian reads

H (t) =
∑

i

∑
αM

Ei(αM) |iαM〉〈iαM|

+
∑

i

∑
m

Ei(m) |im〉〈im| + Hhop(t), (6)

where the many-electron states |iαM〉 and |im〉 are the
eigenstates of the local Mn + O Hamiltonian at site i with
eigenvalues Ei(αM) (|iαM〉) and Ei(m) (|im〉). The excitation
energies

εασ (i) = Ei(αM) − Ei

(
M − σ

2

)
(7)
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depend on the lattice coordinates due to the electron-lattice
(JT) local coupling, which lowers the energy of the |iαM〉
configurations at the JT-distorted bridge sites. We thus assume
εασ (i) = −EJT(Q) at all bridge sites and εασ (i) = 0 at all
corner sites, where Q is the lattice coordinate. The quasiequi-
librium spin directions on each site are determined by the
classical spin canting angles θi , which define the local z axes
for spin quantization. The quasiparticle hopping is described
by [17]

Hhop(t) = −
∑
ii ′

∑
σ

∑
αα′

Vαα′ (i − i ′)
[

cos

(
θi − θi ′

2

)
ê†ασ (i)

× êα′σ (i ′) + σ sin

(
θi − θi ′

2

)
ê†ασ (i) êα′−σ (i ′)

]
,

(8)

where the hopping amplitudes Vαα′ (i − i ′) have both static
(tαα′ ) and laser-induced (�Vαα′ ) contributions, Vαα′ (j − i) =
tαα′ + �Vαα′ (t). Transient changes in the intersite hopping
amplitudes, �V , can arise from the coupling of the optical
field:

�Vαα′ (i − j ) ≈ d0(t)
tαα′ (i − j )

h̄ωp

, (9)

where d0(t) = eE(t)a is the Rabi energy, a is the lattice spac-
ing, E(t) ∝ e−t2/t2

p is the amplitude of the laser field, and h̄ωp

is the pump central frequency (tp = 100 fs here). Equation (9)
can be derived by expanding the Peierls substitution expression
of the hopping amplitude between sites ri and rj in terms of
the laser vector potential A(t) for typical laser intensities:

Vαα′ (j − i) = tαα′ (j − i) exp[−ieA(t) · (rj − ri)/h̄c]. (10)

�V (t) can also arise from time-dependent changes in the
lattice distortions, which change the local configurations. For
σ = 1, the first term on the right-hand side (rhs) of Eq. (8)
recovers the double exchange model Hamiltonian [9,20,37]
and vanishes for antiparallel spins |θi − θi ′ | = π .

III. FEMTOSECOND QUANTUM SPIN DYNAMICS

In this section, we discuss the possibility that charge
photoexcitation may instantaneously excite spin dynamics.
For example, in weakly correlated magnetic semiconductors,
a “sudden” nonadiabatic tilt of the magnetization results
from photoexcited population of states with strong spin-orbit
interaction, which creates a fs spin-orbit-torque pulse [7].
Here, we show that fs FM correlation may be induced quasi-
instantaneously via quantum spin fluctuations triggered by the
photocarriers. The core spin component Sz(i) along the z axis
defined by the quasiequilibrium spin canting angle θi may be
expressed in terms of the local populations as follows:

Sz(i) =
S∑

m=−S

m ρi(m) +
S+ 1

2∑
M=−S− 1

2

M
S

S + 1
2

∑
α

ρα
i (M),

(11)

where

ρi(m) = 〈|im〉〈im|〉, ρα
i (M) = 〈|iαM〉〈iαM|〉, (12)

and we assumed that JH is sufficiently large so that only J =
S + 1/2 total spin configurations are populated. Similarly, the
z component of the itinerant electron spin is expressed as

sα
z (i) = 1

2S + 1

S+ 1
2∑

M=−S− 1
2

M ρα
i (M). (13)

In the classical spin limit, the only populated states have m = S

or M = S + 1/2, as all spins point along the directions θi(t).
Introducing the deviation of Sz(i) from its classical value,
�Sz(i) = S − Sz(i), and using the completeness relation∑

αM

ρα
i (M) +

∑
m

ρi(m) = 1, (14)

we obtain from Eq. (11)

�Sz(i)

S
=

∑
α

S− 1
2∑

M=−S− 1
2

S + 1
2 − M

S + 1
2

ρα
i (M)

+
S−1∑

m=−S

S − m

S
ρi(m). (15)

The above equation describes canting from the classical spin
direction θi due to the population of local states with M �
S − 1/2 and m � S − 1. Similarly, we introduce the deviation
of the itinerant electron spin from its classical value, �sα

z (i) =
f α

i

2 − sα
z (i), where

f α
i =

∑
M

ρα
i (M), (16)

is the total electron population on site i. We then obtain from
Eq. (13)

�sα
z (i) = 1

2

S− 1
2∑

M=−S− 1
2

S + 1
2 − M

S + 1
2

ρα
i (M). (17)

In this section, we provide an example of photoexcitation
of short-range FM correlation

∑
i∈I �Sz(i) �= 0 in a cluster I

of sites i. To illustrate this possibility, we consider a dimer
of AFM local spins that interact with e-h photoexcitations
[Fig. 1(b)]. This dimer consists of (i) a JT-distorted site (site
1) populated by a J = S + 1/2 configuration |iαM〉 with total
spin M = S + 1/2 and energy −EJT, and (ii) an undistorted
site (site 2) populated by a core spin S with z-component
m = −S antiparallel to the spin at site 1 and energy zero. A
fairly localized charge density [48] already captures some of
the properties of the extended system [19,20,45] and leads
to an effective Hamiltonian with short-ranged interactions
[19–21]. Here, such interactions are modified by the coupling
of a 100-fs optical field pulse with central frequency h̄ωp ∼
EJT, which drives intersite charge fluctuations illustrated
by yellow arrows in Fig. 1(b). The density matrix of the
quantum dimer considered in this section could serve as a
quantum variable of a more rigorous density matrix embedding
theory that treats strong correlations by mapping the extended
system into a self-consistent impurity plus bath problem
similar to dynamical mean field theory [49]. Laser-induced
nonequilibrium changes in the local density matrix affect
the itinerant quasiparticle dispersion, energy band gap, and
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phonon properties in correlated systems with “soft” energy
bands [8,50]. In this section, we solve the quantum-kinetic
equations of motion for the spin-dependent density matrix
(see the Appendix) and calculate the z component of the total
core spin of the two above sites, Sz = Sz(1) + Sz(2), by using
Eq. (11). Figure 1(c) shows that a finite �Sz(t), Eq. (15),
develops with time. A long-range magnetization could then
arise if a macroscopic number of dimers (or clusters) orients
along a preferred direction [4,31].

To interpret the calculated time dependence �Sz(t), we
plot in Fig. 2 all photoinduced populations �〈|im〉〈im|〉 and
�〈|iαM〉〈iαM|〉 of the two AFM sites as function of time.
Here we assumed the same z axis for both sites. Figures 2(a),
2(c), and 2(e) compare the photoexcited spin populations of
the JT-distorted site 1 for three short dephasing times T2 of
the intersite e-h charge fluctuations. The population of the
M = S + 1/2 ground-state configuration decreases with time
due to the laser-driven electron hopping to site 2, which creates
a quasihole excitation |1α,S + 1/2〉 → |1S〉 on site 1. This
excitation leaves the core spin unchanged with m = S [see
lower panels of Figs. 2(a), 2(c), and 2(e)] so �Sz(1) ≈ 0. The
photoexcited electron hops on site 2, while conserving spin by
creating a local excitation |2, − S〉 → |2α, − (S − 1/2)〉. The
population of these M = −(S − 1/2) configurations on site 2
results in quantum canting of the local spin �Sz(2) �= 0. For
very short dephasing times, the charge fluctuations terminate
after the initial charge transfer [see Fig. 2(e) and 2(f) calculated
for T2 = 8 fs]. For longer T2 = 50 fs, there are additional
populations of the M = S − 1/2 total spin state on site 1 and
the m = −(S − 1) core spin state on site 2, which further
enhance �Sz. In this case, the photoelectron can hop back to
site 1 from site 2 before the laser-induced intersite coherence is
destroyed, which can lead to nonequilibrium molecular bond-
ing between AFM sites that modifies the intersite magnetic
exchange interaction. Such laser-induced changes in the spin
interactions can be described by deriving a quantum master
equation from the equations of motion discussed in Appendix.
In all cases, charge photoexcitation induces quantum dynamics
of �Sz(t), which increases from zero during electron hopping
(quasiinstantaneous FM correlation). In our model, �Sz(t)
displays a nonlinear dependence on pump intensity due to
population inversion with lifetime T1 (see the Appendix).
Singla et al. [36] observed that pump-probe oscillations in
La0.5Sr1.5MnO4 persist at negative time delays (probe before
the pump), which is consistent with T2 ∼ 15 fs. For such
T2, Figs. 2(c) and 2(d) show an appreciable FM correlation
between the two AFM-coupled sites. In all cases, �Sz(t) de-
scribes nonadiabatic dynamics of the background spins, which
leads to spin canting from the quasiequilibrium directions θi

that is driven by the photoexcitation of quasiparticles dressed
by spin fluctuations as discussed next.

IV. QUANTUM KINETICS OF ITINERANT COMPOSITE
FERMION QUASIPARTICLES

In this section, we summarize the equations of motion that
determine the energy bands and time evolution of composite
fermion quasiparticles in the strong-coupling limit. The time
evolution of the local spin-dependent populations ρα

i (M) and
ρi(m) at site i, Eqs. (A1) and (A2), is determined by the inter-
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FIG. 2. Time-dependent changes in the populations of the local
configurations |iαM〉 (top) and |im〉 (bottom) of the two AFM sites
i = 1 and 2 discussed in the text for population lifetime T1 = 1 ps
and different dephasing times T2: [(a) and (b)] T2 = 50, [(c) and (d)]
15, and [(e) and (f)] 8 fs. The spin quantization axis was taken parallel
to the equilibrium spin direction in site 1.

site amplitudes 〈ê†βσ̄ (j ) êασ (i)〉. The equations of motion for
the latter nonlocal coherences, Eq. (A3), couple to four-particle
density matrices of the form 〈[ê†βσ̄ (j ),êβ ′σ ′(j )]+ ê

†
α′σ ′(l) êασ (i)〉
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with j �= l,i. The anticommutator [ê†βσ̄ (j ),êβ ′σ ′(j )]+, Eq. (2),
differs from its fermionic value due to the restrictions in the
population of the J = S + 1/2 and J = S − 1/2 Hubbard
bands imposed by the strong Hund’s rule on-site interaction
and is determined by the local populations and bosonic

excitations. Using a Hartree-Fock factorization of the above
four quasiparticle density matrix, we obtain a closed system
of equations of motion that takes into account the kinematic
interaction due to the strong JH but neglects fluctuations of
the composite fermion anticommutator:

i∂t 〈ê†βσ̄ (j ) êασ (i)〉 − [εασ (i) − εβσ̄ (j )] 〈ê†βσ̄ (j ) êασ (i)〉

= 〈[ê†βσ̄ (j ),êβσ̄ (j )]+〉
∑

l

∑
α′

Vα′β(l − j )

〈[
cos

(
θl − θj

2

)
ê
†
α′σ̄ (l) − σ̄ sin

(
θl − θj

2

)
ê
†
α′−σ̄ (l)

]
êασ (i)

〉

−〈[ê†ασ (i),êασ (i)]+〉
∑

l

∑
β ′

Vαβ ′ (i − l)

〈
ê
†
βσ̄ (j )

[
cos

(
θl − θi

2

)
êβ ′σ (l) − σ sin

(
θl − θi

2

)
êβ ′−σ (l)

]〉
, (18)

where i �= j . The main difference between composite fermion quasiparticles and bare electrons comes from the spin-dependent
anticommutators

nασ (i) = 〈[ê†ασ ′(i ′),êασ (i)]+〉 = δii ′δσσ ′

⎡
⎣ S+ 1

2∑
M=−S− 1

2

S + 1
2 + σM

2S + 1
ρα

i (M) +
S∑

m=−S

S + 1
2 + σ

(
m + σ

2

)
2S + 1

ρi(m)

⎤
⎦, (19)

where we neglected the population of the J = S − 1/2 upper
Hubbard band. We note the analogy to the composite boson
behavior of excitons, which results in optical nonlinearity [2]
due to phase space filling effects arising from the deviation of
excitons from bosonic behavior (kinematic interaction). Using
the completeness relation Eq. (14) and Eqs. (11) and (13), the
above equation takes the following form after neglecting the
population of configurations α′ �= α:

nασ (i)= 1

2S + 1

[
S + 1

2
+ σ

(
Sz(i) + sα

z (i) + σ

2

(
1−f α

i

))]
.

(20)

Introducing the spin fluctuations, �Jα
z (i) = �Sz(i) + �sα

z (i),
determined by population of M � S − 1/2 and m � S − 1
spin states [see Eqs. (15) and (17)], we obtain from the above
equation

nασ (i) = S + 1
2 + σ

(
S + 1

2 − �Jα
z

)
2S + 1

+ 1 − σ

2

1 − f α
i

2S + 1
.

(21)

In the limit of classical spins, S → ∞, Eq. (21) gives nα↑(i) =
1 and nα↓(i) = 0 as in the case of bare electrons. In this
approximation, the electrons are effectively spinless, as their
spin is locked with the core spin in a FM configuration parallel
to θi due to Hund’s rule [9,37]. On the other hand, in the case
of composite fermions, Eq. (21) gives

nα↑(i) = 1 − �Jα
z

2S + 1
, nα↓(i) = 1 − f α

i + �Jα
z

2S + 1
�= 0, (22)

which allows for σ = −1 quasiparticle excitations with total
spin antiparallel to the equilibrium spin direction θi . In
the above equation, the composite fermion anticommutators
depend on the local spin fluctuations �Jα

z , as well as on the
filling factor f α

i that determines the spatial modulation of the
local charge.

Equation (18) suggests a Hubbard-I approximation for
describing the itinerant quasiparticles [17,42]:

i∂t êασ (i,t) = εασ (i) êασ (i,t) − 〈[ê†ασ (i),êασ (i)]+〉

×
∑

l

∑
β ′

Vαβ ′ (i − l)

[
cos

(
θl − θi

2

)
êβ ′σ (l,t)

− σ sin

(
θl − θi

2

)
êβ ′−σ (l,t)

]
. (23)

For a periodic lattice of sites located at positions (R,i), where
i now labels the different atoms in the unit cell and R is the
periodic lattice vector, we transform to k space,

êkσ (iα) = 1√
N

∑
R

e−ikR êασ (Ri), (24)

where N is the number of unit cells and k is the wave vector,
and introduce the normal modes

ênk =
∑
iβσ

uσ
nk(iα)

êkσ (iβ)√
nβσ (i)

, (25)

where n labels the different quasiparticle branches (bands).
From Eq. (23), we then obtain the following eigenvalue
equation, which describes the quasiparticle energy bands:

(ωnk − εβσ (j ))uσ
nk(jβ)

= −
∑
lα

V k
αβ(l − j )

√
nβσ (j )

√
nασ (l)

× cos

(
θl − θj

2

)
uσ

nk(lα) + σ
∑
lα

V k
αβ (l − j )

√
nβσ (j )

×
√

nα−σ (l) sin

(
θl − θj

2

)
u−σ

nk (lα), (26)

where

V k
αβ(i − j ) =

∑
R

Vαβ (R + i − j ) e−ikR. (27)
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The above eigenvalue equation depends on the coupling
between σ = 1 (parallel quasiparticle spin) and σ = −1
(antiparallel quasiparticle spin) excitations. By neglecting
this coupling, the σ = 1 contribution to the above equa-
tion recovers the previous results for bare electrons and
classical spins [9,20,37,51]. In this case, the quasiparticle
excitation total spin is locked parallel to the background
spins throughout the motion and its hopping amplitudes
V k

αβ (l − j )
√

nβ↑(j )nα↑(l) cos ( θl−θj

2 ) are maximized between
FM sites with θi = θj . On the other hand, for quantum spins,
the finite anticommutator nα↓(i) couples σ = 1 and σ = −1
excitations and allows composite fermion quasiparticles to
hop between AFM sites |θl − θj | ∼ π with an amplitude
V k

αβ (l − j )
√

nβ↑(j )nα↓(l) sin ( θl−θj

2 ). In this way, the quantum
spin fluctuations couple the AFM chains and planes of Fig. 1(a)
[second term on the rhs of Eq. (26)] and lead to quasiparticle
delocalization.

Equation (26) describes “soft” energy bands of itinerant
composite fermion quasiparticles. These bands depend non-
perturbatively on the local spin and charge populations of the
different lattice sites as determined by Eqs. (19) and (22). This
dependence on the itinerant quasiparticle dispersion on the
local density matrix, due to the deviations of the composite
fermions from fermionic behavior, can lead to laser-induced
nonadiabatic changes determined by the equations of motion
Eqs. (A1) and (A2). In addition, the quasiparticle energy
bands depend on the background spins via the classical spin
canting angles θi(t). Finally, they depend on the classical
lattice displacements and their dynamics, which determine the
eigenstates |iαM〉 and |im〉 of the local Hamiltonian on each
lattice site. This local Hamiltonian changes with lattice motion,
which leads to lattice-dependent local excitation energies
εασ (i), Eq. (7), and hopping matrix elements Vαα′ . In the next
sections, we discuss the possible role of the “soft” quasiparticle
energy bands, Eq. (26), in photoinduced phase transitions
and note that analogous laser-induced quasiparticle changes
in TiSe2, VO2, and Ga(Mn)As systems have been discussed in
Refs. [7,8,50].

V. PROPERTIES OF ITINERANT QUASIPARTICLE BANDS

In this section, we compare the energy dispersions between
bare electrons and composite fermion quasiparticles. We
consider a periodic system with the CE-AFM unit cell,
Fig. 1(a), with 16 sites as discussed in Sec. II (two bridge
and two corner sites per chain, two AFM chains per plane,
two AFM planes). Similar results are obtained for other AFM
unit cells. For bare electrons, nα↑ = 1 and 0, so electron
hopping between sites i and j located in different chains
can only occur with finite canting of the spin background,
|θi − θj | �= π . In this section, we consider excitation of a
collinear AFM background state, so θi = 0 or θi = π . For
composite fermions, the hopping amplitudes in Eq. (26)
depend on the anticommutators nασ (i), Eq. (22). In this
section, we assume background spins relaxed along θi , so
�Jz = 0. The difference between composite fermion and bare
electron bands then comes from the finite nα↓(i) on sites with
total charge f α

i < 1, which allows hopping between AFM
planes and chains. In order to compare with the results of
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FIG. 3. Calculated energy dispersions of composite-fermion
quasiparticles and comparison to bare electrons for intermediate [(a)
and (b)] and large [(c) and (d)] values of JT energy barrier EJT. [(a)
and (c)] Quantum spins (S = 3/2) and [(b) and (d)] classical spins
(S → ∞).

Refs. [9,20], we use the same tight-binding parameters. Our
conclusions about the effects of the finite nα↓(i) do not rely
on the exact charge modulation f α

i or parameter values, so
we follow Ref. [44] and simply assume that only the lowest
energy Mn + O configuration α is populated in the bridge
sites, f α

i = 1, while only S = 3/2 spin Mn + O configurations
are populated in the corner sites, f α

i = 0. Similar results are,
however, obtained for different charge density modulations f α

i ,
which can be included phenomenologically [15] or calculated
self-consistently in equilibrium using an ab initio theory for
the local multielectron configurations.

Figure 3 compares the calculated quasiparticle dispersions
along the three different directions marked in Fig. 1(a): kx

(along the zigzag chains), ky (perpendicular to the chains but
along the same plane), and kz (perpendicular to the planes).
For a collinear AFM state, there are pronounced differences
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in the energy bands between bare electrons [nα↑(i) = 1 and
nα↓(i) = 0] and composite fermion quasiparticles [nα↑(i) = 1
but nα↓(i) �= 0]. This is the case for both small [Figs. 3(a)
and 3(b)] and large [Figs. 3(c) and 3(d)] JT energy barrier
EJT between the bridge and corner sites. Figures 3(a) and 3(c)
also show a pronounced difference between the e (above the
insulator gap) and h (below the insulator gap) energy bands
for quantum spins, which differ markedly from the case of
classical collinear AFM spins [Figs. 3(b) and 3(d)].

In the classical spin limit, Figs. 3(b) and 3(d), show that
there is no energy dispersion along ky and kz, as electron
hopping between different AFM-coupled chains and planes
is prohibited without spin canting between chains. The only
energy dispersion comes from electron motion along a single
chain with FM spins [9,51]. For large EJT, this kx dispersion is
also small, due to the energy barrier EJT between the alternat-
ing JT-distorted and undistorted sites observed experimentally
[20,44,52]. Therefore the electron charge density is mostly
localized in all three directions for large EJT. This justifies the
use of a localized electron effective Hamiltonian for describing
the spin interactions [20,21], as in the previous section. With
decreasing EJT, the kx dispersion increases, determined by the
ratio t/EJT. However, the energy bands below and above the
energy gap have a similar dispersion [Fig. 3(b)], which can be
obtained analytically [20]. Importantly, the lowest conduction
band is dispersionless [9] and is a linear combination of corner
site configurations [20]. The insulator energy gap corresponds
to transitions from the valence band and the above discrete
state [20].

As seen in Fig. 3, the above picture changes when spin
fluctuations are included nonperturbatively by using Eq. (26).
This is already seen in the deep insulating limit of large EJT,
where the JT confinement results in energies clustered around
ε = 0 (undistorted sites) and ε = −EJT (JT-distorted sites)
[see Figs. 3(c) and 3(d)]. The energy gap is then dominated by
EJT, so a transition to a metallic state requires relaxation of the
JT distortions. However, the JT confinement does not prohibit
tunneling between stacked planes [see Fig. 1(a)], which are
AFM-coupled. With quantum spin fluctuations, Fig. 3(c)
shows that a finite quasiparticle energy dispersion develops
in the conduction band along kz, due to deformation of the
collinear AFM background by the excited electrons. In this
case, quasiparticle excitation opens up a channel of interplane
hopping, which delocalizes the electrons via quantum spin
fluctuations (electron-magnon coupling).

Figures 3(a) and 3(b) show that the differences in the
energy bands between a bare electron and a composite fermion
quasiparticle become very pronounced as EJT ∼ t . On the
other hand, the valence bands remain similar. First, there are
multiple composite fermion conduction bands that disperse
in all three directions, as both in-plane and out-of-plane
electron hopping between AFM chains is now facilitated
by the quantum spin fluctuations and can overcome the JT
confinement as EJT decreases. Second, the delocalization
between the AFM chains, enabled by the finite nα↓(i),
significantly decreases the insulator energy gap (factor of
two difference in Fig. 3) as compared to the case of an
adiabatically decoupled classical spin background that is
assumed to be slower than electron hopping. This result
suggests that, as the JT confinement decreases, the excitation
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FIG. 4. Calculated probability of flipped spins for quasiparticles
below (left) and above (right) the energy gap. σ = 1 (−1) means
quasiparticle total spin parallel (antiparallel) to the equilibrium spin
direction determined by θi = 0 or π . The pronounced difference
in quantum spin canting between a quasielectron and a quasihole
correlates with the difference in their energy dispersions shown in
Fig. 3.

of composite fermion quasiparticles can quench the insulator
gap via quasi-instantaneous spin fluctuations in the excited
state. The nonperturbative charge-spin coupling thus favors
an insulator-to-metal transition. Excitation of a degenerate
population of quasielectrons increases the spin canting and
can in this way induce metallic behavior, discussed in the
next section. Note that classical spin calculations generally
produce critical magnetic fields that are much larger than the
values measured in experiment, as they require a large canting
of the average background spins to be induced by an external
field in order to obtain metallic behavior [20]. On the other
hand, quantum spin canting is induced instantaneously by the
excited composite fermion quasiparticles, whose population
can be controlled by laser photoexcitation.

Figure 4 shows more directly that the composite fermion
quasielectron excitations of the extended AFM system are
accompanied by strong quantum spin canting of the collinear
CE-AFM state. To see this, we compare the probabilities∑

jβ |un
k↑(jβ)|2 and

∑
jβ |un

k↓(jβ)|2 that describe the spin
mixing as function of EJT for two eigenstates with k = 0,
below (left panel) and above (right panel) the insulator gap.
σ = 1 (σ = −1) means quasiparticle total spin parallel (an-
tiparallel) to the background local spin equilibrium direction.
For bare electrons and classical spins,

∑
jβ |un

k↑(jβ)|2 = 1 and
un

k↓(jβ) = 0. This is the case when there is no deformation of
the background spins with respect to the quasiequilibrium local
canting angles θi (adiabatic decoupling of the spin background
from the electronic hopping motion). In Fig. 4, the eigenstate
below the energy gap has very small quantum spin canting,
only for EJT � t [un

k↓(jβ) ≈ 0 in the left panel of Fig. 4].
Therefore the motion of a quasihole mostly occurs within a
single FM chain and does not induce strong spin dynamics.
In contrast, the right panel of Fig. 4 shows that a pronounced
spin deformation is induced by quasielectron excitations above
the insulator energy gap during the electronic hopping. This
is witnessed by the large probability of spin flips over a
wide range of EJT for such eigenstates:

∑
jβ |un

k↓(jβ)|2 ≈∑
jβ |un

k↑(jβ)|2. We therefore expect that a population of
composite fermion quasielectrons excited above the insulator
gap will instantaneously deform the antiparallel background
spins and thus induce FM correlation already during excitation.
With increasing quasiparticle density, these spin deformations
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FIG. 5. Calculated energy levels as function of lattice displacement, EJT = εJTQ, for different spin canting angles θ . The latter describes
FM correlation between the FM chains and planes with respect to the collinear AFM state θ = 0. (Top) Bare electrons (adiabatically decoupled
classical spins, S → ∞). (Bottom) Composite fermion quasiparticles (strongly coupled quantum spins, S = 3/2). εJT = 1.6t0.

will multiply. They can already induced during fs laser
excitation, either directly by the coupling of the optical field
(Sec. VIII) or via a fast avalanche effect that excites many
composite fermion e-h pairs close to the insulator gap during
the relaxation of a photoexcited high energy pair [8]. In the next
section, we discuss the possible implication of the above results
for nonequilibrium phase transitions driven by laser-induced
spin canting.

VI. EFFECTS OF SPIN AND LATTICE
PHOTOEXCITATION

In this section, we propose a mechanism that can lead
to a photoinduced insulator to metal transition driven by
laser-induced spin canting and lattice motion. Similar to
previous works, we assume that the lattice motion can
be described by classical coordinates Q [9,20,21]. The
eigenstates |iαM〉 of the local Hamiltonian depend on Q

due to electron-lattice coupling, which we model by intro-
ducing a linear Q dependence of the energy eigenvalues
Ei(αM) similar to Refs. [9,46]. We neglect any Q-dependent
changes in the hopping parameters, which are less known
in the real materials [19] and should enhance the predicted
effect.

Figure 5 shows the dependence of the low-energy quasi-
particle energy bands on the energy barrier EJT(Q) = εJTQ

induced by the local electron-lattice coupling. These results
were obtained with a real space calculation of a small system
with periodic boundary conditions, which converges for
sufficiently large system size along the z axis and reproduces
the results obtained in the periodic system. Figure 5 compares
the Q dependence of the energy bands between bare electrons,

which move on top of an adiabatically decoupled classical
spin background (top), and composite fermion quasiparticles,
whose motion deforms the background spins via electron-
magnon strong coupling (bottom). It demonstrates that the
conduction and valence bands have different dependence on
both lattice distortions and spin fluctuations. For classical
spins, the upper panel of Fig. 5 reproduces previous results
[20]. For collinear CE-AFM order, θ = 0, in this case the
energy gap does not close even for undistorted lattice Q = 0,
due to the electronic order of a single zigzag chain [9,20].
As can be seen analytically [20], the unit cell of a single
zigzag chain with four inequivalent bridge and corner sites
results in two kinds of bands. The Q-dependent energy bands
are linear combinations of the local configurations of bridge
and corner sites. These bands, whose dispersion in the first
Brillouin zone is shown in Fig. 3, determine the Q dependence
of both ground-state energy and hole quasiparticle energies.
In addition, Fig. 5(a) shows a discrete degenerate state with
energy ε = 0. In the case of classical spins, this lowest
conduction band state is a linear superposition of the electronic
configurations in the two different corner sites of the zigzag
chain unit cell and thus does not depend on Q [20]. With
increasing spin canting angle θ between the chains, electronic
hopping between planes breaks the degeneracy of the above
ε = 0 state, which broadens the lowest conduction band [20].
For large FM correlation between the chains, this bandwidth
increases and the energy gap closes, which results in metallic
behavior induced by a large classical spin canting θ � 15◦.

In contrast to the above classical spin results, the lower
panel of Fig. 5 shows that, with n↓ �= 0, the conduction
band of composite fermion quasiparticles is already very
broad and metallic in the collinear AFM ground state θ = 0.
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Such metallic conduction band arises from the quantum spin
canting induced by the excitation of the quasielectron, which
can tunnel between the different AFM planes and chains
due to electron-magnon quantum fluctuations that cant the
background spins. While treating the spin background as
adiabatic assumes that it is slower than the electronic hopping,
for composite fermions quantum spin canting occurs during
electronic hopping time scales. This results in instantaneous
metallic behavior and FM correlation during quasiparticle
excitation, even for large Q. As seen in Fig. 5(d), this can
quench the energy gap even prior to any increase in θ . With
increasing FM correlation between the chains, θ > 0, the
value of the critical lattice distortion Qc > 0 below which
the energy gap closes increases. Figures 5(d)–5(f) suggest that
an insulator to metal transition will occur when Q � Qc. The
existence of two kinds bands with different dependence on
the lattice and spin degrees of freedom is consistent with
previous descriptions of the equilibrium states and CMR
phase transition of AFM insulating manganites in terms of
polaronic majority carriers and metallic-like minority carriers
[21,24].

In the ground state, the system is insulating, so Q > Qc.
Assuming θ ∼ 0 as seen in experiments, Qc = 0 in the case
of classical spins, as the electronic order of a zigzag chain
maintains the energy gap even for Q = 0. For composite
fermions, the spin fluctuations quench the electronic energy
gap, so a larger lattice displacement is required to maintain it,
Qc � 0. Laser excitation can lead to Q(t) � Qc(t) and thus
induce an insulator-to-metal transition in two different ways:
(i) increase Qc(t) > Qc or (ii) decrease Q(t) < Q as compared
to the ground state. Figure 6 demonstrates the difference in the
Q dependence of the e-h quasiparticle energy gap extracted
from Fig. 5 between composite fermion and bare electron
excitations. It also shows that spin canting θ > 0 increases
the critical lattice displacement Qc required to maintain an
energy gap. In the case of bare electrons, Fig. 6(a), the
energy gap does not close down to Q = 0 without a large
canting angle θ between the AFM chains. On the other hand,
for composite fermions, Fig. 6(b) shows that quantum spin
canting during quasiparticle excitation softens the energy
gap, which now closes below Qc � 0 even for θ = 0. The
critical value Qc increases with background spin canting θ

for both classical and quantum spins. However, in the case
of bare electrons with adiabatically decoupled slower spins
and more “rigid” quasiparticle bands, a large spin canting
angle θ is required for Qc to become comparable to that in
the case of composite fermions with “soft” energy bands.
As a result, the insulating state is more robust and rigid in
the case of classical adiabatically decoupled spins, so it is
more difficult to photoinduce a phase transition without spin
canting.

Furthermore, Fig. 6(c) shows that, in the case of composite
fermions, the charge excitation gap depends on the spin
fluctuations around the average direction θi(t) via �Jz(i) =
�Sz(i) + �sz(i) Eqs. (15) and (17), which determine the
composite fermion anticommutator. Such spin fluctuations can
be induced by photoexcitation of local spin populations with
M � S − 1/2 and m � S − 1, analogous, e.g., to Sec. III
or via an ultrafast avalanche effect that excites many quasi-
particles during relaxation of the high-energy photocarriers.
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FIG. 6. Effect of FM correlation on the lattice dependence of the
energy gap of Fig. 5: (a) bare electrons, increasing θ , (b) composite
fermion quasiparticles, increasing θ , and (c) composite fermion
quasiparticles, increasing �Jz.

This results in time-dependent changes of the composite
fermion anticommutator (22) and thus to quasi-instantaneous
nonperturbative changes in the quasiparticle properties and
energy dispersion, obtained from Eqs. (22) and (26):

�nασ (i) = −σ�Jα
z (i) + 1−σ

2 �f α
i

2S + 1
. (28)

The dependence of the composite fermion anticommutator
nα↓(i) on the spin fluctuations �Jα

z (i) results in a dynamic
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change of the “soft” quasiparticle energy bands during time
evolution of the spin populations and local density matrix,
determined by the equations of motion Eqs. (A2) and (A1).
An example of quasi-instantaneous change in �Jz(t) due to
quasiparticle charge excitation by the coupling of an optical
field pulse was given in Sec. III. �Jz(t) may also be induced
during the initial stage of photocarrier relaxation via excitation
of e-h quasiparticles dressed by quantum spin fluctuations
in the presence of a small magnetic field that introduces a
preferred direction. In all cases, photoexcitation of �Jα

z (i) > 0
increases nα↓(i), which instantaneously quenches the energy
gap and increases Qc(t) as shown in Fig. 6(c). We conclude
that, independent of the details of fs spin photogeneration,
both adiabatic θ (t) > 0 and nonadiabatic �Jz(t) > 0 FM
correlation induced by the photoexcitation leads to increased
Qc(t). Such FM correlation during 100-fs time scales is
observed experimentally above a pump fluence threshold
[4] and can trigger a metal to insulator transition if it is
sufficient for Q(t) � Qc(t). This may already occur during
photoexcitation of sufficient population of composite fermion
quasiparticles, which leads to instantaneous FM correlation as
discussed above. However, the detailed time dependence of
the photoinduced spin canting, which determines the critical
photocarrier density such that Q(t) < Qc(t) as required for
a phase transition, is beyond the scope of the present paper
and will differ in different materials. Independent of whether
the condition Q(t) < Qc(t) is reached or not following
laser excitation, Fig. 6 implies a nonlinear dependence of
the electronic properties on the pump fluence, as the latter
controls the nonthermal populations of the composite fermion
excitations that “suddenly” change the “soft” energy bands
and Qc, while also inducing lattice displacements Q(t) < Q

as discussed next. We expect that, with multiple quasiparticle
excitations, such nonlinear dependence will be even stronger
than the single quasiparticle results presented here. We note
that classical spin equilibrium calculations [20] predict a
very high critical magnetic field for inducing a CMR phase
transition, due to the large charge excitation energy gap for
adiabatically decoupled spins. Here, we argue that composite
fermion excitations characterized by “soft” energy bands that
can be manipulated optically can make an insulator to metal
and AFM to FM transition possible for low magnetic fields
and pump fluences.

The second pathway in which optical excitation can lead
to an insulator to metal transition is to reduce the lattice
displacement Q(t) from its equilibrium value Q. The effective
potential that governs the lattice motion Q(t) includes both
the classical contribution UL(Q), which can be obtained
phenomenologically based on the symmetry [28,53], and the
contribution of the local electron-lattice coupling. The latter is
important for the laser-induced phase transition proposed here
and is described by the Q dependence of the Hamiltonian
(6). The lattice equations of motion can be derived as in
Ref. [54]. For this we introduce an orthonormal basis of
many-electron states |n〉 and expand the time-dependent
many-body state |(t)〉 evolving from the equilibrium state
|G〉 following photoexcitation. The time dependence of the
lattice coordinates is described by the classical equation of
motion Ml

d2Ql

dt2 = Fl(Q), where the forces are determined
by the electronic density matrix ρn′n(t) = 〈n′||(t)〉〈(t)||n〉

[54]:

Fl = − ∂

∂Ql

[
UL(Q) +

∑
nn′

ρn′n(t)〈n|H (Q,t)|n′〉
]
. (29)

After the laser pulse, the off-diagonal density matrix elements
can be neglected by assuming rapid dephasing. Using the
many-body eigenstates of H (Q) as basis and separating the
contributions of the equilibrium state |G〉 from the continuum
of excited states |E〉 shown in Fig. 5, we obtain from the above
equation after using the completeness of the basis states and
introducing the time-dependent populations fE(t) = ρEE(t) of
the many-body states:

Fl(Q,t) ≈ − ∂

∂Ql

[UL(Q) + 〈G|H (Q)|G〉]

−
∑
E �=G

fE(t)
∂εE(Q)

∂Ql

, (30)

where

εE(Q) = 〈E|H (Q)|E〉 − 〈G|H (Q)|G〉 (31)

are the e-h quasiparticle excitation energies as in Fig. 5, which
depend on Q(t). The first term on the rhs of Eq. (30) gives
the adiabatic potential, which determines the lattice motion in
the case of adiabatic time evolution of the insulating state |G〉
without quasiparticle excitation [26]. The second term on the
rhs of Eq. (30) describes a quasi-instantaneous change in the
lattice potential and forces from their quasiequilibrium values
when the population of excited many-body states |E〉 becomes
significant. Such nonequilibrium potential change initiates
lattice motion following quasiparticle excitation and changes
with time as determined by the evolution of the nonequilibrium
populations fE(t) and by the dependence of the excitation
energies (31) on Q(t). This is analogous to previous results
in VO2 [50,55] and semiconductors [56]. A phase transition
is triggered if Q(t) � Qc(t) during the lattice motion Q(t),
where the latter can involve coherent phonon oscillations
and/or anharmonic damped motion. Figure 5 indicates a
nonlinear Q dependence of both ground-state energy and
e-h quasiparticle excitation energies consistent with previous
classical spin results [20]. As a result, Eq. (30) implies that
the effective spring constants, which determine, e.g., the
coherent phonon oscillation frequencies, will change from
their quasiequilibrium values following photoexcitation of
fE(t) even without any phase transition. On the other hand, for
EJT(Q) � t , the energy band Q dependence is approximately
linear, which implies much smaller changes in the sping con-
stants. The fs-resolved XRD experimental results of Ref. [28]
show that the photocarrier density transiently modifies the
lattice spring constants in the manganites, consistent with the
above results. The laser-induced changes in the lattice potential
and forces with quasiparticle excitation will initiate a lattice
motion that depends on both fE(t) and ∂εE (Q)

∂Q
. New metastable

quasiequilibrium lattice configurations Qeq(t) can be obtained
from Eq. (30) by setting Fl(Q) = 0. Such configurations
depend on the elastic potential UL(Q), determined by multiple
lattice modes and lattice anharmonicities [26,53]. For our
purposes here, we assume a simple UL(Q) = 1

2kQ2. In this
case, Eq. (30) gives quasiequilibrium lattice configurations
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that depend on the photocarrier density:

Qeq(t) = −1

k

∂

∂Q
〈G|H (Q)|G〉 − 1

k

∑
E �=G

fE(t)
∂εE(Q)

∂Q
.

(32)

The first term determines the quasiequilibrium lattice distor-
tions, which are, however, modified following photoexcitation
of the continuum of many-body states |E〉. From Fig. 5, we
see that ∂εE (Q)

∂Q
> 0 is dominated by the hole contribution to the

excitation energy. The photoexcited quasiparticle populations
then decrease the quasiequilibrium lattice displacements to
Qeq(t) < Q when fE(t) �= 0.

The lattice displacements Qeq(t) are expected to be small,
Qeq(t) � Q, in the case of laser-induced population inversion
between the two different quasiparticle bands of Fig. 5. This is
the case as the conduction and valence band eigenstates have
different admixture of corner and bridge site configurations,
which leads to their different Q dependence, and may lead
to an irreversible transition when Qeq(t) � Qc(t). Noting that
∂〈n|H (Q)|n〉

∂Q
= 〈n| ∂H (Q)

∂Q
|n〉 for the many-body eigenstates of the

Hamiltonian H (Q), we obtain from Eq. (32) after assuming
for simplicity that the Q dependence of the Hamiltonian (6)
mainly comes from the energies Ei(αM)

Qeq(t) ≈ −1

k

∑
iαM

∂Ei(αM)

∂Q

[
〈G||iαM〉〈iαM||G〉

×
(

1−
∑
E �=G

fE(t)

)
+

∑
E �=G

fE(t)〈E||iαM〉〈iαM||E〉
]
.

(33)

As the energy gap closes, the population of the excited state
metallic continuum |E〉 (lower panel of Fig. 5) increases,∑

E �=G fE(t) ∼ 1, and the lattice displacements are determined
by the populations of the JT-distorted sites in the continuum of
excited states |E〉. For multiple e-h quasiparticle excitations
during the fast relaxation of an initial photoexcited high
energy e-h, the population of lattice-distorted bridge site
configurations |iαM〉 in the highly excited many-body states
|E〉 is expected to be small. Therefore the quenching of the
insulator energy gap by the spin fluctuations facilitates a
quasiequilibrium lattice structure with small JT displacements
due to the differences between the polaronic valence band and
the broad metallic conduction band.

The above picture of a photoinduced insulator to metal
transition above a critical photocarrier density such that
Q(t) � Qc(t) may be validated by experimental observations
of nonlinear and threshold dependencies of the ultrafast
spectroscopy signals with increasing pump fluence and with
a better temporal resolution of fs XRD that can distinguish
between instantaneous and time-delayed processes. In the
nonthermal temporal regime of interest here, a laser-induced
population inversion between the polaronic-like majority car-
riers and the metallic-like minority carriers drives a nonlinear
interdependence of spin, charge, and lattice dynamics. In
this way, fs laser excitation can break the balance between
electronic/magnetic and lattice degrees of freedom based on
their different dynamics as discussed above. To test this picture
experimentally, one must be able to nonthermally control

the quasiparticle populations while simultaneously monitoring
the resulting spin, charge, and lattice time evolution on a fs
time scale. This may be possible by using fs x-ray pulses
[28,34] as their time resolution improves. Several experimental
results so far, discussed in the introduction, indicate the
importance of AFM order and nonlinearity in the nonthermal fs
temporal regime, consistent with our predictions here. In the
next section, we present pump-probe differential reflectivity
and magneto-optical simultaneous measurements that show
a nonlinear threshold pump fluence dependence of both the
spin and the charge dynamics measured during ∼100-fs time
scales.

VII. EXPERIMENTAL RESULTS AND THEIR RELATION
TO THE THEORY

In this section, we present femtosecond pump-probe dif-
ferential reflectivity and magneto-optical spectroscopy exper-
imental results showing nonlinear pump fluence threshold
dependence below the transition temperature for AFM order.
We studied Pr0.7Ca0.3MnO3 (PCMO) single-crystals grown
by the floating-zone method. An important characteristic of
this narrow-bandwidth manganite is that all its equilibrium
phases are insulating. CO/OO electronic order sets in below
∼200 K, while CE-AFM order sets in below ∼140 K.
We used a Ti:sapphire amplifier laser beam with pulse
duration of 35 fs and repetition rate of 1KHz to perform fs
pump-probe spectroscopy measurements of the differential
reflectivity �R/R, magneto-optical Kerr effect (MOKE, �θk),
and magnetic circular dichroism (MCD, �ηk) signals. In this
way, we can compare the fs and ps spin and charge dynamics.
To break the symmetry, we applied a small magnetic field
B � 0.25 T, much smaller than the critical field required
for CMR transition, which introduces a preferred direction
perpendicular to the sample surface.

Figure 7(a) shows the fs-resolved �R(t)/R signal mea-
sured at 30 K when both pump and probe are tuned at
1.55 eV. For relatively high pump fluences ∼4.9 mJ cm−2, we
observe a biexponential ultrafast relaxation with two distinct
signal decay times, τ fs ∼ 530 fs and τ ps ∼ 5.7 ps. As seen by
comparing the normalized �R/R traces, this two-component
relaxation is suppressed for low fluences [Fig. 7(b)] or/and for
high temperatures [Fig. 7(c)]. At low temperature (30 K), the
two relaxation components are observed even for low pump
fluence, but the temporal profile of the normalized �R/R

differs between low 0.4 mJ cm−2 and high 6.2 mJ cm−2 pump
fluence [Fig. 7(b)]. In particular, for 0.4 mJ cm−2 fluence, the
amplitude of the τ fs component is much smaller than that of
the τ ps component, while this reverses for high photoexcitation
intensity. On the other hand, at high temperatures (∼300 K)
above the critical temperatures for CO/OO (200 K) and
AFM (140 K) phase transitions, Fig. 7(c) shows that all
pump fluences give the same single-exponential decay, with a
relaxation time τ ini that is much shorter than both τ fs and
τ ps. This drastic change in the temporal profile of �R/R

with increasing temperature indicates that the biexponential
relaxation is related to the electronic and/or magnetic order. To
clarify this, Figs. 8(a) and 8(b) show the detailed temperature
dependence of the two-step pump-probe signal recovery
at high pump fluence (6.2 mJ cm−2). The two relaxation
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FIG. 7. (a) Femtosecond-resolved �R/R for 1.55 eV pump/probe
excitation, plotted on a logarithmic scale. Dashed lines highlight two
distinct components of biexponential decay. [(b) and (c)] Comparison
of normalized �R/R for high and low pump fluences at temperatures
(b) 30 K (below the AFM transition) and (c) 300 K (above the CO/OO
and AFM transitions).

components τ fs and τ ps appear below T = 140 K, i.e., below
the AFM phase transition (Neel) temperature. We conclude
from the above that the observed biexponential relaxation is
mainly related to AFM order.

Figure 9 shows a 2D false color plot of �R/R as function
of pump-fluence and time delay for two probe frequencies.
The color gradients demonstrate clear differences, along both
axes, between probe frequencies close to [1.55 eV, Fig. 9(a)]
or far above [3.1 eV, Fig. 9(d)] the insulator energy gap.
While at 1.55 eV the peak of �R(t)/R shows an almost
linear fluence dependence, as expected from photocarrier
populations [56], at 3.1 eV it displays a transition from linear
to nonlinear saturation with increasing intensity. The pump
photon frequency was kept at h̄ωp = 1.55 eV (800 nm) for
both probe frequencies, so the pump excites photocarriers
near the insulator gap and is far detuned from the phonon
frequencies. For 1.55-eV probe, the amplitude of the photoin-
duced �R/R in the nonthermal temporal regime is expected to
reflect the laser-excited quasiparticle density and temperature,
which also determine the lattice displacements [56]. We do not
observe any coherent phonon oscillations in �R/R, perhaps
due to the time resolution (∼100-fs pulses are longer than the
∼70-fs JT phonon period) or due to strong phonon damping
and nonlinearity induced by the photocarriers. Similar to other
experiments discussed in the introduction, we interpret our
observation of two distinct relaxation times τ fs and τ ps in
the AFM-ordered state to reflect the dynamics of nonthermal
electronic and spin populations of excited states (τ fs) and
quasiequilibrium lattice relaxation (τ ps), respectively.

The differential reflectivity signal �R(t)/R measured at
3.1 eV does not show any biexponential relaxation following

FIG. 8. Detailed temperature dependence of the fs-resolved
�R/R, shown on a logarithmic scale together with the pulse
autocorrelation (shade) for (a) 300, 220, 180, and 160 K above
the AFM transition temperature; (b) 140, 100, 60, and 30 K below
the AFM transition temperature. The distinct τ fs and τ ps relaxation
components are marked for the 30-K trace (blue lines).

1.55-eV pump photoexcitation. We expect that the “sudden”
increase of this nonresonant �R/R signal during ∼100-fs
time delays mainly reflects a “sudden” increase and saturation
of the overall conductivity of the photoexcited system. Such
behavior is expected, e.g., from an ultrafast quench of the

FIG. 9. (a)–(c) Ultrafast �R/R dynamics for degenerate 1.55 eV
pump/probe photoexcitation. (a) 2D dependence on pump fluence and
time delay at 30 K; (b) peak amplitude as function of pump fluence;
(c) temporal trace at pump fluence of 3.8 mJ cm−2 marked in (a). (d)–
(f) Same �R/R plot as above, but for nondegenerate photoexcitation
with 1.55 eV pump but 3.1 eV probe.
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FIG. 10. Dependence of spin and charge dynamics on photoex-
citation intensity. (a) Photoinduced fs magnetization �M extracted
from magneto-optical ellipticity signal �ηk at 200 fs (green rectan-
gle). (Inset) Comparison of �ηk and �θk (Kerr rotation) dynamics
for 5.6 (red) and 0.8 mJ cm−2 (black). Both signals show the same
“sudden” fs jump above an intensity threshold, which we thus
attribute to photoinduced magnetization during 100-fs time scales
(arrow). All error bars are within the markers. (b) Amplitudes of
fast component Afs (black dots), slow component Aps (red dots),
and Asum= Afs + Aps (inset) of our biexponential fit of �R(t)/R. (c)
Fraction F = Afs/Asum (blue rhombus) and the two distinct relaxation
times (inset) as function of pump intensity.

electronic component of the insulator energy gap [8] as in
our theory. Following the rapid fs rise, Fig. 9(f) shows a
slower ps increase of �R(t)/R, which is consistent with
the expected increase in conductivity due to quasiequilibrium
lattice structure relaxation. The possible connection between
spin and charge dynamics during fs nonthermal time scales
can be elucidated by comparing the pump fluence dependence
of the amplitudes of the two �R/R relaxation components
observed at 1.55 eV to that of the fs-resolved MCD and MOKE
signals �M . The latter magneto-optical signals measured at
time delays of 200 fs or earlier at probe frequencies 3.1 eV
far detuned from the 1.55 eV pump are shown in Fig 10.
Figure 10(a) shows clearly that both MOKE and MCD signals
have the same pump-fluence-threshold nonlinear behavior at
200 fs for very small magnetic field. The observation of
a threshold nonlinearity is typically considered as a signal
of a nonequilibrium phase transition. Here, the nonlinear
increase of both MOKE and MCD at ∼200 fs, above a
phototoexcitation intensity threshold ∼2–3 mJ cm−2, indicates
that, above a critical photocarrier density, laser-induced FM
correlation develops on a ∼100-fs time scale or less. In
particular, the appearance of the same quasiinstantaneous jump
in both MOKE and MCD fs signals [inset of Fig. 10(a)] for

magnetic field ∼250 mT well below the critical field required
for AFM → FM phase transition and CMR in equilibrium
(few tesla) indicates the observation of fs magnetization
photogeneration coming from charge photoexcitation. Such
laser-induced FM correlation at 100-fs time scales only occurs
above a critical pump-fluence of 2–3 mJ cm−2 [compare the
two temporal profiles in the inset above and below the pump
fluence threshold for �M > 0 seen in Fig. 10(a)], which
indicates that a sufficiently large nonthermal photocarrier
population is necessary. This threshold nonlinearity of �M

with increasing pump fluence is absent at ps time delays, which
are governed by quasithermal lattice dynamics.

Figure 10(b) shows the pump-fluence dependence of the
amplitudesAfs and Aps of the two relaxation components of
�R/R measured at 1.55 eV, which were extracted with a
biexponential fit as shown in Fig. 7(a). The inset of Fig. 10(b)
also shows the intensity dependence of the sum of the two
amplitudes Asum = Afs + Aps, which follows an overall linear
dependence on pump fluence that reflects the photocarrier
density [56]. However, Asum saturates at a high pump fluence
∼6 mJ cm−2, while Fig 10(b) shows that the individual
amplitudes Afs and Aps display different dependencies on the
pump fluence. This difference in the two components becomes
more clear by plotting the ratio Afs/Asum at T = 30 K in
Fig. 10(c). In particular, Fig. 10(c) demonstrates a nonlinear
threshold dependence of the fs relaxation component. As seen
by comparing Figs. 10(a) and 10(c), this threshold dependence
of the low-temperature ratio Afs/Asumcoincides with that of
the pump-induced magneto-optical response �M measured
at 200 fs. At the same time, the relaxation times τ fs and τ ps

remain fairly constant as function of pump fluence [see inset
of Fig. 10(c)].

The above experimental results indicate a correlation
between the emergence of fs AFM → FM switching at 200 fs,
above a pump fluence threshold that is not observed for ps
time delays, with the threshold for nonlinear increase of the
relative amplitude of the τ fs ∼ 500 fs relaxation component.
This result is consistent with our theoretical prediction that spin
photoexcitation simultaneously leads to metallic behavior via a
nonthermal electronic channel. Quasiparticle photoexcitation
deforms the AFM background (FM correlation), which in
turn increases the quasiparticle dispersion and softens the
energy gap. This results in a quasi-instantaneous increase of
the critical lattice displacement value Qc(t) below which the
excitation gap closes. At the same time, the photoexcited carri-
ers quasi-instantaneously change the effective lattice potential
arising from electron-lattice coupling, which initiates lattice
motion Q(t) to a new equilibrium configuration Qeq(t) < Q.

For low pump fluences, the photoinduced spin canting in
the excited state is small, so there is no observable net mag-
netization and Q(t) > Qc similar to equilibrium. In this case,
the photoinduced changes in the quasiparticle energy bands
are small and mostly determined by the lattice motion Q(t).
The pump-fluence-dependence of the differential reflectivity
is then approximately linear, determined by the nonthermal
populations of “rigid” bands analogous to weakly correlated
semiconductors [56]. Note, however, that the photexcitation
will change the lattice spring constant as determined by
the photocarrier population. With increasing pump fluence,
a sufficiently large quasiparticle population of the metallic
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conduction band can result in significant quasi-instantaneous
FM correlation between the AFM planes and chains, which in
the presence of a symmetry-breaking magnetic field results
in the observation of a net magnetization. As a result of
laser-induced spin fluctuations, �Jz(t),�θ (t) > 0 and the
“soft” quasiparticle energy bands change, while the energy gap
decreases. This results in the transient increase of the critical
lattice displacement Qc(t) required for mainting an insulating
state, so the lattice motion can easily close the gap.

A photoexcited magnetization is observed in our fs-resolved
magneto-optical pump-probe signals during fs time scales
above a critical pump fluence [Fig. 10(a)]. Above this thresh-
old, there are two possibilities: (i) Qc(t) exceeds the equilib-
rium lattice displacement Q. In this case, the fs photoexcitation
“suddenly” quenches the insulator gap due to the photoinduced
FM correlation within 100-fs time scales. Such melting of the
insulator gap can be induced instantaneously by composite
fermion quasiparticle excitation as a result of nonadiabatic
photoinduced �Jz(t) > 0. Melting of the charge excitation
gap can also be induced by an adiabatic spin canting angle
�θ (t) > 0 [Fig. 6(b)]. If Qc(t) > Q, an insulator-to-metal
transition can be “suddenly” induced without the need for
lattice motion. (ii) Qc(t) < Q but Q(t) � Qc(t). In this case,
lattice motion is required for the energy gap to close, so the
insulator to metal transition is delayed as determined by the
JT phonon period. In all cases, the lattice eventually reaches
a transient state with smaller displacements Qeq(t) following
population inversion between the polaronic valence band and
metallic conduction band shown in Fig. 5. The deviation of
Qeq(t) from the equilibrium lattice configuration increases as
the energy gap closes due to the differences between the e
and h quasiparticles, whose photoexcitation results in a charge
redistribution between bridge and corner sites. As discussed
in the introduction, several ultrafast spectroscopy experiments
indicate that quasithermal lattice evolution occurs during ps
time scales, while nonthermal spin and charge populations are
important during 100-fs time scales. While the spin fluctuation
and electronic hopping time scales are expected to be faster
than the lattice oscillations, the exact time evolution leading
to Q(t) � Qc(t) is beyond the scope of the present paper and
may differ for individual materials. This lattice motion is not
expected to be a simple coherent phonon harmonic motion
following strong photoexcitation of the metallic continuum of
quasiparticle states |E〉.

VIII. CONCLUSIONS

To conclude, in this paper, we described a possible mech-
anism for photoinduced insulator to metal and AFM to FM
simultaneous transitions triggered by nonthermal population
of a quasiparticle metallic conduction band induced by spin
fluctuations and electron-magnon strong coupling. This mech-
anism involves a laser-induced nonlinear spin-charge-lattice
coupling in the case of an AFM ground state consisting of
FM chains and planes with JT distortions that stabilize the
insulator energy gap. We propose that this mechanism may
be relevant to explain the nonlinear pump fluence threshold
dependencies of both magneto-optical (MOKE and MCD)
and �R/R femtosecond signals measured in the PCMO
manganite studied here. It may also be relevant to several

other ultrafast spectroscopy experimental observations of
nonlinear behavior during the nonthermal temporal regime
following fs laser excitation of the AFM state of different
insulating manganites [13,14,28–36]. In particular, we predict
that electron-spin correlation leads to a broad conduction
metallic band and quenches the electronic component of
the insulator energy gap below a critical value of the JT
lattice displacement that depends on the photoexcitation. Such
laser-induced effects are pronounced in the case of composite
fermion quasiparticles with “soft” energy bands, which mostly
populate the lower magnetic Hubbard band due to the large
Hund’s rule interaction and excite spin fluctuations during
electronic hopping time scales. FM correlation and spin
canting during quasiparticle photoexcitation instantaneously
increase the critical lattice displacement Qc(t) below which the
energy gap closes, by changing the quasiparticle dispersions in
a nonperturbative way. Above a critical photocarrier density,
Qc(t) can become comparable to the equilibrium lattice
distortion, which also decreases following lattice motion.
Both effects act cooperatively to favor a nonequilibrium
insulator to metal and AFM to FM simultaneous transitions.
FM correlation induced by photoexcitation can trigger an
instantaneous insulator to metal transition if Qc(t) � Q(t)
during the laser pulse. The excitation of multiple quasiparticles
should increase the above effect by enhancing the deformation
of the AFM background. After the photoexcited quasielectrons
have relaxed on a fs time scale (τ fs), electron-lattice and
spin-lattice relaxation determines the subsequent ps dynamics
(τ ps).

The above theoretical framework, based on femtosec-
ond magnetism induced by laser excitation, may be rele-
vant for explaining several experimental observations when
worked cooperatively with lattice deformation and free energy
quasiequilibrium effects. Based on the presently available
experimental data and the uncertainties about the properties
of the real materials, we cannot rule out other possible
mechanisms for explaining the exprimentally observed fs
spin and charge nonlinearities. Ultrafast coherent phonon
dynamics, ultrafast lattice displacements that change the shape
and distance of the individual chains and planes, structural
phase transition, and melting of orbital order can all contribute
to the observed effects and may work cooperatively with the
proposed electronic/magnetic quasiinstantaneous mechanism
and nonlinearities. For example, FM correlation arising from
lattice distortions will change the quasiparticle energy disper-
sion, which depends on the changes in the hopping matrix
elements for the local electronic configurations modified
by electron-lattice strong local coupling. Such effects can
be studied more directly with fs XRD, which unlike for
conventional pump-probe spectroscopy can distinguish the
different order parameter components. The observation of a
time-dependent spring constant [28] and nonlinear dependence
of the coherent phonon amplitudes on the pump intensity
during nonthermal fs time scales are consistent with “soft”
quasiparticle energy bands such as the ones proposed here.
The lattice contribution is particularly important for the
experimental observation of the ps τ ps component, as Pr/Ca
atoms will adapt to their final equilibrium positions at such
ps time scales. Other interpretations may involve higher-order
electronic scattering such as Auger Coulomb processes, which
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can increase the e-h quasiparticle populations via an avalanche
effect during fs relaxation of the photocarriers. In all cases,
any interpretations of the pump fluence nonlinear dependence
must involve spin-flip dynamics in the excited state in order
to explain the correlation to the “sudden” fs magnetization
threshold behavior shown by both the MOKE and MCD
magneto-optical signals. Our theory suggests a microscopic
mechanism for such quasiinstantaneous spin-charge-lattice
photoexcited effects, so we hope that it can open a discussion
of whether the electronic/magnetic pathway proposed here
creates a nonequilibrium initial condition that could initiate a
photoinduced nonadiabatic phase transition. The “soft” energy
bands of composite fermion quasiparticles make it easier to
obtain a quasi-instantaneous insulator to metal and AFM to
FM transitions as compared to bare electrons adiabatically
decoupled from the spin background. In the latter case, due
to the electronic order within a single zigzag FM chain, the
mechanism must rely on a more elaborate lattice motion [45]
in order to close the energy gap. In addition, a complex energy
landscape, possibly with multiple local minima due to the
elastic lattice potential UL(Q) [28,53], should facilitate the
phase transition mechanism proposed here, e.g., by creating
metastable states. The insights from our theory-experiment re-
sults and our proposed “sudden quench” mechanism based on
the “soft” quasiparticle energy bands may also prove useful for

revealing the crucial many-body processes in other intertwined
electronic phases, as the proximity of magnetic states appears
ubiquitous with unconventional superconducting and exotic
electronic phases in strongly correlated electronic materials
[16]. In the long run, new insights can be gained by applying
complementary ultrafast spectroscopy techniques, especially
in the terahertz [57] and infrared spectral regions [58], and
by combining spin and charge quantum fluctuations with
quasiequilibrium free energy and self-energy effects.
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APPENDIX

The quantum kinetic equations of motion for the spin-
dependent local populations are obtained by using the Hamil-
tonian (6) as follows:

∂tρ
α
i (M) = 2 Im

∑
σ ′=±1

Fσ ′(M)
∑
lα′

Vα′α(l − i)

〈[
cos

(
θl − θi

2

)
ê
†
α′σ ′(l) − σ ′ sin

(
θl − θi

2

)
ê
†
α′−σ ′(l)

]
êασ ′(iM)

〉
, (A1)

∂tρi(m) = −2Im
∑

α

∑
σ ′

Fσ ′

(
m + σ ′

2

)∑
lα′

Vα′α(l − i)

〈[
cos

(
θl − θi

2

)
ê
†
α′σ ′(l) − σ ′ sin

(
θl − θi

2

)
ê
†
α′−σ ′(l)

]

× êασ ′

(
i,m + σ ′

2

)〉
. (A2)

The above equations are exact in the limit JH → ∞ and describe the dynamical coupling of site i to the rest of the lattice, driven
by the charge flucuations described by Hhop(t), Eq. (8). This intersite coupling is determined by the (exact) equation of motion:

i∂t 〈ê†βσ̄ (j ) êασ (iM)〉 − [εασ (i) − εβσ̄ (j )] 〈ê†βσ̄ (j ) êασ (iM)〉

=
∑
lσ ′

∑
α′β ′

Vα′β ′(l − j ) cos

(
θl − θj

2

)
〈[ê†βσ̄ (j ),êβ ′σ ′(j )]+ ê

†
α′σ ′(l) êασ (iM)〉

−
∑
lσ ′

∑
α′β ′

Vα′β ′ (i − l) cos

(
θl − θi

2

)
〈ê†βσ̄ (j ) êβ ′σ ′(l) [ê†α′σ ′(i),êασ (iM)]+ 〉

+
∑
lσ ′

∑
α′β ′

Vα′β ′ (l − j ) σ ′ sin

(
θl − θj

2

)
〈[ê†βσ̄ (j ),êβ ′−σ ′(j )]+ ê

†
α′σ ′(l) êασ (iM)〉

+
∑
lσ ′

∑
α′β ′

Vα′β ′ (i − l) σ ′ sin

(
θl − θi

2

)
〈ê†βσ̄ (j ) êβ ′−σ ′(l) [ê†α′σ ′(i),êασ (iM)]+〉, (A3)

which involves four-particle density matrices of Hubbard operators. The differences from the familiar equations of motion
for e-h coherence of bare electrons in weakly correlated systems [1,2] arise from the composite fermion anticommutators
[ê†α′σ ′(i),êασ (iM)]+, Eq. (2). The latter deviate from fermion behavior due to the suppressed population of the higher magnetic
Hubbard band states with total spin J = S − 1/2, which leads to the coupling of higher density matrices and a many-body
hierarchy if the bosonic on-site fluctuations in Eq. (2) are strong.
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In the deep insulating limit, spin exchange is primarily determined by charge fluctuations between neighboring atoms [20,21].
Separating such short-range intersite correlation in Eq. (A3) we obtain

i∂t 〈ê†βσ̄ (j ) êασ (iM)〉 − [εασ (i) − εβσ̄ (j )] 〈ê†βσ̄ (j ) êασ (iM)〉

=
∑
σ ′

∑
α′β ′

Vα′β ′(i − j ) cos

(
θi − θj

2

)
[〈êβ ′σ ′(j )ê†βσ̄ (j ) ê

†
α′σ ′(i) êασ (iM)〉 − 〈ê†βσ̄ (j ) êβ ′σ ′(j ) êασ (iM) ê

†
α′σ ′(i)〉]

+
∑
σ ′

∑
α′β ′
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2

)
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+
∑
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−
∑
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α′β ′
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)
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+
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2

)
〈[ê†βσ̄ (j ),êβ ′−σ ′(j )]+ ê

†
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〈ê†βσ̄ (j ) êβ ′−σ ′(l) [ê†α′σ ′(i),êασ (iM)]+〉, (A4)

where the last four terms describe the coupling of the quantum dimer consisting of neighboring sites (i,j ) with the rest of the
lattice. The time-dependent local spin dynamics discussed in Sec. III was obtained by factorizing the product of on-site operators
(local populations) between sites i and j on the rhs of the above equation and neglecting the long-range coherence arising from
their coupling to the environment sites l �= (i,j ). We thus obtain the following equation of motion that describes the charge-spin
fluctuations between neighboring sites:

i∂t 〈ê†βσ̄ (j ) êασ (iM)〉 − [εασ (i) − εβσ̄ (j )] 〈ê†βσ̄ (j ) êασ (iM)〉

= Vαβ(i − j ) Fσ (M)

[
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×
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M ′

F 2
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[
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i (M) ρj

(
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2

)
− ρi

(
M − σ

2

)
ρ

β

j (M ′)
]
. (A5)

Equations (A1), (A2), and (A5) provide a closed system of equations of motion. They define quantum master equations for
describing the local spin dynamics in a real-space picture that treats both on-site and nearest-neighbor spin and charge correlations.
Such an approximation gives the results of Figs. 1(c) and 2, while recovering the effective intersite FM exchange interaction of
Refs. [20,21]. Unlike for the standard double exchange model [37], the latter FM interaction is obtained in the insulating limit
with JT lattice distortions. Here such short-range FM correlation is modified away from equilibrium by the coupling of a strong
laser field, which controls the charge transfer across the JT energy barrier. The product of local populations that enters on the rhs
of Eq. (A5) depends on the laser excitation and describes a population-inversion nonlinearity and nonlinear saturation, whose
effect on the spin dynamics and short-range FM correlation is seen in Fig. 1(c).

In the opposite limit of itinerant quasiparticles, we truncate the hierarchy of equations of motion by factorizing the four-particle
density matrices of composite fermions that enter in Eq. (A3):

〈[ê†βσ̄ (j ),êβ ′σ ′(j )]+ ê
†
α′σ ′(l) êασ (iM)〉 = 〈[ê†βσ̄ (j ),êβ ′σ ′(j )]+〉〈ê†α′σ ′(l) êασ (iM)〉, (A6)

where j �= l,i. The above mean-field approximation neglects fluctuations in the composite fermion anticommutator
[ê†βσ (j ),êβ ′σ ′(j )]+ as in the Hubbard-I approximation [17,42] and results in Eq. (18). The difference from bare electrons is
described by the deviations of the composite fermion quasiparticle anticommutators nασ (i), Eq. (19), from their fermionic values,
which is due to the suppression of the populations of the J = S − 1/2 total spin configurations during the electronic motion by
the strong Hund’s rule exchange interaction JH .
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