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Noncollinear and noncoplanar magnetic textures including Skyrmions and vortices act as emergent electro-
magnetic fields and give rise to novel electronic and transport properties. We here report a unified understanding of
noncoplanar magnetic orderings emergent from the spin-charge coupling in itinerant magnets. The mechanism has
its roots in effective multiple spin interactions beyond the conventional Ruderman-Kittel-Kasuya-Yosida (RKKY)
mechanism, which are ubiquitously generated in itinerant electron systems with local magnetic moments. By
carefully examining the higher-order perturbations in terms of the spin-charge coupling, we construct a minimal
effective spin model composed of the bilinear and biquadratic interactions with particular wave numbers dictated
by the Fermi surface. Taking two-dimensional systems as examples, we find that our effective model captures
the underlying physics of the instability toward noncoplanar multiple-Q states discovered recently: a single-Q
helical state expected from the RKKY theory is replaced by a double-Q vortex crystal with chirality density
waves even for an infinitely small spin-charge coupling on generic lattices [R. Ozawa et al., J. Phys. Soc. Jpn. 85,
103703 (2016)], and a triple-Q Skyrmion crystal with a high topological number of two appears while increasing
the spin-charge coupling on a triangular lattice [R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118,
147205 (2017)]. We find that by introducing an external magnetic field, our effective model exhibits a plethora
of multiple-Q states. Our effective model will serve as a guide for exploring further exotic magnetic orderings in
itinerant magnets, not only in two dimensions but also in three dimensions.

DOI: 10.1103/PhysRevB.95.224424

I. INTRODUCTION

In condensed matter physics, it is a central issue to
explore unusual electronic orderings because they bring a
major advance in the fundamental physics and open a new
path toward applications to next-generation electronics and
spintronics devices. Among them, magnetic orderings have
been intensively investigated from both theory and experi-
ment. Various fascinating behaviors have been observed for
unusual magnetic structures, such as magnetoelectric effects
in noncollinear magnets [1,2] and topological Hall effects in
noncoplanar magnets [3–5]. From a theoretical point of view,
the important issue is to clarify what kind of interaction is
responsible for realizing such unusual magnetic orderings.
A well-known example is the exchange interaction between
localized magnetic moments in Mott insulators. Recent studies
have revealed that such exchange interactions may result
in unusual magnetic states, e.g., a Skyrmion crystal with a
noncoplanar topological spin texture [6–8] in the presence of
the Dzyaloshinskii-Moriya (DM) interaction [9,10], coming
from the spin-orbit coupling [11–13] or frustration between
competing interactions [14–18].

Another representative magnetic interaction has been dis-
cussed for peculiar magnetism in rare-earth and other itinerant
magnets where localized magnetic moments interact with
itinerant electrons. The exchange coupling to itinerant elec-
trons gives rise to an effective magnetic interaction between
localized moments, which is called the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [19–21]. In contrast to
the short-ranged interactions in Mott insulators, the RKKY
interaction is long ranged (power-law decay) with a sign
change depending on the distance. It often leads to an
instability toward helical ordering with a long period structure
featured by a single-Q modulation.

On the other hand, recent theoretical studies have shown
that a single-Q helical ordering in itinerant magnets is not
stable and taken over by multiple-Q modulated structures
[22–25]. Such an instability originates from higher-order spin
interactions beyond the RKKY interactions, which appear
by tracing out the degrees of freedom of itinerant electrons
[24–27]. For example, a triple-Q noncoplanar magnetic order
showing the topological Hall effect is realized at particular
electron fillings on a triangular lattice, owing to effective
four-spin interactions [22,23]. A similar mechanism stabilizes
double-Q noncoplanar magnetic orders accompanying chiral-
ity density waves at generic filling on generic lattices [25].

The above two examples illustrate the importance of effec-
tive multiple spin interactions emergent in itinerant magnets in
realizing multiple-Q noncoplanar states rather than single-Q
helical states. The interplay between charge and spin degrees
of freedom, however, generates a variety of multiple spin
interactions, whose analysis becomes more complicated in the
higher-order terms. Thus, it is crucial to elucidate essential
contributions in itinerant magnets and construct a concise
effective model for further exploration of exotic magnetic
orderings. Such an effective model will be helpful to avoid
laborious calculations for the itinerant electron systems, which
in general need a tremendous computational cost.

In the present study, we clarify the minimal ingredient to
capture the essential physics of exotic magnetism brought
by the spin-charge coupling, focusing on the weak-coupling
regime. We show that the origin of noncoplanar magnetic
orderings in itinerant magnets is an effective biquadratic
interaction specified by particular wave numbers dictated by
the Fermi surface. We derive an effective spin model with
bilinear and biquadratic couplings by examining the dominant
contributions in the perturbative expansion in terms of the
spin-charge coupling. By constructing the phase diagram of the
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effective spin model on square and triangular lattices by Monte
Carlo simulations, we find that our model provides a unified
understanding of unconventional multiple-Q magnetic orders
previously found in itinerant magnets [25,28]. We confirm the
stability of the multiple-Q phases obtained in the spin model by
comparing with those in the original itinerant electron model
by variational calculations. We also elucidate the magnetic
phase diagram by applying an external magnetic field to our
effective model. We find a variety of field-induced multiple-Q
phases, including different types of double(triple)-Q states on
the square (triangular) lattice. Our effective spin model can be
applicable to other lattices and spatial dimensions, since the
mechanism presented here is generic in itinerant magnets.

The rest of the paper is organized as follows. In Sec. II, we
present the starting itinerant electron model, the Kondo lattice
model. We discuss how effective multiple spin interactions
are generated from the perturbative expansion for the Kondo
lattice Hamiltonian with respect to the exchange coupling
between itinerant electrons and localized spins. By carefully
examining contributions from the expansion, we extract a
minimal ingredient relevant to exotic magnetic orderings.
In Sec. III, we construct the effective spin model with
bilinear-biquadratic interactions defined in momentum space.
In Sec. IV, we discuss the multiple-Q instability in this
effective model by taking two-dimensional lattice systems
as examples. In Sec. V, we compare the results between the
effective spin model and the original Kondo lattice model
by using variational calculations. In Sec. VI, we show the
phase diagram under an external magnetic field. A plethora
of multiple-Q phases is obtained from our Monte Carlo
simulations. Section VII is devoted to a summary and a
discussion of candidate materials. In Appendix A, we discuss
the singular behavior of fourth-order Green’s functions in
the zero temperature limit. We show the expression of the
third-order magnetic interactions appearing in an external
magnetic field in Appendix B.

II. EFFECTIVE MULTIPLE SPIN INTERACTIONS IN
ITINERANT MAGNETS

In this section, we discuss effective exchange interactions
between localized spins based on the perturbative expansion
with respect to the exchange coupling in the Kondo lattice
model. In Sec. II A, we introduce the Hamiltonian of the
model, with a focus on two-dimensional cases for making
the following arguments simple and concrete. In Sec. II B, we
present a general expression for the perturbative expansion
in the Kondo lattice model. Then, in Sec. II C, we discuss
the effect of the second-order RKKY interaction, which
is not enough to determine magnetic orderings even when
the exchange coupling is infinitely small. We extract the
minimal ingredient to induce noncoplanar magnetic orderings
by examining the fourth-order spin interactions in Sec. II D,
and generalize it to higher orders in Sec. II E.

A. Model

We begin with a Kondo lattice model consisting of itinerant
electrons and localized spins. While we here focus on two-
dimensional square and triangular lattices, the following

arguments for the construction of the effective model are
generic to other lattices and spatial dimensions. The Hamilto-
nian is given by

H = −
∑
i,j,σ

tij c
†
iσ cjσ + J

∑
i,σ,σ ′

c
†
iσσ σσ ′ciσ ′ · Si , (1)

where c
†
iσ (ciσ ) is a creation (annihilation) operator of an

itinerant electron at site i and spin σ . The first term represents
the kinetic motion of itinerant electrons. We consider hop-
ping elements between nearest-neighbor sites, tij = t1, and
third-neighbor sites, tij = t3, in the following analyses. It is
noteworthy that qualitative features derived from the model
in Eq. (1) are expected to hold for other choices of the
hopping elements, e.g., second-neighbor hopping instead of
t3, whenever the bare magnetic susceptibility shows multiple
maxima at symmetry-related wave numbers, as discussed in
Sec. II C. Hereafter, we take t1 = 1 as an energy unit of the
model in Eq. (1). The second term represents the exchange
coupling between itinerant electron spins and localized spins.
σ = (σx,σ y,σ z) is the vector of Pauli matrices, Si is a localized
spin at site i, which is regarded as a classical spin with length
|Si | = 1, and J is the exchange coupling constant; the sign of
J is irrelevant for the classical treatment of Si .

For the following arguments, it is useful to express the
Hamiltonian in Eq. (1) in momentum space as

H =
∑
k,σ

εkc
†
kσ ckσ + J√

N

∑
k,q,σ,σ ′

c
†
kσσ σσ ′ck+qσ ′ · Sq, (2)

where c
†
kσ and ckσ are the Fourier transform of c

†
iσ and ciσ ,

respectively. εk is the energy dispersion of free electrons for
the square lattice,

εk = −2
∑
l=1,2

(t1 cos k · el + t3 cos 2k · el), (3)

where e1 = x̂ = (1,0) and e2 = ŷ = (0,1), and for the triangu-
lar lattice,

εk = −2
∑

l=1,2,3

(t1 cos k · el + t3 cos 2k · el), (4)

where e1 = x̂, e2 = −x̂/2 + √
3ŷ/2, and e3 = −x̂/2 −√

3ŷ/2. We set the lattice constant a = 1 as the length unit. In
the second term in Eq. (2), Sq is the Fourier transform of Si

and N is the number of sites. The second term can be regarded
as the scattering of itinerant electrons by localized spins with
the momentum transfer q.

B. Perturbation expansion

We consider effective spin interactions mediated by itiner-
ant electrons in the model in Eq. (2). Suppose the exchange
coupling J is small enough compared to the bandwidth of
itinerant electrons, one can expand the free energy of the
system with respect to J :

F − F (0) = −T log

〈
T exp

(
−

∫ β

0
H′(τ )dτ

)〉
con

(5)

= − T

2!

∫ β

0
dτ1

∫ β

0
dτ2〈T H′(τ1)H′(τ2)〉con
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− T

4!

∫ β

0
dτ1 · · ·

∫ β

0
dτ4〈T H′(τ1) · · ·H′(τ4)〉con

− · · · (6)

= F (2) + F (4) + · · · , (7)

where H′ represents the second term of Eq. (2), T is the time-
ordered product, τ is the imaginary time, T is the temperature,
and β is the inverse temperature (= 1/T ; we set the Boltzmann
constant as unity). 〈· · · 〉con stands for the averaged value over
the connected Feynman diagrams. F (0) represents the free
energy from the first term of Eq. (2). Note that there is no
odd term in the expansion due to the time-reversal symmetry
of the model. The 2nth-order contribution in the free energy
can be expressed in the general form

F (2n) = T

n

(
J√
N

)2n ∑
k,ωp

∑
q1,··· ,q2n,l

GkGk+q1 · · ·

× Gk+q1+···+q2n−1δq1+q2+···+q2n,lG

×
∑
{P }

(−1)λP

∏
ν,ν ′

(
Sqν

· Sqν′
)
, (8)

where Gk(iωp) = [iωp − (εk − μ)]−1 is the noninteracting
Green’s function, ωp is the Matsubara frequency, μ is the
chemical potential, δ is the Kronecker delta, and G is the
reciprocal lattice vector (l is an integer). The sum of {P } is
taken for all the combinations of ν and ν ′ [the number of
the combinations is 2nC2 · 2n−2C2 · · · 2C2/(n!)], and λP is +1
(−1) for an even (odd) permutation. The product is taken for
1 < ν ′ < ν < 2n; see also the explicit expressions for the case
with n = 1 and n = 2 in Eqs. (9) and (15), respectively. In
Eq. (8), we omit the spin dependence of the Green’s function
because the unperturbed Hamiltonian is independent of the
spin index. Note that the form in Eq. (8) is generic and
applicable to any lattice structures and spatial dimensions.
Similar expressions are discussed in Ref. [29].

Figure 1 represents the Feynman diagrams for the first three
terms in the expansion of Eq. (5), namely, n = 1, 2, and 3 in
Eq. (8). The diagrams consist of the scattering vertices by
localized spins and the bare propagators of itinerant electrons,
Gk. By taking summations in terms of qν (ν = 1, 2, . . .,
2n) in Eq. (8), we can obtain the multiple spin interactions
at any order of J . In the following sections, we discuss
the specific form of such interactions by focusing on the
second order (Sec. II C) and fourth order (Sec. II D) of J , and
give the general expression for the higher-order contributions

FIG. 1. Feynman diagrams for the first three terms in the
perturbative expansion of the free energy in Eq. (5): n = 1, 2, and 3
in Eq. (8) from left to right. The vertices with wavy lines denote the
scattering by localized spins and the solid curves represent the bare
propagators of itinerant electrons, Gk.

(Sec. II E). Hereafter, we do not explicitly indicate the
Matsubara frequency dependence in Green’s functions for
simplicity.

C. Second-order RKKY interaction

First, let us consider the lowest-order contribution in Eq. (8),
i.e., the second order of J (n = 1). It is explicitly written as

F (2) = T
J 2

N

∑
k,q,ωp

Gk+qGkSq · S−q. (9)

By taking the summation of ωp, Eq. (9) turns into

F (2) = −J 2
∑

q

χ0
q Sq · S−q, (10)

where χ0
q is the bare susceptibility of itinerant electrons,

χ0
q = T

N

∑
k,ωp

Gk+qGk (11)

= 1

N

∑
k

f (εk) − f (εk+q)

εk+q − εk
. (12)

Equation (10) gives a pairwise interaction between localized
spins, which is called the RKKY interaction [19–21]. The sign
and amplitude of the interaction depend on the band structure
and electron filling through Eq. (12).

The magnetic state that optimizes the RKKY interaction
in Eq. (10) is a single-Q helical (spiral) state, whose spin
structure is represented by

Si = (cos Q · ri , sin Q · ri ,0). (13)

Here, Q is the ordering vector defining the pitch and direction
of the spiral, which is dictated by the peak of χ0

q in Eq. (12).
Note that the spiral axis in the helical state in Eq. (13) is
arbitrary because of the spin rotational symmetry of the RKKY
interaction in Eq. (10). The reason why the helical state
is preferred is understood from the normalization condition
|Si | = 1, which imposes a constraint

∑
q |Sq|2 = N : the

helical state, in which |SQ|2 = |S−Q|2 = N/2 and Sq = 0 for
q �= ±Q, gives the lowest energy of Eq. (10). In other words,
any superposition with another wave number or any higher
harmonics leads to an energy cost compared to the helical
state. Thus, the second-order free energy for the helical state
is given by

F (2) = −J 2
(
χ0

Q

∣∣SQ
∣∣2 + χ0

−Q

∣∣S−Q
∣∣2)

. (14)

The corresponding Feynman diagram is shown in Fig. 2.
An important point in the RKKY analysis is that there

still remains degeneracy related to the lattice symmetry.
Besides the twofold degeneracy due to the chiral symmetry

FIG. 2. Feynman diagram for the lowest second-order contribu-
tion in the single-Q helical state with ordering vector Q [Eq. (14)].
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FIG. 3. (a, c) The contour plots of the bare susceptibility χ0
q for

(a) the square lattice model at t3 = −0.5 and μ = 0.98 and (c) the
triangular lattice model at t3 = −0.85 and μ = −3.5. χ 0

q exhibits
maxima at Q1 and Q2 in (a), while Q1, Q2, and Q3 in (c). In both
cases, Qν are connected with each other by the rotational symmetry
operation of the lattice structure. The squares and hexagons in the
figures represent the first Brillouin zone. (b, d) The Fermi surfaces
corresponding to (a) and (c), respectively. Qν are the vectors giving
the maxima of χ 0

q in (a) and (c).

of the centrosymmetric Bravais lattice structures, there is in
general residual degeneracy related to rotational symmetry.
This remaining degeneracy plays a role in realizing multiple-Q
orderings as discussed in Sec. II D.

Let us describe how the degeneracy arises from the
rotational symmetry by showing the momentum dependence of
the bare susceptibility. χ0

q possesses multiple peaks reflecting
the rotational symmetry of the lattice structure. This is
demonstrated in Fig. 3. Figures 3(a) and 3(c) show χ0

q on
the square lattice with t3 = −0.5 and μ = 0.98 and the
triangular lattice with t3 = −0.85 and μ = −3.5, respectively.
The corresponding Fermi surfaces are also shown in Figs. 3(b)
and 3(d). The bare susceptibility shows multiple peaks at
the wave numbers for which the Fermi surface is nested,
and the wave numbers respect the rotational symmetry of
the system: C4 (C6) for the square (triangular) lattice. The
former square lattice case has four peak structures at Q1 =
±(2π/6,2π/6) and Q2 = R(π/2)Q1, and the latter triangular
lattice case shows six peak structures at Q1 = (2π/6,0), Q2 =
R(2π/3)Q1, and Q3 = R(4π/3)Q1; here, R(θ ) represents the
rotational operator by θ . As described above, at the level of
the RKKY interaction in Eq. (10), the single-Q helical order
is realized by choosing the ordering vector Q out of these
multiple peaks.

Thus, the second-order free energy, i.e., the RKKY
interaction, favors the helical ordering with the single-Q
modulation represented by Eq. (13), while there remains
the degeneracy related to rotational symmetry of the lattice

structure. Reflecting this, the ground state in the Kondo lattice
model is not given by the helical state but by noncoplanar
multiple-Q states even for the J → 0 limit. The striking result
was originally found at particular electron fillings where the
Fermi surface has perfect nesting [22] or multiple connections
[23,24,26], while recently generalized to generic fillings where
the Fermi surface has no special property except for the
rotational symmetry [25]. The fundamental mechanism is that
the system tends to lift the degeneracy due to the rotational
symmetry of the lattice structure through the higher-order
contributions of the free energy, as described in the following
sections.

D. Fourth-order interaction

Next, we consider the fourth-order contribution of the free
energy, Eq. (8) with n = 2. It is explicitly written as

F (4) = T

2

J 4

N2

∑
k,ωp

∑
q1,q2,q3,q4,l

GkGk+q1Gk+q1+q2Gk+q1+q2+q3

× δq1+q2+q3+q4,lG
[(

Sq1 · Sq2

)(
Sq3 · Sq4

)
+ (

Sq1 · Sq4

)(
Sq2 · Sq3

) − (
Sq1 · Sq3

)(
Sq2 · Sq4

)]
.

(15)

This gives the four-spin interactions, which play an important
role in lifting the degeneracy between the helical ordered states
and leads to the instability toward multiple-Q orderings. For
discussing such degeneracy lifting, it is enough to take into
account the wave numbers for the multiple maxima in the bare
susceptibility: q = ±Q1 and ±Q2 (±Q1, ±Q2, and ±Q3) for
the square (triangular) lattice. In the following, we consider the
scattering processes satisfying q1 + q2 + q3 + q4 = 0, i.e.,
l = 0 in Eq. (15); the special cases with q1 + q2 + q3 + q4 =
G were discussed for 2Qν = G in Refs. [22–24,26,30] and
4Qν = G in Ref. [27] (ν = 1,2,3). Then, the fourth-order free
energy is given by the sum of five types of multiple spin
interactions:

F (4) = F
(4)
1 + F

(4)
2 + F

(4)
3 + F

(4)
4 + F

(4)
5 , (16)

F
(4)
1 = J 4

N

∑
ν

(2A1 − A2)
(
SQν

· SQν

)(
S−Qν

· S−Qν

)
, (17)

F
(4)
2 = J 4

N

∑
ν

(2A2)
(
SQν

· S−Qν

)2
, (18)

F
(4)
3 = 4

J 4

N

∑
ν,ν ′

(B1 + B2 − B3)
(
SQν

· S−Qν

)(
SQν′ · S−Qν′

)
,

(19)

F
(4)
4 = 4

J 4

N

∑
ν,ν ′

(−B1 + B2 + B3)
(
SQν

· SQν′
)(

S−Qν
· S−Qν′

)
,

(20)

F
(4)
5 = 4

J 4

N

∑
ν,ν ′

(B1 − B2 + B3)
(
SQν

· S−Qν′
)(

S−Qν′ · SQν

)
,

(21)
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FIG. 4. Feynman diagrams for the coefficients A1, A2, B1, B2,
and B3 in the fourth-order contributions. See Eqs. (16)–(26).

where the sums in Eqs. (19)–(21) are taken for ν > ν ′. The
coefficients are given by

A1 = T

N

∑
k,ωp

(Gk)2Gk−Qν
Gk+Qν

, (22)

A2 = T

N

∑
k,ωp

(Gk)2(Gk+Qν
)2, (23)

B1 = T

N

∑
k,ωp

(Gk)2Gk+Qν
Gk+Qν′ , (24)

B2 = T

N

∑
k,ωp

(Gk)2Gk+Qν
Gk−Qν′ , (25)

B3 = T

N

∑
k,ωp

GkGk+Qν
Gk+Qν′ Gk+Qν+Qν′ . (26)

Each contribution is expressed by the diagram in Fig. 4. A1

and A2 represent the scattering processes by a single wave
number, while B1, B2, and B3 are expressed by multiple wave
numbers.

Let us discuss which term plays a dominant role among
the five types of multiple spin interactions in Eqs. (17)–(21).
Figures 5(a) and 5(b) compare the coefficients A1, A2, B1, B2,
and B3 for two sets of parameters used in Fig. 3. In both cases,
the coefficient A2 becomes dominant in the low-temperature
limit (see also Appendix A). This indicates that F

(4)
2 is the

most important contribution among the fourth-order multiple
spin interactions, as confirmed in Figs. 5(c) and 5(d).

It is worth noting that F
(4)
2 in Eq. (18) is in the form

of the biquadratic interaction with the positive coefficient
A2. The positive biquadratic interaction, in general, favors
a noncollinear spin configuration. For example, a triple-Q
noncoplanar ordering is realized on a triangular lattice when
the positive biquadratic interaction is enhanced by Fermi
surface connections [24,26].

E. Higher-order contributions

The higher-order contributions can be straightforwardly
expressed by the Feynman diagrams similar to those in Fig. 4.
By analyzing the contributions from each diagram, we find
that the scattering process proportional to (SQν

· S−Qν
)n gives

the most important contribution in each order. Note that the

)d()c(

-10

 0

 10

 20

 30

-1

 0

 1

 2

)b()a(

FIG. 5. (a, b) Temperature dependences of the coefficients in
Eqs. (22)–(26) at (a) t3 = −0.5 and μ = 0.98 on the square lattice
and (b) t3 = −0.85 and μ = −3.5 on the triangular lattice. The
data are calculated for the system size N = 36002 and the number
of Matsubara frequency 8000. (c, d) Temperature dependences of
fourth-order free energy in Eqs. (17)–(21) for the same parameters in
(a) and (b), respectively.

dominant F
(4)
2 in Eq. (18) is the case with n = 2. Thus, the

general form of the dominant contribution in the free energy
at the 2nth order is given by

F
(2n)
(Q,−Q) =2nT

n

(
J√
N

)2n

×
∑

k,ωp,ν

(Gk)n
(
Gk+Qν

)n(
SQν

· S−Qν

)n
. (27)

The sum of the dominant contributions up to the infinite orders
can be summarized in a compact form:

F(Q,−Q) = F
(2)
(Q,−Q) + F

(4)
(Q,−Q) + · · · + F

(2n)
(Q,−Q) + · · · (28)

= 2T
J 2

N

∑
k,ωp,ν

[
GkGk+Qν

1 − 2(J 2/N)GkGk+Qν

(
SQν

· S−Qν

)
]

× (
SQν

· S−Qν

)
. (29)

The corresponding Feynman diagrams are shown in Fig. 6.

+ + + …

FIG. 6. The Feynman diagrams describing the dominant contri-
butions among all the spin scattering processes.
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We find that the dominant terms in Eq. (28) contribute
in a different way depending on the order of the expansion:
the (4l + 2)th-order terms proportional to T G2l+1

k G2l+1
k+Q < 0

tend to favor a single-Q coplanar order, while the 4lth-order
ones proportional to T G2l

k G2l
k+Q > 0 tend to favor multiple-Q

noncoplanar order. This implies that Eq. (28) is divided into
two groups, which are phenomenologically represented by a
bilinear interaction (SQν

· S−Qν
) and a biquadratic interaction

(SQν
· S−Qν

)2. On the basis of this observation, we construct
an effective model in Sec. III.

We note that while the free energy in Eq. (29), which is
obtained by the partial summation of the dominant contribu-
tions, converges in the limit of zero temperature, and each
term in Eq. (28) is divergent, as inferred in Figs. 5(c) and
5(d). We discuss the effect of the higher-order contributions
by evaluating Eq. (29) in Sec. V.

III. EFFECTIVE SPIN MODEL

A. Bilinear-biquadratic model in momentum space

The perturbation expansion in Sec. II indicates that many
different types of effective spin interactions can contribute
to the magnetic ordering in itinerant magnets. The careful
comparison between different terms, however, gives an insight
into the dominant contribution, as discussed in Secs. II D
and II E. Based on the observations, we propose an effective
spin model in the weak-coupling regime by including the
contributions from the bilinear and biquadratic interactions.
The Hamiltonian is given by

H = 2
∑

ν

[−J̃SQν
· S−Qν

+ K̃
(
SQν

· S−Qν

)2]
, (30)

where the sum is taken for a set of Qν giving the multiple
peaks in the bare susceptibility χ

(0)
q ; J̃ and K̃ are the

coupling constants for bilinear and biquadratic interactions,
respectively, in momentum space. We take J̃ > 0 and K̃ > 0,
following the most dominant contributions to each term,
Eqs. (14) and (18). Hereafter, we set J̃ = 1 and change the
parameter K = NK̃ in the following calculations.

The model in Eq. (30) is a bilinear-biquadratic model
defined in momentum space. The bilinear-biquadratic model
has been studied in real space: the interactions are defined
between the localized spins at particular sites, like Si · Sj

and (Si · Sj )2 in Refs. [31–33]. In our model, however, the
interactions are defined for the Fourier components of spins
whose wave numbers are dictated by the Fermi surface. We
note that the effective model can be applicable to the case
of 2Qν = G and 4Qν = G (ν = 1,2,3) [see the remark just
before in Eq. (16)].

The perturbative argument in Sec. II suggests that the
bilinear J̃ term is dominant over the biquadratic K̃ term, as
the former originates from the RKKY interaction proportional
to J 2 [Eq. (14)], while the most dominant contribution to the
latter is proportional to J 4 [Eq. (18)] in the weak-coupling
limit. Nevertheless, we will study the effective model in
Eq. (30) up to K ≈ J̃ in the following sections, since the
dominant contributions from the higher-order perturbation are
phenomenologically renormalized into the effective bilinear
and biquadratic interactions, as discussed in Sec. II E. We

will demonstrate that the extension of the model to the
nonperturbative region K ≈ J̃ is indeed useful to discuss the
magnetic instabilities in the original Kondo lattice model in
Eq. (1).

B. Monte Carlo simulation

We investigate the magnetic phase diagram of the effective
spin model in Eq. (30) for the square and triangular lattice
cases, by performing classical Monte Carlo simulations at
low temperatures. Our simulations are carried out with the
standard Metropolis local updates. In the following, we
present the results for the systems with N = 962 sites under
periodic boundary conditions; we confirm that the system
size dependence is small by performing the simulations for
N = 482 and 722. In each simulation, we perform simulated
annealing to find the low-energy configuration in the following
way. We gradually reduce the temperature with a rate Tn+1 =
αTn, where Tn is the temperature in the nth step. We set the
initial temperature T0 = 0.1−1.0 and take the coefficient of
geometrical cooling α = 0.9995−0.9999. The final temper-
ature, which is typically taken at T = 0.01, is reached by
spending a total of 105−106 Monte Carlo sweeps. At the final
temperature, we perform 105−106 Monte Carlo sweeps for
measurements after 105−106 steps for thermalization.

We calculate the structure factors for spin and scalar
chirality to identify each magnetic phase. The spin structure
factor Ss(q) is given by

Ss(q) = Sxx
s (q) + Syy

s (q) + Szz
s (q), (31)

where

Sαα
s (q) = 1

N

∑
j,l

〈
Sα

j Sα
l

〉
eiq·(rj −rl ), (32)

with α = x,y,z. We also compute

S⊥
s (q) = Sxx

s (q) + Syy
s (q) (33)

in the presence of the external magnetic field applied to the
z direction. We also introduce the following notation for the
magnetic moments at q components:

mq =
√

Ss(q)/N. (34)

In addition, we calculate the chirality structure factor. For
the square lattice, it is defined by

Sχ sc (q) = 1

N

∑
i,j

〈
χ sc

i χ sc
j

〉
eiq·(ri−rj ), (35)

where the local scalar chirality at site i is intro-
duced as χ sc

i = Si · (Si+x̂ × Si+ŷ) + Si · (Si−x̂ × Si−ŷ) − Si ·
(Si−x̂ × Si+ŷ) − Si · (Si+x̂ × Si−ŷ). Meanwhile, the chirality
structure factor on the triangular lattice is defined separately
for the upward and downward triangles as

S
μ
χ sc (q) = 1

N

∑
R,R′∈μ

〈
χ sc

R χ sc
R′

〉
eiq·(R−R′), (36)

where R and R′ represent the position vectors at the centers
of triangles, and μ = (u,d) represent upward and downward
triangles, respectively. Note that the medial lattice composed
of the centers of gravity in the upward and downward triangles
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gives the honeycomb network. In Eq. (36), χ sc
R = Sj · (Sk ×

Sl), where j,k,l are the sites on the triangle at R in the
counterclockwise order. We also introduce the scalar chirality
at q components:

χ sc
q =

√
Su

χ sc (q)/N + Sd
χ sc (q)/N. (37)

IV. MULTIPLE- Q MAGNETIC INSTABILITY

In this section, we investigate magnetic instabilities ap-
pearing in the bilinear-biquadratic model in Eq. (30), which
is derived as an effective model for the Kondo lattice model
with small J/t . In Sec. IV A, we elucidate the phase diagrams
on the square and triangular lattices, in which the helical state
expected from the RKKY interaction is no longer stable and
replaced by multiple-Q states. In Sec. IV B, we discuss why
the multiple-Q states have lower energy than the single-Q
helical state.

A. Phase diagram

1. Square lattice

First, we show the results on the square lattice. In order
to investigate the magnetic instability, we perform Monte
Carlo simulations at sufficiently low temperature, T = 0.01,
while using the simulated annealing described in Sec. III B.
We set the ordering vectors as Q1 = (2π/6,2π/6) and
Q2 = R(π/2)Q1 in the model in Eq. (30) defined on the
square lattice, although the following results are qualitatively
unchanged for other sets of symmetry-related Qν .

Figure 7(a) shows K dependences of the Qν component
of the magnetization, mQν

. At K = 0, the single-Q helical
state is realized because Eq. (30) is reduced to the RKKY
interaction in Eq. (10). Indeed, our Monte Carlo result indicates
that mQ1 becomes nonzero, while mQ2 vanishes. (The state with
mQ1 = 0 and mQ2 �= 0 is also obtained depending on the initial
conditions and the scheduling in the simulated annealing.)
Once we turn on K , the Q2 component becomes nonzero
and develops as increasing K . This indicates that the single-
Q state has an instability toward the double-Q state for an
infinitesimal K . With increasing K , mQ1 decreases and mQ2

increases and they gradually approach the same value, while
they take different values, at least, in the calculated range for
K � 1.2.

We present a Monte Carlo snapshot of the spin configuration
of this double-Q state in the left panel of Fig. 8. The spin
configuration is clearly different from the single-Q helical
state and is modulated by the second Q component. The spin
structure factor in the middle panel of Fig. 8 shows two pairs
of Bragg peaks at ±Q1 and ±Q2 with different intensities.

On the other hand, in terms of the spin scalar chirality, the
double-Q state is accompanied by the chiral density wave only
with the wave number Q2, as shown in Fig. 7(b). Indeed, the
structure factor shown in the right panel of Fig. 8 has a peak
only at ±Q2.

We summarize the phase diagram in Fig. 7(c). As mentioned
above, the single-Q helical state is realized only at K = 0, and
the double-Q state with chirality stripe is stable for K > 0: the
critical value of K is Kc = 0. We call this double-Q state for

(a)

 0.0
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 0.2

 0.3

 0.4

 0.5

 0.0  0.2  0.4  0.6  0.8  1.0  1.2

(b)

 0.0

 1.0

 2.0

 3.0

 0.0  0.2  0.4  0.6  0.8  1.0

2Q’1Q
(c)

 1.2

FIG. 7. (a, b) K dependences of the Qν components of (a) the
squared magnetization and (b) the squared scalar chirality obtained
by Monte Carlo simulations for the model in Eq. (30) on the square
lattice. The parameters are Q1 = (2π/6,2π/6) and Q2 = R(π/2)Q1.
(c) Phase diagram for the square lattice case. The single-Q helical
state (1Q) is limited at K = 0, and the double-Q′ chiral stripe (2Q′)
is realized for K > 0.

K > 0 a “double-Q′ chiral stripe”, where Q′ means that the
amplitudes of the Q1 and Q2 components are different.

We find that this double-Q′ chiral stripe is similar to the
double-Q state recently found in the Kondo lattice model in
Ref. [25]. The real-space spin structure was described in the
form

Si =

⎛
⎜⎝

√
1 − b2 + b2 cos Q2 · ri cos Q1 · ri

b sin Q2 · ri√
1 − b2 + b2 cos Q2 · ri sin Q1 · ri

⎞
⎟⎠

T

, (38)
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FIG. 8. (Left) Snapshot of the spin configurations obtained by Monte Carlo simulations in the double-Q′ chiral stripe phase for K = 0.2 on
the square lattice. A part of the whole lattice with N = 962 is shown. The contour shows the z component of the spin moment, and the arrows
represent the xy components. The yellow square represents the magnetic unit cell. (Middle) Square root of the corresponding spin structure
factor. (Right) Square root of the corresponding chirality structure factor. In the middle and right figures, the squares represent the first Brillouin
zone for the square lattice.

where b represents the amplitude of the Q2 component; the
superscript T denotes the transpose of the vector. As discussed
in the previous study [25], the spin configuration in Eq. (38) has
two notable aspects. One is that it is continuously connected
to the single-Q helical state as b → 0, which indicates that
the double-Q state is topologically trivial. The other is that
the Q2 component is introduced in the perpendicular direction
to the Q1 helical plane. Due to the latter, the energy loss
from the higher harmonics at the RKKY level is small enough
compared to the energy gain in the higher-order terms [25].
We will discuss this point for our effective model in Sec. IV B.

2. Triangular lattice

Next, we study the phase diagram on the triangular
lattice. We consider the specific set of ordering vectors
Q1 = (2π/6,0), Q2 = R(2π/3)Q1, and Q3 = R(4π/3)Q1 in
the model in Eq. (30) defined on the triangular lattice, while
qualitative features are expected to hold for arbitrary sets
of symmetry-related Qν , as in the square lattice case. The
obtained results of the magnetic moments and chirality are
shown in Figs. 9(a) and 9(b), respectively. In the spin sector,
the single-Q state at K = 0 turns into a double-Q state
for K > 0. We find that this double-Q state corresponds to
a straightforward extension of the double-Q′ chiral stripe
obtained for the square lattice: the spin structure is expressed
by the same form as Eq. (38) with choosing two Qν out of
three [e.g., Q1 and Q2 in the solution obtained in Figs. 9(a)
and 9(b)].

While increasing K , however, we find another phase
transition at K ≈ 0.37. At the transition, the magnetic moment
changes discontinuously, as shown in Fig. 9(a); all mQν

become
nonzero for K � 0.37, which indicates that the spin state is
a triple-Q order. There, the amplitudes of the Q1, Q2, and
Q3 components are equivalent, as shown in Fig. 9(a). This is
also clearly seen in the spin structure factor shown in Fig. 10.
On the other hand, in the scalar chirality sector, the uniform
(q = 0) component is induced while the Qν components all
vanish, as shown in Fig. 9(b).

Thus, the state for K � 0.37 is the triple-Q order with
nonzero net scalar chirality, which is common to the Skyrmion
states studied in noncentrosymmetric chiral magnets [8,11–13]

and centrosymmetric frustrated magnets [14–17]. However, it
is qualitatively distinct from the ordinary Skyrmion crystals.
Actually, we find that the triple-Q state is similar to the
unconventional Skyrmion crystal discovered in Ref. [28]. The
real-space spin structure is described by an equal superposition
of three helices as

Si = 1

Ni

⎛
⎝cos Q1 · ri

cos Q2 · ri

cos Q3 · ri

⎞
⎠

T

, (39)

where Ni is the site-dependent renormalization factor to satisfy

|Si | = 1: Ni =
√∑3

ν=1 cos2 Qν · ri . This triple-Q state has
mainly three different aspects from the conventional Skyrmion
crystals. The first point is that the topological number nsk is
two per magnetic unit cell, as shown in Fig. 10 in Ref. [28].
This is in sharp contrast to the previous Skyrmions with
nsk = 1. The second point is the symmetry in the ordered
phase. The obtained triple-Q state preserves inversion and
spin rotational symmetries [O(3) symmetry], while most of
the previous Skyrmions in centrosymmetric systems have only
U(1) symmetry because they are stabilized in an applied
magnetic field. This peculiar symmetry may lead to new
Goldstone modes. The third is the absence of the nonzero Q
components in the scalar chirality, as shown in Fig. 9(b). This
is in contrast to the presence of the six peaks in the chirality
structure factor in the Skyrmion crystal phase, e.g., found in
Ref. [17]. Following Ref. [28], we call this triple-Q state the
triple-Q nsk = 2 Skyrmion crystal.

We summarize the phase diagram in Fig. 9(c). As in the
square lattice case, the phase boundary between the single-Q
helical state and the double-Q′ chiral stripe is at K = Kc1 = 0.
In the triangular lattice case, however, there is another phase
transition at K = Kc2 ≈ 0.37, above which the triple-Q nsk =
2 Skyrmion crystal appears.

B. Energy comparison

We here discuss why the multiple-Q orderings in Eqs. (38)
and (39) are realized in the presence of the biquadratic K

term, which mimics the fourth-order contribution in the Kondo
lattice model. We discuss the energy comparison between
the single-Q helical state and the double-Q′ chiral stripe
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FIG. 9. (a) K dependences of the Qν components of the squared
magnetization obtained by Monte Carlo simulations for the model in
Eq. (30). The parameters are Q1 = (2π/6,0), Q2 = R(2π/3)Q1, and
Q3 = R(4π/3)Q1. (b) K dependences of the Qν and uniform (q = 0)
components of the squared scalar chirality for the same parameters
in (a). (c) Phase diagram for the triangular lattice case. The single-Q
helical state (1Q) is stable only at K = 0, the double-Q′ chiral stripe
(2Q′) appears for 0 < K � 0.37, and the triple-Q nsk = 2 Skyrmion
crystal (3Q with nsk = 2) is realized for K � 0.37.

in Sec. IV B 1, and among the single-Q helical state, the
double-Q′ chiral stripe, and triple-Q nsk = 2 Skyrmion crystal
in Sec. IV B 2. We also comment on a coplanar double-Q
state on the square lattice, which is the counterpart of the
triple-Q nsk = 2 Skyrmion crystal on the triangular lattice, in
Sec. IV B 3.

1. Double- Q′ chiral stripe

First, we discuss the competition between the single-Q
helical and the double-Q′ chiral stripe states. We here show that
the single-Q helical state has higher energy than the double-Q′
chiral stripe for 0 < K � J̃ in our effective spin model in
Eq. (30). The following argument is generic and applicable
to any lattices. The argument is basically parallel to that for
the original Kondo lattice model [25], which suggests that
our effective spin model captures the instability toward the
double-Q′ chiral stripe in the Kondo lattice model.

In order to estimate the energy of the double-Q′ chiral
stripe, we expand the square root in Eq. (38) with respect
to b2:√

1 − b2 + b2 cos2 Q2 · r i

= 1 + b2

4
(1 − cos 2 Q2 · r i) − b4

32
(1 − cos 2 Q2 · r i)

2 + · · ·
= C0 + C2 cos 2 Q2 · r i + C4 cos 4 Q2 · r i + · · · , (40)

where C2l (l = 0,1,2, · · · ) are given by

C0 = 1 − b2

4
− 3

64
b4 + · · · , (41)

C2 = b2

4
+ b4

16
+ · · · , (42)

C4 = − b4

64
− · · · , (43)

and so on. Then, the spin pattern in Eq. (38) is represented by

Si = (C0 + C2 cos 2Q2 · ri + C4 cos 4Q2 · ri)

× (x̂ cos Q1 · ri + ŷ sin Q1 · ri)

+ ẑb sin Q2 · ri + O(b6). (44)

By Fourier transformation, we obtain

1√
N

SQ1 � x̂
C0

2
+ iŷ

C0

2
, (45)

1√
N

SQ2 � ẑ
b

2
, (46)

1√
N

SQ1+2Q2 � x̂
C2

4
+ iŷ

C2

4
, (47)

1√
N

SQ1−2Q2 � x̂
C2

4
+ iŷ

C2

4
. (48)

By substituting Eqs. (45) and (46) into the effective spin model
in Eq. (30), we obtain the energy per site for the double-Q′
chiral stripe:

E2Q′ = −J̃

(
1 − b4

32

)
+ K

2

(
1 − b2 + 7b4

16

)
+ O(b6), (49)

≈ E1Q + J̃ b4

32
− Kb2

2
, (50)

where E1Q = −J̃ + K/2 is the energy per site for the single-Q
helical state. In the second line, we neglect the contributions
Kb4 because we assume J̃  K .

The important observation in Eq. (50) is that there are no
contributions proportional to J̃ b2. This comes from the fact
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FIG. 10. (Leftmost) Snapshot of the spin configurations obtained by Monte Carlo simulations in the triple-Q nsk = 2 Skyrmion crystal
phase for K = 0.48 on the triangular lattice. A part of the whole lattice with N = 962 is shown. The contour shows the z component of the
spin moment, and the arrows represent the xy components. The yellow hexagon represents the magnetic unit cell. (Middle left) Square root of
the corresponding spin structure factor. (Middle right and rightmost) Square root of the corresponding chirality structure factors for the upward
and downward triangles. In the right three figures, the hexagons represent the first Brillouin zone for the triangular lattice.

that the modulation with the Q2 component is perpendicular
to the helical plane with the Q1 component, as described in
Sec. IV A. Obviously, the second term in Eq. (50) leads to the
energy loss in the double-Q′ chiral stripe, which is consistent
with the argument that the RKKY interaction favors the single-
Q helical state. On the other hand, the third term in Eq. (50)
represents the energy gain in the double-Q′ chiral stripe. The
condition to stabilize the double-Q′ chiral stripe, i.e., E2Q′

<

E1Q, reads

0 < b2 <
16K

J̃
. (51)

This means that an infinitesimal K leads to the instability of
the single-Q helical state by introducing the second component
with the amplitude b.

We note that, strictly speaking, we need to take into account
the contributions from Eqs. (47) and (48) because they also
give the energy in the order of J̃ b4. However, we can neglect
such contributions as the bare susceptibility has considerably
small amplitudes at Q1 ± 2Q2 compared to the distinct peaks
at Q1 and Q2 in general, as shown in Fig. 3. The detailed
description including the contributions of higher harmonics is
given in Ref. [25].

2. Triple- Q Skyrmion crystal

Next, we turn to the stability of the triple-Q state on the
triangular lattice, which appears for relatively large K . We can
rewrite the effective Hamiltonian in Eq. (30) into the form

H = − 2J̃
(∣∣SQ1

∣∣2 + ∣∣SQ2

∣∣2 + ∣∣SQ3

∣∣2)
+ 2K̃

(∣∣SQ1

∣∣2 + ∣∣SQ2

∣∣2 + ∣∣SQ3

∣∣2)2

− 4K̃
(∣∣SQ1

∣∣2∣∣SQ2

∣∣2 + ∣∣SQ2

∣∣2∣∣SQ3

∣∣2 + ∣∣SQ3

∣∣2∣∣SQ1

∣∣2)
,

(52)

where |SQν
|2 = SQν

· S−Qν
. From this form, for optimizing the

energy with respect to K = NK̃ , it is necessary to minimize
the contribution from the second term in Eq. (52) and to
maximize that from the third term. This is achieved by
satisfying the following conditions: (i) the amplitude of the
triple-Q component is taken to be the same because of the sum
rule

∑
ν |SQν

|2 = N , and (ii) the directions of Qν modulations

are perpendicular to each other, namely, the magnetic moments
for the Qν components are perpendicular to one another. The
latter condition indicates that the contribution of the higher
harmonics is small, as discussed above for the double-Q′ state
in the square lattice case. The spin configuration in Eq. (39)
satisfies these two conditions, and hence, it is chosen as the
ground state in the large-K region.

Let us evaluate the energy of the triple-Q nsk = 2 Skyrmion
crystal. Although the comparison with the double-Q′ chiral
stripe is difficult because Eq. (50) is justified only for small
b, we here compare the energy of the triple-Q state with that
of the single-Q state. In the triple-Q state in Eq. (39), the
magnetic moments for the Qν components are given by

∣∣SQ1

∣∣ = ∣∣SQ2

∣∣ = ∣∣SQ3

∣∣ =
√

N

6
(1 − η), (53)

where η represents a small correction from the higher harmon-
ics, e.g., Q1 + 2Q2 and 3Q1, leading to the energy loss at the
level of the RKKY interaction. By substituting Eq. (53) into
Eq. (30), we obtain the energy per site for the triple-Q nsk = 2
Skyrmion crystal as

E3Q = −J̃ (1 − 2η) + K

6
(1 − 4η) + O(η2). (54)

Monte Carlo simulations in Sec. IV A 2 give η � 0.05 almost
independent of K . From Eq. (54), we find that the energy of the
triple-Q nsk = 2 Skyrmion crystal is higher than the single-Q
state for small K . While increasing K , however, the energy of
the triple-Q nsk = 2 Skyrmion crystal becomes lower for K >

3/11J̃ ≈ 0.27J̃ when we set η = 0.05. This is qualitatively
consistent with the result by numerical simulations in Fig. 9(a),
giving the phase boundary at Kc2 ≈ 0.37J̃ . The underestimate
of Kc2 is reasonable as we neglect the double-Q′ chiral stripe
in the current analysis.

3. Coplanar double- Q state on the square lattice

Let us comment on the reason why the second transition
at Kc2 is absent in the square lattice case. We can think of
a counterpart of the triple-Q state in Eq. (39) for the square
lattice case, which may optimize the K term along with the
conditions discussed in Sec. IV B 2. As there are two Qν in the
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square lattice case, such an optimal state will be given by

Si = 1

Ni

⎛
⎝cos Q1 · ri

cos Q2 · ri

0

⎞
⎠

T

, (55)

where Ni =
√∑2

ν=1 cos2 Qν · ri . Although the coplanar
double-Q state is expected to be stabilized for K  J̃ on the
square lattice as it satisfies the two conditions in Sec. IV B 2, it
is not obtained as the lowest-energy state in our Monte Carlo
simulations.

Nonetheless, the coplanar double-Q state sometimes ap-
pears as a metastable state when we perform simulated
annealing with a sudden quench from the high-temperature
limit. We find that, although the energy of this coplanar
double-Q state is always higher than that in the double-Q′
chiral stripe, the difference becomes smaller for larger K;
they are almost degenerate for K  J̃ within the numerical
accuracy. This is because the energy loss in the K term for
the coplanar double-Q state is almost similar to that for the
double-Q′ chiral stripe when taking b ≈ 1. The situation is
in contrast to the triangular lattice case. The energy loss
in the K term for the triple-Q nsk = 2 Skyrmion crystal is
given by (K/6)(1 − 4η) in Eq. (54), which is smaller than
(K/4)(1 − 4η) for the double-Q′ chiral stripe and coplanar
double-Q states. Moreover, from the numerical simulations,
we find that the effect of higher harmonics in the coplanar
double-Q state, mainly from ±Q1 ± 2Q2 and ±3Q1, becomes
larger compared to that in the double-Q′ chiral stripe. Thus,
the coplanar double-Q state is not stabilized in the effective
model in Eq. (30) on the square lattice, and hence, there is no
second transition for this case.

V. COMPARISON TO ITINERANT MODEL

So far, we have investigated the phase diagram of the spin
model in Eq. (30), which we propose as the effective model
for the Kondo lattice model in Eq. (1) in the small J region.
In this section, we examine the validity of the effective model
by comparing the obtained phase diagrams with those by the
direct calculations for the Kondo lattice model.

A. Variational calculations

In order to confirm the validity of the effective spin model
obtained from the perturbative argument, we examine the
ground state of the original Kondo lattice model in Eq. (1).
We here perform a variational calculation as follows: we
compare the grand potential at zero temperature � = E − μne

for variational states with different magnetic orders in the
localized spins, where E = 〈H〉/N is the internal energy per
site, and ne = ∑

iσ 〈c†iσ ciσ 〉/N is the electron density. For the
variational states, we assume the spin configurations given
in Eqs. (13), (38), and (39) with the same wave numbers
used in the effective spin model. In the double-Q′ state in
Eq. (38), we deal with b as the variational parameter. For
comparison, we also calculate the grand potential for the
ferromagnetic state, which is expected for large J by the
double-exchange mechanism [34,35]; the spin configuration
is given by Si = (0,0,1). We consider these variational states
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FIG. 11. (a) J dependences of the grand potential for the ferro-
magnetic state (F) and the double-Q′ chiral stripe (2Q′) measured
from that for the single-Q helical state (1Q) on the square lattice at
t3 = −0.5 and μ = 0.98. (b) J dependences of the grand potential for
the ferromagnetic state (F), the double-Q′ chiral stripe (2Q′), and the
triple-Q nsk = 2 Skyrmion crystal (3Q) measured from that for the
single-Q helical state (1Q) on the triangular lattice at t3 = −0.85 and
μ = −3.5. The inset of each figure shows the enlarged view for the
small J region. The vertical lines in (b) represent the phase boundary
between the 2Q′ and 3Q states.

in the system with N = 4802 under the periodic boundary
conditions.

Figure 11(a) shows J dependences of the grand potential
at t3 = −0.5 and μ = 0.98 on the square lattice for the
ferromagnetic state and the double-Q′ chiral stripe measured
from that for the single-Q helical state. Similar calculations
were done in Ref. [25]. The results are consistent with those
obtained in the effective spin model in Sec. IV. The grand
potential for the double-Q′ chiral stripe state is lower than that
for the single-Q helical state as well as the ferromagnetic state
for J > 0 [see also the inset of Fig. 11(a) for small J ].

The results for the triangular lattice are also consistent
with those for the effective spin model. Figure 11(b) shows
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J dependences of the grand potential at t3 = −0.85 and
μ = −3.5 measured from that for the single-Q helical state.
The double-Q′ chiral stripe becomes the lowest-energy state
for 0 < J � 0.11, while the triple-Q nsk = 2 Skyrmion crystal
state replaces it for J � 0.11.

Thus, for both square and triangular lattice cases, the
variational calculations indicate that the multiple-Q states are
stable for nonzero J in the Kondo lattice model. The sequence
of the phases is consistent with that in the effective spin model
in Eq. (30) shown in Figs. 7(c) and 9(c). The results strongly
support that the effective model captures the instabilities
toward the multiple-Q states inherent to the Kondo lattice
model.

B. Higher-order corrections

Our effective spin model in Eq. (30) includes the two
contributions inferred from the perturbative expansion of
the Kondo lattice model in terms of J . One is the bilinear
J̃ term, which represents the expansion terms favoring a
single-Q helical order; the dominant contribution is from the
second-order RKKY interaction in Eq. (9). The other is the
biquadratic K̃ term, which represents the expansion terms
favoring a multiple-Q noncoplanar order; the most dominant
contribution is in the fourth-order terms, Eq. (18). On the other
hand, as discussed in Sec. II E, each term in the dominant
contributions in the expansion, (SQν

· S−Qν
)n [Eq. (27) and

Fig. 6], diverges in the low-temperature limit, even though the
sum up to infinite order in Eq. (29) converges. To reinforce
the validity of our effective model that formally includes
only the terms with n = 1 and 2, we here show that the infinite
sum in Eq. (29) does not change the qualitative phase diagram
on the square and triangular lattices obtained in Sec. IV.

Figure 12 shows J dependences of −F(Q,−Q)/(2J 2) in
Eq. (29) for the single-Q helical and the double-Q′ chiral
stripe on the square lattice [Fig. 12(a)], and for the single-Q
helical, the double-Q′ chiral stripe, and the triple-Q nsk = 2
Skyrmion crystal on the triangular lattice [Fig. 12(b)]. The
parameters are taken to be the same as Fig. 11. For comparison,
we also plot the −(� − �(0))/(2J 2) obtained by the variational
calculations, where �(0) represents the grand potential for
J = 0. As shown in Fig. 12, the free energy, including the
higher-order dominant contributions, also reproduces well
the phase diagrams on both square and triangular lattices.
The agreement supports the validity of our effective model,
including only the bilinear and biquadratic interactions in
momentum space.

VI. EFFECT OF MAGNETIC FIELD

We have found that the effective spin model in Eq. (30)
captures the magnetic instability in the Kondo lattice model
in Eq. (1). The effective model is useful for exploration of
further exotic magnetic orderings, as its simplicity allows us to
bypass laborious calculations necessary for itinerant electron
models. In this section, we extend our study to construct
the magnetic phase diagram by incorporating the effect of
an external magnetic field on the effective spin model. For
this purpose, by adding the Zeeman coupling term to the
Hamiltonian in Eq. (30), we consider the Hamiltonian given

(a)
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FIG. 12. Comparison between the free energy obtained from
Eq. (29) at T = 10−5 (closed symbols) and the grand potential at
T = 0 by the variational calculations (open symbols): (a) the single-Q
helical state (1Q) and the double-Q′ chiral stripe (2Q′) on the square
lattice (t3 = −0.5 and μ = 0.98) and (b) the single-Q helical state,
the double-Q′ chiral stripe, and the triple-Q nsk = 2 Skyrmion crystal
(3Q) on the triangular lattice (t3 = −0.85 and μ = −2.5).

by

H = 2
∑

ν

[−J̃SQν
· S−Qν

+ K̃
(
SQν

· S−Qν

)2] − H
∑

i

Sz
i .

(56)

We discuss the magnetic phase diagrams under the magnetic
field on the square lattice in Sec. VI A and the triangular lattice
in Sec. VI B.

A. Square lattice

Figure 13 shows the K-H phase diagram for the model
in Eq. (56) on the square lattice obtained by our Monte
Carlo simulations. We find four different phases other than
the fully polarized state in a large magnetic field. The phase
boundaries are determined by analyzing the structure factors
from Eqs. (31)–(36). All the phases show no net scalar
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FIG. 13. Phase diagram for the model in Eq. (56) on the
square lattice with Q1 = (2π/6,2π/6) and Q2 = R(π/2)Q1. The spin
configuration in each phase is shown in Fig. 14. The phase diagram
at H = 0 coincides with that in Fig. 7(c).

chirality. In what follows, we describe the details of each phase
one by one. We also discuss the magnetization processes.

a. Double-Q′ chiral stripe I (2Q′-I). This phase occupies a
region at low H and K . The spin configuration is characterized
by the double-Q noncoplanar modulation with different
intensities, similar to the double-Q′ chiral stripe at H = 0
discussed in Fig. 8, but the magnetic field breaks the O(3)
symmetry in the present state; see the typical spin configuration
in Fig. 14(a). The xy component of the spin structure factor
has a single-Q peak at Q1, while the z component exhibits
two peaks at Q1 and Q2 with different intensities, as shown
in Fig. 14(a). The chirality structure factor shows a single-Q
peak at Q2, similar to the double-Q′ chiral stripe at H = 0.

b. Double-Q′ chiral stripe II (2Q′-II). This state appears
next to the double-Q′ chiral stripe I phase with increasing
K , and occupies the low-H and high-K region of the phase
diagram in Fig. 13. The spin configuration also resembles a
double-Q′ chiral stripe state at H = 0 in Fig. 8, whereas not
only z but also xy components of the spin structure factor are
characterized by the double-Q peak structure in the present
case, as shown in Fig. 14(b). On the other hand, the chirality
structure factor shows a single-Q peak at Q2, similar to the
chiral stripe at H = 0. The transition from the double-Q′ I to
II is presumably caused by the tendency that larger K favors a
larger amplitude of the double-Q components, as already seen
in the absence of H , as shown in Fig. 7(a).

c. Single-Q conical state (1Q). This state appears next
to the double-Q′ chiral stripe I phase with increasing H

and occupies a region at higher H and lower K . This
is a single-Q conical state, whose spin configuration is
given by Si = (sin θ cos Qν · ri , sin θ sin Qν · ri , cos θ ) with
θ = cos−1(H/Hsat) where Hsat = 2J̃ , independent of the value
of K [see Fig. 14(c)]. We note that the conical state is realized
even at K = 0, where the model is reduced to a frustrated
Heisenberg model in a magnetic field. With increasing H , the
conical angle θ becomes smaller, and this phase continuously

changes into the fully polarized state at H = 2, as shown in
Fig. 13.

d. Double-Q state (2Q). This phase occupies the largest
portion of the phase diagram in Fig. 13, which is found next
to the single-Q conical state upon increasing K . The spin
configuration is similar to the double-Q state in Eq. (55),
although the present state shows a noncoplanar spin structure
by spin canting along the magnetic field direction. It consists
of a periodic array of vortices and antivortices, as shown in
Fig. 14(d). The xy component of the spin structure factor
shows the double-Q peaks with equal intensities, while the
z components are negligibly small, except for a large peak
at q = 0 from the net moment induced by the magnetic field
[omitted in Fig. 14(d) for clarity]. With increasing H , the phase
continuously changes into the fully polarized state at H = 2,
as the single-Q conical state. Note that this double-Q state
is also similar to the one reported on the triangular lattice in
classical [36] and quantum [37,38] magnets.

e. Magnetization curves. Figure 15 shows the magneti-
zation curves at several K . The magnetization is given by
M = mq=0 = √

Ss(q = 0)/N [see Eq. (34)]. For infinitesimal
H , the magnetization becomes nonzero and continuously
increases while increasing H irrespective of K . This indicates
continuous phase transitions at H = 0. With a further increase
of H , the magnetization shows a continuous change between
the double-Q′ chiral stripe I and the single-Q conical state for
a small K and between the double-Q′ chiral stripes I, II and
the double-Q state for a large K . The result indicates that the
transition is of second order, although a more careful finite-size
scaling is required to settle this point, especially in the large K

region. While further increasing H , the magnetizations in both
single-Q conical and double-Q states smoothly approach the
saturation value M = 1 in the fully-polarized state at H = 2.

B. Triangular lattice

Figure 16 shows the H -K phase diagram for the triangular
lattice case, which consists of six phases in addition to the
fully polarized state for H � 2. We describe the details of
each phase in what follows. The real-space spin configuration
and the spin and chirality structure factors for each phase are
shown in Fig. 17. We also discuss the magnetization curves
and the net scalar chirality.

a. Triple-Q′ chiral stripe I (3Q′-I). This phase appears
next to the double-Q′ chiral stripe at H = 0 and occupies a
low-H and low-K region. In this phase, the z component of
the spin structure factor has a single-Q peak at Q3, while the
xy component exhibits two peaks at Q1 and Q2 with different
intensities, as shown in Fig. 17(a). Meanwhile, the chirality
structure factor shows a single-Q peak at Q3.

b. Triple-Q nsk = 2 Skyrmion crystal (3Q with nsk = 2).
This phase evolves from the H = 0 state with spin canting
in the field direction and occupies a higher-K region next to
the triple-Q′ chiral stripe I state at low H . The xy component
of the spin structure factor exhibits two dominant peaks and
a single subdominant peak, while the z component shows a
single dominant peak and two subdominant peaks, as shown
in Fig. 17(b). The amplitudes of the total spin structure factor
at Q1, Q2, and Q3 are equivalent to each other.
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FIG. 14. (Leftmost) Snapshots of the spin configurations in (a) double-Q′ chiral stripe I (2Q′-I) for K = 0.1 and H = 0.2, (b) double-Q′

chiral stripe II (2Q′-II) for K = 0.4 and H = 0.2, (c) single-Q conical state (1Q) for K = 0.1 and H = 1.0, and (d) double-Q state (2Q)
for K = 0.4 and H = 1.0, for Q1 = (2π/6,2π/6) and Q2 = R(π/2)Q1. The contour shows the z component of the spin moment. The yellow
squares in (a), (b), (d) and rectangle in (c) represent the magnetic unit cells in each case. (Middle left and right) The square root of the xy and
z components of the spin structure factor, respectively. Note that the q = 0 component is removed from Szz

s (q) to clearly show the structures
other than q = 0. (Rightmost) The square root of the chirality structure factors. In the right three columns, the squares with a solid line show
the first Brillouin zone.

c. Triple-Q′ chiral stripe II (3Q′-II). This phase occupies
a slightly high-H region of the triple-Q nsk = 2 Skyrmion
crystal, as shown in Fig. 16. The spin configuration shown
in Fig. 17(c) resembles that in the triple-Q′ chiral stripe I
phase shown in Fig. 17(a): it is characterized by the double-Q
modulation in the xy component and the single-Q modulation
in the z component of the spin structure factor. The difference is
in the peak intensities of the xy component: the two peaks have
equal weights in the triple-Q′ chiral stripe II phase, while they

are different in the triple-Q′ chiral stripe I phase. In the entire
region of this phase, the amplitudes of the two peaks in the xy

component are almost the same as that of the single peak in the
z component, but the latter is slightly larger than the former.

d. Triple-Q nsk = 1 Skyrmion crystal (3Q with nsk = 1).
This phase is another type of crystallization of Skyrmions,
which has been found in chiral and frustrated magnets
[8,14–17,39,40]. It occupies a large portion of the
intermediate-H region, for a slightly larger H than the triple-

224424-14



EFFECTIVE BILINEAR-BIQUADRATIC MODEL FOR . . . PHYSICAL REVIEW B 95, 224424 (2017)

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 0.0  0.5  1.0  1.5  2.0

FIG. 15. Magnetization curves for K = 0.10, 0.22, 0.40, and 0.80.

Q′ chiral stripe II. Figure 17(d) shows a typical real-space spin
configuration in the Skyrmion crystal. The Skyrmion cores
drawn by the blue regions form a triangular lattice with the
lattice constant 4π/(

√
3|Qν |). The spin structure factors have

six peaks with equal intensities, as shown in Fig. 17(d), which
indicates the presence of the C6 symmetry. This phase also
accompanies a uniform net scalar chirality, which is around
half of that in the triple-Q nsk = 2 Skyrmion crystal; this
phase is characterized by the topological number nsk = 1.
The remarkable point of this Skyrmion crystal is that it is
stable even at T = 0. This is in contrast to the similar state
obtained for a localized spin model with isotropic Heisenberg
interactions [14], which exists only at nonzero temperature
and is replaced with the single-Q conical ordering at low
temperature. It is also worth noting that the Skyrmion crystal
state obtained here shows the degeneracy with respect to the

 0.0
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FIG. 16. Phase diagram for the model in Eq. (56) on the
triangular lattice with Q1 = (2π/6,0), Q2 = R(2π/3)Q1, and Q3 =
R(4π/3)Q1. The spin configuration in each phase is shown in Fig. 17.
The phase diagram at H = 0 coincides with that in Fig. 9(c).

chiral symmetry as well as the rotational symmetry along the
z axis, in contrast to the similar state in the Heisenberg model
with the DM interaction [16].

e. Triple-Q′ chiral stripe III (3Q′-III). This phase appears
next to the triple-Q nsk = 1 Skyrmion crystal upon increasing
H and occupies the largest portion of the phase diagram in
Fig. 16. The spin configuration resembles that in the triple-
Q′ chiral stripe II state, while the xy component of the spin
structure factor shows a small peak at Q1 − Q2, as shown in
Fig. 17(e). This phase is similar to that found in the Kondo
lattice model at a high field in Ref. [28].

f. Triple-Q′ chiral stripe IV (3Q′-IV). This phase occupies
a high-H and high-K region of the phase diagram in Fig. 16,
next to the triple-Q′ chiral stripe III. In this phase, the spin
configuration is also characterized by the triple-Q modulation:
the xy component of the spin structure factor has two dominant
peaks with additional four subdominant peaks, while the z

component shows four dominant peaks, as shown in Fig. 17(f).
g. Magnetization curve and net scalar chirality.

Figure 18(a) shows the magnetization curve for several
values of K . As in the square lattice case in Fig. 15,
the magnetization becomes nonzero for infinitesimal H and
continuously increases while increasing H irrespective of K ,
which indicates a continuous phase transition at H = 0. While
further increasing H , the magnetization jump appears between
the triple-Q nsk = 2 Skyrmion crystal and the triple-Q′ chiral
stripe II. The similar magnetization jumps are found in phase
boundaries between the triple-Q nsk = 1 Skyrmion crystal and
the triple-Q′ chiral stripe II and III. Thus, for K = 0.1, two
jumps in the magnetization are found at H � 0.5 and 1.0,
whereas three jumps are found for K = 0.4 and 0.8, at H �
0.15, 0.30, 0.95 and H � 0.15, 0.35, 0.95, respectively, as
shown in Fig. 18(a). Other phase transitions, e.g., between the
triple-Q′ chiral stripe and fully polarized state are continuous.

On the other hand, Fig. 18(b) shows H dependence of
the net scalar chirality for the same set of K . The net scalar
chirality is given by χ sc = (1/N )

∑
R∈μ=(u,d) χ

sc
R , where μ =

(u,d) represent upward and downward triangles, respectively.
As shown in Fig. 18(b), there are two phases which show
the net scalar chirality, the triple-Q nsk = 2 Skyrmion crystal
stabilized in the low-H region and the triple-Q nsk = 1
Skyrmion crystal in the intermediate H region. In both phases,
the scalar chirality is almost independent of H , while it changes
discontinuously at their phase boundaries.

C. Comparison to the Kondo lattice model

Let us compare our results with the previous studies in the
Kondo lattice model. In Ref. [28], the Kondo lattice model on
the triangular lattice was studied in an applied magnetic field.
They found the phase sequence from the triple-Q nsk = 2
Skyrmion crystal, the triple-Q nsk = 1 Skyrmion crystal, the
triple-Q′ chiral stripe III (3Q′-III), and to the fully polarized
state while increasing H . A similar sequence is found in
our result in the region 0.37 � K � 0.53 in Fig. 16. The
only difference is that the triple-Q chiral stripe II appears
between the triple-Q′ nsk = 2 Skyrmion crystal and the triple-
Q nsk = 1 Skyrmion crystal in our results. A possible reason
for this discrepancy is due to the lack of the effect of the
magnetic field on the Green’s function in our effective model,
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FIG. 17. (Leftmost) Snapshots of the spin configurations in (a) triple-Q′ chiral stripe I (3Q′-I) for K = 0.1 and H = 0.2, (b) triple-Q
nsk = 2 Skyrmion crystal for K = 0.4 and H = 0.2, (c) triple-Q′ chiral stripe (3Q′-II) for K = 0.6 and H = 0.2, (d) triple-Q nsk = 1 Skyrmion
crystal for K = 0.6 and H = 0.8, (e) triple-Q′ chiral stripe (3Q′-III) for K = 0.6 and H = 1.2, and (f) triple-Q′ chiral stripe (3Q′-IV) for
K = 1.0 and H = 1.6, for Q1 = (2π/6,0), Q2 = R(2π/3)Q1, and Q3 = R(4π/3)Q1. The contour shows the z component of the spin moment.
The yellow hexagons show the magnetic unit cells. (Middle left and middle) The square root of the xy and z components of the spin structure
factor, respectively. Note that the q = 0 component is removed from Szz

s (q) to clearly show the peaks at q �= 0. (Middle right and rightmost)
The square root of the chirality structure factors for up and down triangles, respectively. In the right four columns, the hexagons with a solid
line show the first Brillouin zone.
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FIG. 18. (a) Magnetization curves and (b) the net scalar chirality
for K = 0.1, 0.4, and 0.8.

which gives rise to the spin-dependent interaction via the
Zeeman coupling in Eq. (56). Among them, the third-order
contributions with respect to J arise in a nonzero H , and
may prefer the triple-Q Skyrmion crystals to the triple-Q
chiral stripe; see Appendix B. Another possibility is the charge
degree of freedom in the Kondo lattice model. In our effective
spin model, it is implicitly assumed that the electron density
is unchanged for the magnetic field, while the results in the
Kondo lattice model were calculated for a fixed chemical
potential [28]. Such a field dependence of the electron density
may result in the discrepancy.

Meanwhile, for the square lattice case, the phase transition
from the double-Q′ chiral stripe to the double-Q state was
found in the Kondo lattice model while increasing H in
Ref. [41]. This corresponds to the region for 0.27 � K in
our effective spin model. This agreement supports the validity
of our effective model.

Although a detailed comparison is left for future study,
we stress that our effective model reproduces well the exotic
magnetic phases found in the Kondo lattice model. The
effective spin model will be useful to explore further exotic

phases with smaller computational efforts compared to those
for itinerant electron models.

VII. SUMMARY AND CONCLUDING REMARKS

To summarize, we have constructed an effective spin model
for describing magnetic instabilities in itinerant magnets.
Taking one of the fundamental models for itinerant magnets,
the Kondo lattice model, and carefully examining the spin
scattering processes by the perturbation in terms of the spin-
charge coupling, we proposed a simple model which includes
the bilinear and biquadratic interactions with particular wave
numbers dictated by the Fermi surface. The bilinear interaction
has the same form as the RKKY interaction and prefers a
helical magnetic order specified by a single wave number.
On the other hand, the biquadratic interaction, which is
deduced from the dominant contributions in the higher-order
perturbations, causes an instability toward noncollinear or
noncoplanar ordering specified by multiple wave numbers. We
have tested the validity of the effective model by calculating
the ground-state phase diagrams by Monte Carlo simulation
and comparing the results with those for the Kondo lattice
model. The comparison on square and triangular lattices shows
a good agreement with the previous findings in the Kondo
lattice model [25,28]: we have demonstrated that our effective
spin model reproduces the noncoplanar double-Q instability
in both square and triangular lattice cases and the triple-Q
Skyrmion with a topological number of 2 in the triangular
lattice case. The good agreement indicates that our effective
model captures the underlying mechanism of the magnetic
instabilities toward noncollinear and noncoplanar orderings
in itinerant magnets: the key ingredient is the competition
between bilinear and biquadratic interactions in momentum
space.

We have also extended our study by introducing the external
magnetic field to our effective spin model. The simplicity of
the model allows us to systematically investigate the magnetic
phase diagram by much smaller computational costs compared
to the original Kondo lattice model. In addition to the phases
already found in the previous studies for the Kondo lattice
model [28], we found several new phases in an applied
magnetic field. The results demonstrate the efficiency of our
model for further exploration of exotic magnetic phases in
itinerant magnets.

Our effective spin model is constructed on the basis of
a fundamental property of the spin-charge coupled system:
multiple peaks in the bare susceptibility whose wave numbers
are related with the lattice symmetry. As this is commonly seen
in all the centrosymmetric lattices, not only in two dimensions
but also in three dimensions, we believe that our model is
applicable to a wide class of itinerant magnets. In particular,
the instability toward noncollinear and noncoplanar orderings
induced by the effective biquadratic interaction will be a
universal feature irrespective of the details of the system. Also,
we note that our effective spin model can be easily extended
to more complicated situations by including, e.g., anisotropic
interactions, single-ion anisotropy, and dipole-dipole interac-
tions. Such extensions will be helpful to investigate and revisit
unconventional magnetic phase diagrams from a viewpoint
beyond the RKKY mechanism.
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Finally, let us comment on candidate materials whose
magnetic properties might be described by our spin model.
One of the candidates is a two-dimensional monolayer system
showing a noncoplanar magnetic structure [42–45]. It is
also interesting to clarify the origin of multiple-Q magnetic
orderings in three-dimensional compounds by our spin model:
a scandium thiospinel MnSc2S4 showing a triple-Q vortex
crystal under an external magnetic field [46], a rare-earth
borocarbide GdNi2B2C showing a double-Q ordering in the
wide range of field-temperature phase diagram [47], and a
strontium iron perovskite oxide SrFeO3, exhibiting several
phases depending on magnetic field and temperature [48].
Interestingly, the transport measurements for SrFeO3 imply
that the phases include multiple-Q states in spite of the
negligibly small contribution of the spin-orbit coupling. Our
model will make a significant contribution to understanding
these exotic magnetisms. A detailed comparison will be left
for future study.
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APPENDIX A: SINGULARITY OF FOURTH-ORDER
GREEN’S FUNCTIONS

In this Appendix, we discuss the singular behavior of
fourth-order Green’s functions when approaching T → 0.
For simplicity, we consider the situation with a circular-type
Fermi surface at t3 = 0 and μ = −3.0 on the square lattice
where multiple maxima in the bare susceptibility appear
at Q1 = ±(2π/6,0) and Q2 = ±(0,2π/6). Figure 19 shows
temperature dependences of each contribution in Eqs. (22)–
(26). Similar to the results in Fig. 5, the coefficient A2

becomes dominant compared to other coefficients in the
low-temperature limit. In fact, we find that the coefficient A2

diverges as T −1.5, while A1, B1, and B2 (B3) diverge as T −1

(T −0.5).
Such a divergent behavior is partly understood from the

asymptotic form of each coefficient determined by the energy
dispersions near the Fermi level. For example, the asymptotic
form of A2 is evaluated by [26]

A2(T ) ∝
∑

k

d3f (ε)

dε3
. (A1)

For t3 = 0 and μ = −3.0, the singularity of A2(T ) is given
by T −1.5, since the Fermi surface is approximately given
by a quadratic function of k at the ordering wave vectors.
Meanwhile, when the Fermi level lies near the saddle point,
the low-energy dispersion relation is approximately described
by a quadratic function of the wave number, which results in
A2(T ) ∝ T −2.

FIG. 19. Temperature dependences of the coefficients in
Eqs. (22)–(26) at (a) t3 = 0 and μ = −3.0 on the square lattice. The
data are calculated for the system size N = 12002 and the number of
Matsubara frequency 104.

APPENDIX B: THIRD-ORDER EFFECTIVE MAGNETIC
INTERACTIONS IN A MAGNETIC FIELD

In this Appendix, we show the expression of the third-
order magnetic interactions, which appears under the external
magnetic field. By substituting q = Q1, Q2, and Q3 in the

FIG. 20. Feynman diagrams for the coefficients C1, C2, C3, C4,
C5, C6, D1, D2, D3, and D4 in the third-order contributions. See
Eqs. (B7)–(B16).
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expansion of the free energy in Eq. (5), we obtain the third-
order contributions, which are given by

F (3) = F
(3)
1 + F

(3)
2 + F

(3)
3 + F

(3)
4 + F

(3)
5 , (B1)

F
(3)
1 = − 2

J 3

√
N

∑
ν

(C1 − C2)

× [
Sz

Qν

(
Sx

0 Sx
−Qν

+ S
y

0 S
y

−Qν

) + H.c.
]
, (B2)

F
(3)
2 = − 2

J 3

√
N

∑
ν

(C3 − C4)

× [
Sz

0

(
Sx

Qν
Sx

−Qν
+ S

y

Qν
S

y

−Qν

) + H.c.
]
, (B3)

F
(3)
3 = −2

J 3

√
N

∑
ν

(C5 − C6)Sz
0S

z
Qν

Sz
−Qν

, (B4)

F
(3)
4 = − 2

J 3

√
N

(D1 − D2)
[
Sz

Q1

(
Sx

Q2
Sx

Q3
+ S

y

Q2
S

y

Q3

) + H.c.
]

+ (Q1 → Q2,Q2 → Q3,Q3 → Q1)

+ (Q1 → Q3,Q2 → Q1,Q3 → Q2), (B5)

F
(3)
5 = −2

J 3

√
N

(D3 − D4)
[
Sz

Q1
Sz

Q2
Sz

−Q3
+ H.c.

]
, (B6)

where H.c. represents the Hermitian conjugate. The coeffi-
cients are represented by

C1 = T

N

∑
k,ωp

Gk↑Gk↓Gk+Qν↑, (B7)

C2 = T

N

∑
k,ωp

Gk↑Gk↓Gk+Qν↓, (B8)

C3 = T

N

∑
k,ωp

G2
k↑Gk+Qν↓, (B9)

C4 = T

N

∑
k,ωp

G2
k↓Gk+Qν↑, (B10)

C5 = T

N

∑
k,ωp

G2
k↑Gk+Qν↑, (B11)

C6 = T

N

∑
k,ωp

G2
k↓Gk+Qν↓, (B12)

D1 = T

N

∑
k,ωp

Gk↓Gk+Qν↑Gk−Qν′ ↑, (B13)

D2 = T

N

∑
k,ωp

Gk↑Gk+Qν↓Gk−Qν′ ↓, (B14)

D3 = T

N

∑
k,ωp

Gk↑Gk+Qν↑Gk−Qν′ ↑, (B15)

D4 = T

N

∑
k,ωp

Gk↓Gk+Qν↓Gk−Qν′ ↓, (B16)

where C1 to C6 represent the scattering processes by a single-Q
wave number, while D1 to D4 the scattering processes by
multiple-Q wave numbers. Each contribution is expressed by
the diagram in Fig. 20. We may need to take into account these
terms in the effective spin model in a nonzero field, which is
left for future study.
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