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Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems
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Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current
has been an important issue and has been studied actively. For example, representative methods of spin-current
generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin
battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena.
By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current
proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin
current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and
two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular
dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio
of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those
in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application
of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current
is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.
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I. INTRODUCTION

Spins and their flow in solids have attracted recent intense
attention from the viewpoints of both fundamental physics
and spintronics applications. The conventional and direct
way to generate spins or spin current in solids is to inject
the spin-polarized current from metallic ferromagnets [1–4].
Meanwhile, recent research has focused on the electric manip-
ulation of spin and spin current without using magnets, where
the relativistic spin-orbit interaction (SOI) plays an essential
role. For such an example, the spin Hall effect supports the
conversion of the charge current to the spin current [5–16].
In the presence of the SOI, the spin Hall conductivity σ s

H

becomes nonzero due to an extrinsic mechanism such as skew
scattering [5–7] or the intrinsic mechanism of the Berry phase
of the Bloch wave functions [8–12]. These two mechanisms
induce σ s

H proportional to O(τ ) and O(1), respectively, in
terms of the transport lifetime τ . Spin battery is another
method to produce the spin current, where the precession of the
ferromagnetic moment is excited by the magnetic resonance
absorption, and the damping of this collective mode results
in the flow of the spin current to the neighboring system
through the interface [17–21]. Interband spin-selective optical
transition under irradiation of the circularly polarized light
also induces the spin-polarized current, which is known as
the circular photogalvanic effect [22,23]. These methods have
been successfully applied to study a variety of phenomena, but
the experimental signals associated with the spin current are
quite small, and the device structure to detect them is limited. A
more efficient way to create the spin current based on another
physical origin has been desired for the purpose of spintronics
application.

In this paper, we theoretically propose that a simple
application of the electric field produces a nonlinear spin
current proportional to the square of the electric field E2 and
also the square of the transport lifetime τ 2 due to an interplay

of the SOI and broken inversion symmetry. Therefore, it
can produce larger spin current compared with previous
methods. This effect is supported by nontrivial spin texture in
energy bands that appears in broken inversion systems with
the SOI, e.g., the surface Weyl state of three-dimensional
(3D) topological insulators (TIs) and two-dimensional (2D)
semiconductors with the Rashba and/or Dresselhaus SOI. This
mechanism also offers the rectification of the spin current, i.e.,
the generation of the dc spin current from ac electric fields.
These proposed mechanisms are based on the nonlinear current
responses in noncentrosymmetric systems which is captured
in the semiclassical treatment using the Boltzmann equation
as follows.

Noncentrosymmetric systems support nonlinear charge
current proportional to E2. The canonical example is a
p-n junction, where the difference of I -V characteristics
between the right and left directions leads to a charge current
proportional to E2. However, for periodic systems with
conserved crystal momentum k, the situation is less trivial.
This is because the time-reversal symmetry T imposes a
condition on the energy dispersion, i.e., εα(k) = εᾱ(−k), with
ᾱ being the spin opposite α. Therefore, even with the broken
inversion symmetry I, there remains a certain symmetry
between k and −k as long as one is concerned about the
charge degrees of freedom. Thus, in Boltzmann transport
phenomena where the charge current is determined by only
the energy dispersion, it is necessary to further break the
time-reversal symmetry in addition to I, e.g., by the external
magnetic field B or the spontaneous magnetization M, in
order to realize the nonreciprocal charge responses [24–29].
Exceptions necessarily require that the information of the wave
functions enters into the transport properties through, e.g., the
Berry phase [30,31]. However, it should be noted that these
Berry phase contributions are not the leading-order effect in
semiclassics. Namely, the dominant one, which is proportional
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to (τE)2 in the clean limit, is the contribution captured by the
Boltzmann equation.

On the other hand, the situation is dramatically different
for the spin current. In this case, one needs to distinguish the
spin components of the energy bands. The spin-split bands in
noncentrosymmetric systems with the SOI could produce a
spin current proportional to (τE)2 even without breaking the
T symmetry. The difference in the required symmetry for the
charge current and the spin current is discussed in detail in
Sec. III. Since this effect arises from the Boltzmann transport,
the generated nonlinear spin current becomes very large (with
∝τ 2) compared with that of the previous methods mentioned
above.

We note that the nonlinear spin current in transition-metal
dichalcogenides (TMDs) was also studied theoretically [32].
While Ref. [32] is focused on the band structure with Ising-type
spin splitting along the fixed (z) direction, our theory is appli-
cable to cases with general SOIs that lack the Sz conservation.
Especially, the Rashba system, which is intensively studied in
the context of spintronics, is a typical example that breaks Sz

conservation. Considering the ubiquitousness of the Rashba
system which emerges universally at interfaces and even in
the bulk [33,34], the applicability to such a system is a great
advantage of the present study for future spintronics studies.
Furthermore, the nonlinear spin current in the present study
is 2 or 3 orders of magnitude larger compared than that in
Ref. [32] since the latter is proportional to a small higher-order
coefficient, namely, trigonal warping. A detailed comparison
to Ref. [32] is discussed in Sec. VI. The present nonlinear spin
current also ensures controllability of the spin polarization of
the flowing spin current through the direction of the electric
field and/or the Rashba-Dresselhaus ratio.

II. THEORETICAL METHODS

A. Boltzmann equation

First, we derive the general formula for nonlinear spin
current in the semiclassical regime by using the Boltzmann
equation. We consider a system with the electric field E applied
in the x direction. The Boltzmann equation for the distribution
function f is given by

−eE
∂f

∂kx

= −f − f0

τ
(1)

in the relaxation-time approximation (with τ being the
relaxation time of the electron), where f0 is the original
distribution function in the absence of E. (We have set h̄ = 1
and adopt the convention e > 0 throughout this paper.) In order
to study the (nonlinear) current response in each order in E, we
expand the distribution function as f = f0 + f1 + f2 + · · · ,
where fn ∝ En. The iterative substitution in the Boltzmann
equation yields fn = (eτE ∂

∂kx
)
n
f0 [29–32]. In particular, the

distribution function of the first order in E is given by

f1 = eτE
∂f0

∂kx

= eτE
∂ε

∂kx

∂f0

∂ε
, (2)

and that of the second order in E is [30,32]

f2 = eτE
∂f1

∂kx

= (eτE)2 ∂2f0

∂kx
2 . (3)

+

-

-

+

(b)(a)

kx

ky

x

y

θ

FIG. 1. Second-order distribution function and resultant spin
current in a 3D TI. (a) Spin texture along the Fermi surface of the
surface state of the 3D TI. The shading shows the schematic image of
the distribution function of the second order in E, which is along the x

direction. We note that this is a schematic picture to clarify the Fermi
surface distortion, and the realistic situation for a TI with τ ∼ 1 ps,
E ∼ 1 kV/m, vF ∼ 105 m/s, and μ ∼ 10 meV leads to a distortion
of the order of 10−4 of the Fermi wave number. (b) Spin directions of
the spin current on the surface of the TI with a parabolic dispersion.
The blue curve indicates the magnitude, while the arrows show the
spin polarization direction of the spin current at each direction of
flow. The angle θ corresponds to the one in Eq. (15).

The second-order term f2 typically shows modulation of elec-
tron occupation with the quadrupole structure, as illustrated
in Fig. 1(a).

B. Definition of spin current

The conventional definition of the spin-current operator is
given by the anticommutator of the velocity (∝ ∂Ĥ

∂kμ
) and the

spin (∝σν), ĵμsν
≡ 1

4 { ∂Ĥ
∂kμ

,σν} [9–11]. Hence, the spin current
of the nth order in E is given by

j (n)
μ,sν

=
∑

I

∫
d2k

(2π )2
〈I,k|ĵμsν

|I,k〉f I
n , (4)

where μ is the direction of flow, ν is the direction of the
spin polarization, I is the band index, and f I

n is the nth-order
distribution function of the I th band. In the following, we focus
on the second-order nonlinear spin current j (2)

μ,sν
that appears in

noncentrosymmetric systems. Intuitively, an interplay of the
quadrupole modulation of f2 and nontrivial spin texture due to
the SOI [as illustrated in Fig. 1(a)] leads to the nonlinear spin
current j (2)

μ,sν
such as that shown in Fig. 1(b), as we will see in

detail in Sec. IV.

III. SYMMETRY ARGUMENT

The nonlinear charge and spin currents (jμ,s0 and jμ,sν
,

respectively) are constrained by the time-reversal symmetry
T . To see this, we suppose that the Hamiltonian satisfies
H(�k,�σ ) = H(−�k,−�σ ), and hence, every eigenstate has a time-
reversal-symmetry partner that carries opposite momentum
and opposite spin. First, the charge current vμ = ∂Ĥ

∂kμ
is odd

under T (T : vμ → −vμ) while the spin current is even
(T : ĵμsν

→ ĵμsν
). Next the distribution function fn is even for

even n and odd for odd n because fn = (eτE)n ∂nf0

∂kn
μ

∼ (vμ)n.

Therefore, it follows that all odd orders of the spin current are
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zero and that all even orders of the charge current are zero in
the presence of the time-reversal symmetry:

j odd
μ,sν

=
∫

d2k
(2π )2

ĵμsν
fodd = 0 (with T ), (5)

j even
μ,s0

=
∫

d2k
(2π )2

ĵμs0feven = 0 (with T ). (6)

In particular, we find that the second-order charge current
vanishes, while the second-order spin current can be nonva-
nishing. Finally, a similar argument applies when a system
has inversion symmetry I with H(�k,�σ ) = H(−�k,�σ ). Since
the spin direction is not flipped by the inversion operator
(and hence I : ĵμsν

→ −ĵμsν
), all charge and spin nonlinear

currents in the even order are zero:

j even
μ,sν

=
∫

d2k
(2π )2

ĵμsν
feven = 0 (with I), (7)

j even
μ,s0

=
∫

d2k
(2π )2

ĵμs0feven = 0 (with I). (8)

These symmetry analyses indicate that the nonlinear spin
current ∝E2 in the Boltzmann transport requires broken inver-
sion, but it does not require broken time-reversal-symmetric
systems. In the following sections, we study a few examples
of noncentrosymmetric systems with SOI that support the
nonlinear spin current.

IV. SURFACE STATE OF THE 3D TI

We start with the surface of a 3D TI. It is described
by the Hamiltonian ĤTI = v(kxσy − kyσx), where v is the
velocity of the Weyl cone. The energy dispersion is εI = Ivk,
with I = ±, and the spin polarization for each branch in
the k space is 〈±,k|�σ |±,k〉 = ±(− sin φ, cos φ,0), where
kx = k cos φ,ky = k sin φ. We show the Fermi surface (FS)
and the spin direction for the upper branch together with the
second-order distribution function in Fig. 1(a). By using spin-
current operators, ĵxsx

= ĵysy
= 0 and ĵxsy

= −ĵysx
= 1

2v, we

can show that j (n)
μ,sν

∝ ∫
d2 k

(2π)2
∂nf ±

0
∂kn

x
= 0. Namely, all the spin

currents are zero.
However, nonzero spin currents are generated in the

presence of the parabolic term k2/(2m) in the Hamiltonian
ĤTI:

ĤTI = k2

2m
+ v(kxσy − kyσx). (9)

The emergence of the parabolic dispersion is expected in
general when the system has band asymmetry between the
electron and hole bands. The energy dispersion is given by

ε±(k) = k2

2m
± vk, (10)

and the Fermi surface is formed by one of these two branches
depending on the sign of the chemical potential μ. The Fermi
momentum is determined as k±

F = ∓mv ±
√

2mμ + m2v2,
with ± corresponding to the sign of μ. The velocity operators

in this case are given as

∂Ĥ
∂kx

= kx

m
+ vσy,

∂Ĥ
∂ky

= ky

m
− vσx. (11)

The spin-current operators are given by

ĵxsx
= kx

2m
σx, ĵxsy

= kx

2m
σy + 1

2
v,

ĵysx
= ky

2m
σx − 1

2
v, ĵysy

= ky

2m
σy, (12)

which are summarized as ĵμsν
= kμ

2m
σν up to irrelevant constant

terms. Their expectation values for each branch of the Weyl
cone are

〈±,k|ĵxsx
|±,k〉 = ∓1

2

k

m
sin φ cos φ,

〈±,k|ĵxsy
|±,k〉 = ± k

2m
cos2 φ + 1

2
v,

〈±,k|ĵysx
|±,k〉 = ∓ k

2m
sin2 φ − 1

2
v,

〈±,k|ĵysy
|±,k〉 = ±1

2

k

m
sin φ cos φ. (13)

As expected from the symmetry argument, all the linear spin
currents vanish after the φ integration; j (1)

x,sx
= j (1)

x,sy
= j (1)

y,sx
=

j (1)
y,sy

= 0. This result can be shown explicitly as follows. All
the expectation values of the spin currents are zeroth or second
order in cos φ or sin φ, while f1 ∝ cos φ. The product of these
two terms is first or third order in cos φ or sin φ, which vanishes
through the φ integration.

Second-order spin currents are calculated by integration by
part at zero temperature as

j (2)
x,sy

=
∫

d2k

(2π )2 〈±,k|ĵxsy
|±,k〉f ±

2

=
∫

d2k

(2π )2

[
1

2

(
± k

m
cos2 φ + v

)]

×
[
e2τ 2E2 ∂

∂kx

∂ε±

∂kx

∂f ±
0

∂ε

]

= ∓e2τ 2E2

8π2m

∫
d2k [cos3 φ + 2 sin2 φ cos φ)]

×
[(

k

m
± v

)
cos φ

∂f ±
0

∂ε

]

= ∓5e2τ 2E2

32πm

∫
kdk

(
k

m
± v

)
∂f ±

0

∂ε

= 5e2τ 2E2

32πm

∫
kdk δ(k − k±

F )

= ±5e2τ 2E2

32πm
[−mv +

√
2mμ + m2v2]. (14)

By similar calculations shown in the Appendix, we have
j (2)
y,sx

= 1
5j (2)

x,sy
and j (2)

x,sx
= j (2)

y,sy
= 0. Note that the signs of the

spin currents depend on the sign of the chemical potential μ.
Nonzero spin-current generation is naturally understood in

terms of the spin direction at the FS and the second-order
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distribution function possessing a quadrupole structure [see
Fig. 1(a)]. Namely, the distribution function is positive toward
the ±x direction, and hence, both the +y spin flowing in the
+x direction and the −y spin flowing in the −x direction are
accelerated by the application of E parallel to the x direction.
In total, j (2)

x,sy
becomes positive. Similarly, since f2 is negative

toward the ±y directions, both the −x spin flowing in the
+y direction and the +x spin flowing in the −y direction are
negatively accelerated, thus resulting in the positive j (2)

y,sx
.

In order to clarify the real-space texture of the generated
spin current, we define the spin current toward the θ direction
as

�j (2)
θs ≡

(
j

(2)
θsx

j
(2)
θsy

)
≡

(
j (2)
xsx

cos θ + j (2)
ysx

sin θ

j (2)
xsy

cos θ + j (2)
ysy

sin θ

)
. (15)

We show the polar plot of �j (2)
θs in Fig. 1(b), where the blue line

shows the amplitude of the spin current | �j (2)
θs |, while the black

arrows show the direction of the spin polarization �j (2)
θs /| �j (2)

θs |.
Using the fact j (2)

xsy
= 5j (2)

ysx
and j (2)

xsx
= j (2)

ysy
= 0, the magnitude

of the spin current is given by | �j (2)
θs | ≡

√
(j (2)

θsx
)2 + (j (2)

θsy
)2 =

|j (2)
ysx

|√25 cos2 θ + sin2 θ , which well describes the blue curve
in Fig. 1(b).

V. RASHBA-DRESSELHAUS SYSTEM

Rashba- and Dresselhaus-type SOIs are present in wide
classes of materials without inversion symmetry. The Hamil-
tonian including the Rashba-type and linear Dresselhaus-type
SOIs is

ĤRD = k2

2m
+ α(kxσy − kyσx) + β(kxσx − kyσy), (16)

where m is the electron effective mass, α is the Rashba SOI
strength, and β is the Dresselhaus SOI strength. There are two
bands indexed by I = ±,

ε±(k) = k2

2m
± k

√
α2 + β2 − 2αβ sin 2φ. (17)

The spin polarization in the k space is 〈±,k|�σ |±,k〉 =
±(cos ϕ, − sin ϕ,0), where ϕ ≡ arg[(βkx − αky) + i(βky −
αkx)]. We show FSs and the spin textures for various values
of tan−1(β/α) in Fig. 2 while keeping α2 + β2 = 1. FSs are
anisotropic for the general Rashba-Dresselhaus system. In this
case there are two FSs, in contrast to the case of the surface
state of TIs.

(a) (b) (c) (d)

+ + + +

-

-

-

-

FIG. 2. Spin textures of the Fermi surfaces of the Rashba-
Dresselhaus system. (a) For tan−1(β/α) = 0 (Rashba system).
(b) For π/6. (c) For π/3. (d) For π/2 (Dresselhaus system). The
shading shows the schematic image of the distribution function of
the second order in E. Here, we have set μ = 0.2, m = 1, and
α2 + β2 = 1.

The anisotropic Fermi momentum for the upper band
is k+

F+ = −mA +
√

m2A2 + 2mμ, while those for lower

bands are k±
F− = +mA ±

√
m2A2 + 2mμ, with A(φ) =√

α2 + β2 − 2αβ sin 2φ. For μ > 0, k+
F+ and k+

F− form Fermi
surfaces, while k+

F− and k−
F− do for μ < 0. Note that the Fermi

surface for μ < 0 vanishes for φ such that m2A(φ)2+2mμ<0.
Velocity operators are given as

∂Ĥ
∂kx

= kx

m
+ ασy + βσx,

∂Ĥ
∂ky

= ky

m
− ασx − βσy. (18)

From these, we have spin-current operators as

ĵxsx
= 1

2

(
kx

m
σx + β

)
, ĵxsy

= 1

2

(
kx

m
σy + α

)
,

ĵysx
= 1

2

(
ky

m
σx − α

)
, ĵysy

= 1

2

(
ky

m
σy − β

)
, (19)

which are again summarized as ĵμsν
= kμ

2m
σν + const. Their

expectation values for each band are

〈±,k|ĵxsx
|±,k〉 = 1

2

(
± k

m
cos φ cos ϕ + β

)
,

〈±,k|ĵxsy
|±,k〉 = 1

2

(
∓ k

m
cos φ sin ϕ + α

)
,

〈±,k|ĵysx
|±,k〉 = 1

2

(
± k

m
sin φ cos ϕ − α

)
,

〈±,k|ĵysy
|±,k〉 = 1

2

(
∓ k

m
sin φ sin ϕ − β

)
. (20)

Using these results, we numerically calculated the second-
order spin current for some values of tan−1(β/α) and
the direction of the applied electric field θE , where E =
E(cos θE, sin θE). The polar plot of the spin current is
summarized in Fig. 3. Note that the distribution function under
the application of the electric field in the general direction
is obtained with a simple substitution, E ∂

∂kx
→ E · ∂

∂k , in
Eqs. (2) and (3). We have numerically confirmed that all
the first-order spin currents are zero, which is consistent
with the symmetry requirement. We have also confirmed
the chemical potential dependence is negligible when μ > 0.
Detailed arguments for the Rashba system [tan−1(β/α) = 0,
the leftmost column in Fig. 3] and the Dresselhaus system
[tan−1(β/α) = π/2, the rightmost column in Fig. 3] are given
below.

A. Rashba system

We first investigate the pure Rashba system, for
which α �= 0, β = 0, and θE = 0. The eigenstates and
the spin polarization are the same as those in the sur-
face state of 3D TIs; 〈±,k|σ̃ | ± ,k〉 = ±(cos ϕ,− sin ϕ,0) =
±(− sin φ, cos φ,0). We show the spin textures of the FSs
in the pure Rashba system in Fig. 2(a). The spin texture
forms vortex structures, whose directions are opposite between
the inner and outer FSs. All the first-order spin currents are
analytically shown to vanish by the φ integration; j (1)R

x,sx
=

j (1)R
x,sy

= j (1)R
y,sx

= j (1)R
y,sy

= 0, where the superscript R indicates
the Rashba system. This is consistent with the symmetry
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θE=0

θE=π/4

θE=π/2

θE=3π/4

tan-1(β/α)=0 π/6 π/3 π/2

x

y

FIG. 3. Spin-polarization directions of the spin current in the
Rashba-Dresselhaus system with general interaction strength and
the electric-field direction. The blue curves show the magnitude of
the spin current, while the vectors show the direction of the spin
polarization. The horizontal axis is the Rashba-Dresselhaus ratio
tan−1(β/α), and the vertical axis is the electric-field direction θE ,
where E = (E cos θE,E sin θE). Here, we have set μ = 0.2, m = 1,
and α2 + β2 = 1.

argument. Furthermore, second-order spin currents are cal-
culated as

j (2)R
x,sy

=
∑
±

∫
d2k

(2π )2 〈±,k|ĵxsy
|±,k〉f ±

2

=
∑
±

∫
d2k

(2π )2

[
1

2

(
± k

m
cos2 φ + α

)]

×
[
e2τ 2E2 ∂

∂kx

(
k

m
± α

)
cos φ

∂f ±
0

∂ε

]

=
∑
±

∓e2τ 2E2

8π2m

∫
d2k [cos3 φ + 2 sin2 φ cos φ)]

×
[(

k

m
± α

)
cos φ

∂f ±
0

∂ε

]

=
∑
±

∓5e2τ 2E2

32πm

∫
kdk

(
k

m
± α

)
∂f ±

0

∂ε

= 5e2τ 2E2

32πm
×

{
k+
F+ − k+

F− (μ > 0)
−k+

F− + k−
F− (μ < 0)

= −5e2τ 2E2

16πm
×

{
mα (μ > 0)√

2mμ + m2α2 (μ < 0).
(21)

Similarly, we have j (2)R
y,sx

= 1
5j (2)R

x,sy
and j (2)R

x,sx
= j (2)R

y,sy
= 0

This relation is the same as that in the case of the TI. We
note that the sign of the spin currents is opposite that in the TI.

The polar plot of the second-order spin current in the
Rashba system is shown in Fig. 3 in the panel corresponding
to tan−1(β/α) = 0 and θE = 0. The shape of the pattern is
exactly the same as that in 3D TIs [Fig. 1(b)] but the spin
polarization is opposite.

B. Dresselhaus system

We next investigate the Dresselhaus system, for which
β �= 0, α = 0, and θE = 0. We show the spin direction of
the FSs in the pure Dresselhaus system in Fig. 2(d). The
spin texture forms hedgehog structures, whose directions are
opposite between the inner and outer FSs; 〈±,k|�σ |±,k〉 =
±(cos ϕ,− sin ϕ,0) = ±(cos φ,− sin φ,0). The eigenenergy
and the distribution functions between the Rashba Hamil-
tonian and the Dresselhaus Hamiltonian are the same. The
only difference is the expectation value of the spin-current
operators. We find the relation between the expectation values
of the spin-current operators of the Rashba and the Dresselhaus
systems as

〈±,k|ĵD
xsx

|±,k〉D|β→α = 〈±,k|ĵ R
xsy

|±,k〉R, (22)

〈±,k|ĵD
xsy

|±,k〉D|β→α = 〈±,k|ĵ R
xsx

|±,k〉R, (23)

〈±,k|ĵD
ysx

|±,k〉D|β→α = 〈±,k|ĵ R
ysy

|±,k〉R, (24)

〈±,k|ĵD
ysy

|±,k〉D|β→α = 〈±,k|ĵ R
ysx

|±,k〉R, (25)

where superscript and subscript R and D denote the Rashba
and Dresselhaus systems, respectively. These relations and the
equivalence of the band dispersion guarantee all the linear spin
currents are zero, as expected. Furthermore, the second-order
spin currents are given by j (2)D

x,sx
= 5j (2)D

y,sy
= j (2)R

x,sy
= 5j (2)R

y,sx

and j (2)D
x,sy

= j (2)D
y,sx

= 0, where the superscript D indicates the
Dresselhaus system. The polar plot of the second-order spin
current in the Dresselhaus system is shown in Fig. 3; see the
panel corresponding to tan−1(β/α) = π/2 and θE = 0. The
peanutlike shape is exactly the same as those in 3D TIs and the
Rashba system, but the spin polarization reflects the hedgehog
structure at FSs.

C. Carrier density and temperature dependences

Now we consider the dependence of the spin current
on the carrier density n and temperature T . We show the
carrier density and temperature dependence of j (2)R

x,sy
(= j (2)D

x,sx
=

5j (2)R
y,sx

= 5j (2)D
y,sy

) in Fig. 4. We take the Rashba system as
an example here, but the generic features are common for
other cases also. Equation (21) and Fig. 4(a) indicate that the
magnitude of the spin current at the zero temperature increases
with the increase in carrier density n and becomes constant
for n > nD , with nD = m2α2/π being the carrier density
corresponding to the Dirac point. According to Eq. (21), the
magnitude of the spin current is proportional to the difference
in the Fermi momentum defined for each FS, which is constant
above the Dirac point. The constant spin current above the
Dirac point indicates that the effect of finite temperature is
tiny, as shown in Fig. 4(b).
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FIG. 4. The carrier density and the temperature dependence of the
second-order spin current in the Rashba system j (2)R

x,sy
. nD = m2α2/π

is the carrier density corresponding to the Dirac point at the zero
temperature. Here, we have set m = α = 1.

VI. DISCUSSION

We have demonstrated that the spin current of the second
order in E is generated in noncentrosymmetric systems with
nontrivial spin textures in the momentum space. We also
note that the amplitude of the spin current is 2 or 3 orders
of magnitude larger than the previous proposal on TMDs
[32], indicating that our mechanism can generate nonlinear
spin current more efficiently. In TMDs, the anisotropic Fermi
surface due to the trigonal warping plays a crucial role in the
spin-current generation. The authors of Ref. [32] claimed that
the generated nonlinear spin current normalized by the linear
charge current is

j (2)
s (2/h̄)

j
(1)
c /e

= 3γ eτE

h̄
, (26)

where γ is the coefficient of the trigonal warping, which
has the dimension of the length. [See Eqs. (3) and (5) in
Ref. [32]. We have replaced the coefficient β in Ref. [32]
by γ to avoid confusion.] The γ values are summarized in
Table 1 in Ref. [32], which is of the order of 0.1–1 Å for
MoS2 and GaSe. To show that our proposed method is a more
efficient mechanism to generate spin current, we calculated the
same ratio for our system and define γ parameter by Eq. (26).
For a Rashba system with μ > 0, for example, the linear
charge current j (1)

c = e2τE
2π

(2μ + mα2), and the second-order
spin current is given in Eq. (21). The γ value is calculated
as γ = 5α

12
1

2μ+mα2 < 5
12mα

. The maximum value of this ratio
is achieved by setting μ = 0. In this case the γ value is
630 Å for GaAs by substituting α � 0.1 eV Å [35] and
m � 0.3me [36]. For the bulk Rashba semiconductor BiTeI,
the γ parameter is found to be 8.1 Å by assuming α � 3.9 eV Å
[33] and m � 0.15me [34]. Here, me is the electron mass in the
vacuum. For the surface of the TI, the linear charge current is
j (1)
c = e2τE

4πm
[−mv +

√
2mμ + m2v2]

√
2mμ + m2v2, and the

second-order spin current is given in Eq. (14). The γ parameter
is found to be γ = 5

12
1√

2mμ+m2v2
∼ 5

12mv
by assuming 2mμ 

m2v2. This value is about 17 Å for the 3D TI Bi2Se3 using
v � 6.2 × 105 m/s [37] and m = 0.53me [38]. These three
values are much larger than that discussed in Ref. [32]. Thus,
we can conclude that our proposed method is a more efficient
mechanism to generate the nonlinear spin current.

Generation of spin current proportional to E2 indicates
that the dc spin current is induced by the ac electric field
E(t) = Eeiωt . The time-dependent Boltzmann equation yields
the second-order distribution function, which is composed of
two terms: the time-independent term and the one with 2ω

frequency [30]. The latter one vanishes with time averaging,
while the former gives us a finite rectified spin current, which
is calculable with a procedure equivalent to that in the present
study. This rectified spin current can be induced, for example,
by shining a terahertz light.

Under irradiation of the light on systems with spin-split
bands, the circular photogalvanic effect also contributes to
the spin current associated with the charge current. The
interband transition with the optical selection rule gives
us an unbalanced distribution of the positive and negative
momenta on the spin-split band, resulting in the spin-polarized
photocurrent [22,23]. Similarly, photocurrent is also generated
by the spin galvanic effect. The optical spin accumulation
by the absorption of the circularly polarized light results in the
photocurrent induction in the asymmetric spin-flip scattering
processes [39,40]. However, these phenomena can be excluded
by using linearly polarized terahertz light, which does not
selectively excite electrons with lifted spin degeneracy.

We next estimate the magnitude of the spin current for
various systems. We define the 3D spin conductivity as
j (2)
x,sy

/[Eh̄/(2ec)], where c is the lattice constant for the
thickness direction and we assume a reasonable value for
the magnitude of the electric field E � 102–5 V/m. The
spin conductivity is of the order of 2 × 102–5 �−1 m−1 for
GaAs when substituting τ � 2.5 ps and c = 5.7 Å. It is of
the order of 7 × 100–3 �−1 m−1 for BiTe,I with τ � 0.072
ps [41] and c = 6.9 Å. As for 3D TIs, it is of the order of
1.3 × 102–5 �−1 m−1 for Bi2Se3 when substituting τ � 3.1 ps
[42], c = 29 Å, and μ = 0.1 eV. These values are larger than
the typical value of the spin Hall conductivity, 100–4 �−1 m−1

[16]. The effect of finite temperature summarized in Fig. 4 has
a peculiar feature. For a typical sheet carrier density of the
order of ∼1013 cm−2, the carrier density n/nD is of the order
of 104 for GaAs and 1 for BiTeI. Room temperature in Fig. 4,
300 K/(mα2/kB), is about 400 for GaAs and 0.1 for BiTeI.
As seen in Fig. 4, we may conclude that the spin current never
decreases, even at room temperature.

Finally, we discuss the validity of the present work. Our
derivation of the second-order distribution function is based
on the expansion with respect to τeE ∂

∂h̄kx
∼ τeE/(h̄k0), where

k0 ∼ mα/h̄2 is the typical momentum of, for instance, the
Rashba system. For the convergence of the expansion, the
electric field E must satisfy E  mα/(eh̄τ ). This condition
has two physical interpretations. One is that the energy due
to the electric field eE/k0 must be much smaller than the
disorder broadening h̄/τ , and the other is the distance between
two FSs mα/h̄2 must be much larger than the shift of the
distribution function in the momentum space τeE/h̄ to avoid
the level mixing by the applied electric field. The upper limit
of the electric field is of the order of 103 V/m for GaAs,
106–7 V/m for BiTeI, and 105–6 V/m for Bi2Se3; the latter two
values are sufficiently large for the usual terahertz experiments
(∼105 V/m). Note that two FSs come very close when α ∼ β.
In this case, the distance between two FSs in the momentum
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space becomes m|α − β|/h̄2 ∼ 0, and hence, our results are
not valid near the persistent helix phase, α = β.
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APPENDIX: DERIVATION OF SECOND-ORDER
SPIN CURRENT

In this Appendix, we show the derivation of the spin
currents, j (2)

x,sx
,j (2)

y,sx
,j (2)

y,sy
, for the surface of 3D TIs and the

Rashba system, which is skipped in the main text.

1. Surface of 3D TI

For surface states of 3D TIs, the spin currents are given by

j (2)
x,sx

=
∫

d2k

(2π )2 〈±,k|ĵxsx
|±,k〉f ±

2 =
∫

d2k

(2π )2

[
∓1

2

k

m
sin φ cos φ

][
e2τ 2E2 ∂

∂kx

(
k

m
± v

)
cos φ

∂f ±
0

∂ε

]

= ±e2τ 2E2

8π2

∫
d2k

sin3 φ

m

[(
k

m
± v

)
cos φ

∂f ±
0

∂ε

]
= 0, (A1)

j (2)
y,sx

=
∫

d2k

(2π )2 〈±,k|ĵysx
|±,k〉f ±

2 =
∫

d2k

(2π )2

[
1

2

(
± k

m
sin2 φ − v

)][
e2τ 2E2 ∂

∂kx

(
k

m
± v

)
cos φ

∂f ±
0

∂ε

]

= ∓e2τ 2E2

8π2

∫
d2k

[
1

m
cos φ sin2 φ

][(
k

m
± v

)
cos φ

∂f ±
0

∂ε

]
= ∓e2τ 2E2

32πm

∫
kdk

(
k

m
± v

)
∂f ±

0

∂ε

= ±e2τ 2E2

32πm
[−mv +

√
2mμ + m2v2] = 1

5
j (2)
x,sy

(A2)

and

j (2)
y,sy

=
∫

d2k

(2π )2 〈±,k|ĵysy
|±,k〉f ±

2 = −
∫

d2k

(2π )2 〈±,k|ĵxsx
|±,k〉f ±

2 = −j (2)
x,sx

= 0. (A3)

2. Rashba system

For Rashba systems, the spin currents are given by

j (2)R
x,sx

=
∑
±

∫
d2k

(2π )2 〈±,k|ĵxsx
|±,k〉f ±

2 =
∑
±

∫
d2k

(2π )2

[
∓1

2

k

m
sin φ cos φ

][
e2τ 2E2 ∂

∂kx

(
k

m
± α

)
cos φ

∂f ±
0

∂ε

]

=
∑
±

e2τ 2E2

8π2

∫
d2k

sin3 φ

m

[(
k

m
± α

)
cos φ

∂f ±
0

∂ε

]
= 0, (A4)

j (2)R
y,sx

=
∑
±

∫
d2k

(2π )2 〈±,k|ĵysx
|±,k〉f ±

2 =
∑
±

∫
d2k

(2π )2

[
1

2

(
± k

m
sin2 φ − α

)][
e2τ 2E2 ∂

∂kx

(
k

m
± α

)
cos φ

∂f ±
0

∂ε

]

=
∑
±

∓e2τ 2E2

8π2

∫
d2k

[
1

m
cos φ sin2 φ

][(
k

m
± α

)
cos φ

∂f ±
0

∂ε

]
=

∑
±

∓e2τ 2E2

32πm

∫
kdk

(
k

m
± α

)
∂f ±

0

∂ε

= −e2τ 2E2

16πm
×

{
mα (μ > 0)√

2mμ + m2α2 (μ < 0)
= 1

5
j (2)R
x,sy

(A5)

and

j (2)R
y,sy

=
∫

d2k

(2π )2 〈±,k|ĵysy
|±,k〉f ±

2 = −
∫

d2k

(2π )2 〈±,k|ĵxsx
|±,k〉f ±

2 = −j (2)R
x,sx

= 0. (A6)
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3. The 1/m expansion in the surface of TIs

In this section, we investigate the effect of the parabola term in the Hamiltonian of the surface of a 3D TI. When we expand
the second-order spin current with respect to 1/m, we obtain

j (2)
x,sy

= 5j (2)
y,sx

= ±5e2τ 2E2

32πm
[−mv +

√
m2v2 + 2mμ]

= ±5e2τ 2E2v

32π

[
μ

mv2
− 1

2

(
μ

mv2

)2

+ 1

2

(
μ

mv2

)3

+ O

[(
μ

mv2

)4
]]

= ±5μe2τ 2E2

32πmv
+ O

[(
μ

mv2

)2
]
. (A7)

The leading term is the expression for j (2)
xsy

, which is obtained only by considering the correction to the current operator due to

the k2 dispersion. Namely, when we evaluate the expectation value 〈I,k|ĵμsν
|I,k〉, we use Ĥ = k2/(2m) + v(kxσy − kyσx) for

the Hamiltonian but ε± = ±vk for the distribution function. In this situation, for example, j (2)
x,sy

is given by

j (2)
x,sy

=
∫

d2k

(2π )2 〈±,k|ĵμsν
|±,k〉f2 =

∫
d2k

(2π )2

[
±1

2

k

m
cos2 φ + v

][
e2τ 2E2 ∂

∂kx

(±v) cos φ
∂f ±

0

∂ε

]

= −ve2τ 2E2

8πm

∫
d2k[cos3 φ + 2 sin2 φ cos φ] cos φ

∂f ±
0

∂ε
= −5ve2τ 2E2

32πm

∫
kdk

∂f ±
0

∂ε
= 5ve2τ 2E2

32πm

∫
kdkδ(±vk − μ)

= ±5μe2τ 2E2

32πmv
. (A8)

This indicates that the spin current at the TI surface arises from the interplay between the surface Weyl state exhibiting a nontrivial
spin texture and the effect of the k2 dispersion introducing the k linear term in the current operator.

4. Numerical calculation in the Rashba-Dresselhaus system

The second-order spin current in the coexistence of the Rashba and Dresselhaus terms j (2)
x,sx

is calculated as

j (2)
x,sx

=
∑
±

∫
d2k

(2π )2 〈±,k|ĵxsx
|±,k〉f ±

2 =
∑
±

∫
d2k

(2π )2

[
1

2

(
± k

m
cos φ cos ϕ + β

)][
e2τ 2

(
E · ∂

∂k

)(
E · ∂ε±

∂k

)
∂f ±

0

∂ε

]

=
∑
±

± e2τ 2

8π2m

∫
kdkdφ

(
E · ∂ε±

∂k

)
δ(ε± − μ)

(
E · ∂

∂k

)
[k cos φ cos ϕ]. (A9)

The analytical integration over k is possible for given values of φ with the use of the relations

δ(ε+ − μ) =
{∣∣ k

m
+ A

∣∣−1
δ(k − k+

F+) (μ > 0),

0 (μ < 0),
(A10)

δ(ε− − μ) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣ k
m

− A
∣∣−1

δ(k − k+
F−) (μ > 0),∣∣ k

m
− A

∣∣−1
δ(k − k+

F−) + ∣∣ k
m

− A
∣∣−1

δ(k − k−
F−) (μ < 0,m2A2 + 2mμ > 0),

0 (μ < 0,m2A2 + 2mμ < 0).

(A11)

Then, the integral over φ is evaluated numerically. Similar calculations are carried out for the other components of the second-order
spin current. This expression is used in the Fig. 3 in the main text.
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