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The spin- 1
2 Heisenberg octahedral chain with regularly alternating monomeric and square-plaquette sites is

investigated using various analytical and numerical methods: variational technique, localized-magnon approach,
exact diagonalization (ED), and density-matrix renormalization group (DMRG) methods. The model belongs to
the class of flatband systems and it has a rich ground-state phase diagram including phases with spontaneously
broken translational symmetry. Moreover, it exhibits an anomalous low-temperature thermodynamics close to
continuous or discontinuous field-driven quantum phase transitions between three quantum ferrimagnetic phases,
tetramer-hexamer phase, monomer-tetramer phase, localized-magnon phase, and two different spin-liquid phases.
If the intraplaquette coupling is at least twice as strong as the monomer-plaquette coupling, the variational method
furnishes a rigorous proof of the monomer-tetramer ground state in a low-field region and the localized-magnon
approach provides exact evidence of a single magnon trapped at each square plaquette in a high-field region. In
the rest of the parameter space we have numerically studied the ground-state phase diagram and magnetization
process using DMRG and ED methods. It is shown that the zero-temperature magnetization curve may involve
up to four intermediate plateaus at zero, one-fifth, two-fifths, and three-fifths of the saturation magnetization,
while the specific heat exhibits a striking low-temperature peak in the vicinity of discontinuous quantum phase
transitions.

DOI: 10.1103/PhysRevB.95.224415

I. INTRODUCTION

Quantum phase transitions belong to the most notable
manifestations of low-dimensional quantum spin systems,
which can be achieved upon variation of some external
force such as, for instance, magnetic field, and mechanical
or chemical pressure (doping) [1]. The quantum Heisenberg
model exhibits a great diversity of unconventional quantum
orders such as topologically ordered Haldane-type phases [2]
or dimerized states with an outstanding valence-bond-crystal
order [3,4]. Among the most notable disordered quantum
states without any local order parameter one could further
mention resonating-valence-bond phases [5] or other types
(e.g., Tomonaga-Luttinger) of quantum spin liquids [6–8]. A
great variety of exotic quantum ground states can be found
first of all in frustrated Heisenberg spin models due to a
mutual interplay between quantum effects with a geometric
spin frustration [9–11].

The dimerized states with a valence-bond-crystal order are
historically the most famous ground states of the frustrated
spin- 1

2 Heisenberg models, which arise from an effort of
antiferromagnetically coupled spins to create a singlet dimer
(valence bond). Although the full exact solution of the
Heisenberg spin models is usually beyond the scope of present
knowledge, the variational principle provides an efficient tool
for a rigorous determination of the dimerized ground states
for a few paradigmatic examples such as the Majumdar-
Ghosh model [12,13], the Shastry-Sutherland model [14], the
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frustrated ladder [15–18], etc. However, the usage of varia-
tional arguments is regrettably restricted mostly to the highly
frustrated parameter region and low magnetic fields, while the
Heisenberg spin systems often display spectacular quantum
ground states also outside of this parameter space. For instance,
the spin- 1

2 Heisenberg diamond chain [19] and diamondlike
decorated planar lattices [20–22] exhibit at moderate values
of the spin frustration a peculiar tetramer-dimer ground state
with spontaneously broken symmetry before they finally enter
the monomer-dimer ground state predicted by the variational
method in the highly frustrated region.

On the other hand, in flatband quantum spin systems
the concept of localized magnons [23] affords a powerful
tool for a rigorous assignment of quantum ground states
of the geometrically frustrated Heisenberg spin models at
sufficiently high magnetic fields (see Refs. [24–26] for recent
reviews and Refs. [27–33] for other flatband systems). This
technique can be employed whenever destructive quantum
interference traps magnon(s) within cells with an even number
of bonds and hence, the frustrated quantum Heisenberg model
can be exactly mapped onto a classical lattice-gas model
with a hard-core potential [24–26]. Using this approach,
the microscopic nature of the last intermediate plateau in a
zero-temperature magnetization curve of the quantum spin- 1

2
Heisenberg kagome lattice has been, for instance, elucidated
along with the precise nature of a relevant second-order
phase transition emerging at low but nonzero tempera-
tures [24]. The main advantage of the localized-magnon
approach lies in that it also provides, besides an exact ground
state, accurate description of low-temperature thermodynam-
ics due to a proper counting of low-lying excited states
[24–26].
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FIG. 1. A diagrammatic representation of the spin- 1
2 Heisenberg

octahedral chain. Thick (blue) lines represent the Heisenberg in-
traplaquette coupling J2, while thin (red) lines correspond to the
monomer-plaquette coupling J1.

In the present work we will explore ground states, quantum
phase transitions, and low-temperature thermodynamics of
the quantum spin- 1

2 Heisenberg octahedral chain, in which
quantum spins placed at monomeric sites regularly alternate
with the ones residing in square plaquettes (see Fig. 1).
The proposed model belongs to a valuable class of the
frustrated quantum Heisenberg models, which satisfy a local
conservation of the total spin on square plaquettes. From this
point of view, the spin- 1

2 Heisenberg octahedral chain is quite
reminiscent of the spin- 1

2 Heisenberg diamond chain, which
has been thoroughly investigated in relation to the frustrated
magnetism of several copper-based magnetic compounds such
as Cu3(CO3)2(OH)2 [34,35] and A3Cu3AlO2(SO4)4 (A = K,
Rb, and Cs) [36,37]. Apart from a few exact results to
be obtained within the variational and localized-magnon
approaches, the spin- 1

2 Heisenberg octahedral chain can be
rigorously mapped onto effective mixed-spin Heisenberg
chains by following the approach developed previously by
Honecker et al. [16,17]. The DMRG simulations of the
effective mixed-spin Heisenberg chains thus afford for the
spin- 1

2 Heisenberg octahedral chain precise numerical results,
which will be additionally corroborated through the exact
diagonalization (ED) calculations.

It is worthwhile to remark that the polynuclear complexes,
which involve quantum spin clusters with a geometric shape
of octahedron as a magnetic core, constitute a relatively
widespread family of compounds within an immense reservoir
of coordination complexes. For illustration, let us quote a
few specific examples of the hexanuclear complexes with
an octahedral architecture of the magnetic core such as
Cu6 [38–41], V6 [42,43], Cr6 [44], Co6 [45], Fe6 [46,47],
Mn6 [48,49], Mo6 [50,51], W6 [52,53], Ru6 [54], Ir6 [55],
and Ta6 [56]. Although we are currently not aware of any
experimental realization of the spin- 1

2 Heisenberg octahedral
chain, we hope that our exciting theoretical findings presented
hereafter could be inspiring for a tailored design of a one-
dimensional polymeric chain of corner-sharing octahedra built
out from discrete hexanuclear entities such as Cu6 [38–41] or
V6 [42,43].

The organization of this paper is as follows. The quantum
spin- 1

2 Heisenberg octahedral chain is introduced in Sec. II
along with basic steps of analytical and numerical methods
used for its treatment. The most interesting results for the
ground-state phase diagram, zero-temperature magnetization
process, and low-temperature thermodynamics are discussed
in Sec. III. Finally, several concluding remarks and future
outlooks are mentioned in Sec. IV.
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FIG. 2. The unit cell of the spin- 1
2 Heisenberg octahedral chain,

which is constituted by a five-spin cluster with the geometric shape
of a square pyramid.

II. HEISENBERG OCTAHEDRAL CHAIN

Let us consider a one-dimensional chain of corner-
sharing octahedra schematically depicted in Fig. 1, which
can be viewed as a generalization of the frustrated diamond
chain [19,34,35] and the double-tetrahedra chain [57–59]. The
Hamiltonian of the quantum spin- 1

2 Heisenberg model defined
upon the underlying octahedral chain is given by

Ĥ =
N∑

j=1

[
J1(Ŝ1,j + Ŝ1,j+1) · (Ŝ2,j + Ŝ3,j + Ŝ4,j + Ŝ5,j )

+ J2(Ŝ2,j · Ŝ3,j + Ŝ3,j · Ŝ4,j + Ŝ4,j · Ŝ5,j + Ŝ5,j · Ŝ2,j )

− h

5∑
i=1

Ŝz
i,j

]
. (1)

Above, Ŝi,j ≡ (Ŝx
i,j ,Ŝ

y

i,j ,Ŝ
z
i,j ) denotes a standard spin- 1

2 op-
erator at a lattice site whose position is unambiguously
determined by two subscripts: the former one specifies a
position within the unit cell and the latter one the unit
cell itself (see Fig. 2). The coupling constant J1 labels
the Heisenberg interaction between nearest-neighbor spins
from monomeric and square-plaquette sites to be further
referred to as the monomer-plaquette interaction, the coupling
constant J2 stands for the Heisenberg interaction between
nearest-neighbor spins from the same square plaquette to be
referred to as the intraplaquette interaction, and the Zeeman’s
term h � 0 accounts for a magnetostatic energy of magnetic
moments in an external magnetic field. For simplicity, the
periodic boundary condition S1,N+1 ≡ S1,1 is imposed. The
Hamiltonian (1) can be attacked by making use of several
complementary analytical and numerical approaches, which
will be dealt with in what follows.

A. Variational method

An exact ground state of the spin- 1
2 Heisenberg octahe-

dral chain can be rigorously found in the highly frustrated
parameter region J2 > 2J1 and low enough magnetic fields
h < J1 + J2 by exploiting the variational principle [14,60–62].
To this end, let us decompose the total Hamiltonian (1) of the
spin- 1

2 Heisenberg octahedral chain into a sum over the cell
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Hamiltonians

Ĥ =
N∑

j=1

1∑
k=0

Ĥj,k, (2)

whereas the cell Hamiltonian Ĥj,k involves the interaction
terms related to a five-spin cluster forming the unit cell with a
geometric shape of a square pyramid (see Fig. 2):

Ĥj,k = J1 Ŝ1,j+k · (Ŝ2,j + Ŝ3,j + Ŝ4,j + Ŝ5,j )

+ J2

2
(Ŝ2,j · Ŝ3,j+Ŝ3,j · Ŝ4,j+Ŝ4,j · Ŝ5,j+Ŝ5,j · Ŝ2,j )

− h

2

5∑
i=1

Ŝz
i,j . (3)

Note that the factor 1
2 in the two latter interaction terms

avoids a double counting of the intraplaquette coupling J2

and the Zeeman’s term h, which are symmetrically split into
two consecutive cell Hamiltonians. The variational procedure
enables one to obtain the lower bound for the ground-state
energy E0 of the spin- 1

2 Heisenberg octahedral chain

E0 = 〈�0|Ĥ|�0〉 = 〈�0|
N∑

j=1

1∑
k=0

Ĥj,k|�0〉 �
N∑

j=1

1∑
k=0

ε0
j,k,

(4)

because the ground-state eigenvector |�0〉 can be alternatively
viewed as a variational function for the five-spin Heisenberg
clusters (Fig. 2). It follows from Eq. (4) that the relevant
ground-state energy E0 must be necessarily greater or equal
to the sum of the lowest-energy eigenenergies of the five-spin
clusters ε0

j,k . The energy spectrum of the five-spin Heisenberg
cluster (Fig. 2) with the geometric arrangement of a square

pyramid can be expressed in terms of five quantum spin
numbers ST,j,k, Sz

T ,j,k, S�,j , S24,j , and S35,j :

εj,k = J1

2
ST,j,k(ST,j,k + 1) +

(
J2

4
− J1

2

)
S�,j (S�,j + 1)

− J2

4
[S24,j (S24,j + 1) + S35,j (S35,j + 1)]

− 3

8
J1 − hSz

T,j,k, (5)

which determine the total spin of the square pyramid ST,j,k and
its z component Sz

T,j,k , the total spin of the square plaquette
S�,j , and the total spin of two spin pairs from opposite corners
of a square plaquette S24,j and S35,j , respectively. It can be
easily checked from Eq. (5) that the lowest-energy eigenstate
of the five-spin Heisenberg cluster in the parameter space
h < J1 + J2 and J2 > 2J1 is a doublet state, which can be
characterized by the quantum spin numbers ST,j,k = |Sz

T,j,k| =
1
2 , S�,j = 0, S24,j = 1, and S35,j = 1. Apparently, the four
spins from each square plaquette are in a singlet-tetramer state
given by the eigenvector

|0,1,1〉j = |S�,j = 0,S24,j = 1,S35,j = 1〉

= 1√
3

(|↑2,j↓3,j↑4,j↓5,j 〉 + |↓2,j↑3,j↓4,j↑5,j 〉)

− 1√
12

(|↑2,j↑3,j↓4,j↓5,j 〉 + |↑2,j↓3,j↓4,j↑5,j 〉

+ |↓2,j↑3,j↑4,j↓5,j 〉 + |↓2,j↓3,j↑4,j↑5,j 〉), (6)

and the spins from the monomeric sites are consequently
decoupled from the other spins. This lowest-energy eigenstate
can be readily extended to the whole spin- 1

2 Heisenberg
octahedral chain, which results in the monomer-tetramer (MT)
ground state

|MT〉 =
N∏

j=1

|↑1,j 〉 ⊗
[

1√
3

(|↑2,j↓3,j↑4,j↓5,j 〉 + |↓2,j↑3,j↓4,j↑5,j 〉) − 1√
12

(|↑2,j↑3,j↓4,j↓5,j 〉 + |↑2,j↓3,j↓4,j↑5,j 〉

+ |↓2,j↑3,j↑4,j↓5,j 〉 + |↓2,j↓3,j↑4,j↑5,j 〉)
]
. (7)

To conclude this part, the spin- 1
2 Heisenberg octahedral chain

exhibits the exact MT ground state in the low-field part h <

J1 + J2 of the highly frustrated parameter region J2 > 2J1,
where four spins from each square plaquette form a singlet-
tetramer state and the spins from the monomeric sites are fully
aligned into the magnetic field or they are completely free to
flip in a zero field. With regard to the perfect alignment of all
monomeric spins, the MT ground state should manifest itself as
the intermediate one-fifth plateau present in a zero-temperature
magnetization curve within the field range h ∈ (0,J1 + J2).

B. Localized-magnon approach: Ground state

It is quite clear that the lowest-energy eigenstate of the spin-
1
2 Heisenberg octahedral chain at sufficiently high magnetic
fields exceeding the saturation value is the fully polarized

ferromagnetic (FM) state

|FM〉 =
N∏

j=1

|↑1,j↑2,j↑3,j↑4,j↑5,j 〉 (8)

with the energy eigenvalue EFM = E0
FM − 5N

2 h, E0
FM =

N (2J1 + J2) is the respective zero-field energy. It will be
demonstrated hereafter that the concept of independent local-
ized magnons [25,26] can be employed in the highly frustrated
region J2 > 2J1 for a rigorous assignment of the saturation
field and the exact ground state emerging below the saturation
field. The one-magnon eigenstates can be constructed within
the orthonormal basis set |i,j 〉 = Ŝ−

i,j |FM〉 (i = 1 − 5, j =
1 − N ) belonging to the sector Sz

T = 5N
2 − 1 with a single

spin deviation from the fully polarized FM state. Applying the
zero-field part of the Hamiltonian (1) within the given basis

224415-3



JOZEF STREČKA et al. PHYSICAL REVIEW B 95, 224415 (2017)

leads to the following set of equations:

Ĥ|1,j 〉 = (
E0

FM − 4J1
)|1,j 〉 + J1

2

5∑
i=2

(|i,j − 1〉 + |i,j 〉),

Ĥ|2,j 〉 = (
E0

FM − J1 − J2
)|2,j 〉 + J1

2
(|1,j 〉 + |1,j + 1〉) + J2

2
(|3,j 〉 + |5,j 〉),

Ĥ|3,j 〉 = (
E0

FM − J1 − J2
)|3,j 〉 + J1

2
(|1,j 〉 + |1,j + 1〉) + J2

2
(|2,j 〉 + |4,j 〉), (9)

Ĥ|4,j 〉 = (
E0

FM − J1 − J2
)|4,j 〉 + J1

2
(|1,j 〉 + |1,j + 1〉) + J2

2
(|3,j 〉 + |5,j 〉),

Ĥ|5,j 〉 = (
E0

FM − J1 − J2
)|5,j 〉 + J1

2
(|1,j 〉 + |1,j + 1〉) + J2

2
(|2,j 〉 + |4,j 〉),

which can be used for solving the eigenvalue problem Ĥ|�k〉 = E0
k |�k〉 in a zero field within the one-magnon sector by assuming

|�k〉 = ∑5
i=1

∑N
j=1 ci,κe

iκj |i,j 〉. The solution of the eigenvalue problem follows from the characteristic equation∣∣∣∣∣∣∣∣∣∣∣∣∣

−4J1 − εk
J1
2 (1 + e−iκ ) J1

2 (1 + e−iκ ) J1
2 (1 + e−iκ ) J1

2 (1 + e−iκ )
J1
2 (1 + eiκ ) −J1 − J2 − εk

J2
2 0 J2

2
J1
2 (1 + eiκ ) J2

2 −J1 − J2 − εk
J2
2 0

J1
2 (1 + eiκ ) 0 J2

2 −J1 − J2 − εk
J2
2

J1
2 (1 + eiκ ) J2

2 0 J2
2 −J1 − J2 − εk

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (10)

where εk = E0
k − E0

FM labels an energy difference between
the one-magnon state and the fully polarized FM state in a
zero magnetic field. The one-magnon energy spectrum of the
spin- 1

2 Heisenberg octahedral chain in a zero magnetic field is
composed of five energy bands:

ε1 = −J1 − 2J2,

ε2,3 = −J1 − J2, (11)

ε4,5 = −J1

2
(5 ± √

17 + 8 cos κ),

which are, for illustration, depicted in Fig. 3 for a few selected
values of the interaction ratio J2/J1. It should be pointed
out that three out of five one-magnon energy bands (11) are
completely dispersionless (flat), which implies the presence of
localized magnons within the flat bands [25,26]. The flatband
with the eigenenergy ε1 supports a single magnon trapped

FIG. 3. The one-magnon energy bands (11) of the spin- 1
2 Heisen-

berg octahedral chain for four different values of the interaction ratio:
(a) J2/J1 = 1, (b) J2/J1 = 2, (c) J2/J1 = 3, and (d) J2/J1 = 4.

within a square plaquette

|lm〉j = 1
2

(
Ŝ−

2,j − Ŝ−
3,j + Ŝ−

4,j − Ŝ−
5,j

)|FM〉, (12)

and this one-magnon state corresponding to the quantum
spin numbers S�,j = Sz

�,j
= S24,j = S35,j = 1 has the lowest

energy in the highly frustrated regime J2 > 2J1 (see Fig. 3).
The many-magnon states of the spin- 1

2 Heisenberg oc-
tahedral chain can be subsequently obtained by filling in
square plaquettes with the localized magnons of type (12). The
eigenstates involving N1 independent one-magnon states (12)
trapped on square plaquettes have the energy EN1 = EFM −
N1(|ε1| − h), which implies the following value of the sat-
uration field hs = |ε1| = J1 + 2J2 in the highly frustrated
region J2 > 2J1. In addition, it can be easily verified that
the lowest-energy state in the parameter space J2 > 2J1 and
h < hs is the many-magnon state with the highest possible
number (N ) of the independent localized magnons (12) on the
square plaquettes

|LM〉 =
N∏

j=1

|↑1,j 〉 ⊗ 1
2 (|↓2,j↑3,j↑4,j↑5,j 〉

− |↑2,j↓3,j↑4,j↑5,j 〉 + |↑2,j↑3,j↓4,j↑5,j 〉
− |↑2,j↑3,j↑4,j↓5,j 〉). (13)

The localized-magnon ground state (13) should manifest itself
in a zero-temperature magnetization curve as the intermediate
three-fifths plateau restricted to the field range h ∈ (J1 +
J2,J1 + 2J2).

C. Localized-magnon approach: Thermodynamics

In the highly frustrated parameter space J2 > 2J1 the
concept of localized magnons [25,26] can also be adapted
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for a rigorous description of low-temperature thermodynam-
ics of the spin- 1

2 Heisenberg octahedral chain. Under this
circumstance, the many-magnon states constructed from the
lowest-energy one-magnon state (12) are the most relevant
low-lying states in the high-field region h > J1 + J2, while
the many-magnon states including the localized two-magnon
state (6) are the most important low-lying states in the low-field
region h < J1 + J2. The low-temperature thermodynamics of
the spin- 1

2 Heisenberg octahedral chain can be accordingly
reformulated as a two-component lattice-gas model, since each
square plaquette can host at most one localized one-magnon
state (12) represented by the first kind of particles with
the chemical potential μ1 = J1 + 2J2 − h or one localized
two-magnon state (6) represented by the second kind of
particles with the chemical potential μ2 = 2J1 + 3J2 − 2h.
The chemical potentials μ1 and μ2 of two species of particles
are determined by an energy difference between the fully
polarized ferromagnetic state (vacuum) and the respective
localized magnon state (either one-magnon or two-magnon
state). By introducing the occupation numbers n1,j = 0,1 and
n2,j = 0,1 for the two species of the particles the overall
energy of the many-magnon states is given by the classical
lattice-gas Hamiltonian

H = EFM − μ1

N∑
j=1

n1,j − μ2

N∑
j=1

n2,j .

The partition function of the spin- 1
2 Heisenberg octahedral

chain accounting for all available many-magnon states con-
stituted from the lowest-energy one-magnon (12) and two-
magnon (6) states then follows from the formula

Z = e−βEFM

N∏
j=1

∑
n1,j

∑
n2,j

(1 − n1,j n2,j )eβ(μ1n1,j +μ2n2,j )

= e−βEFM (1 + eβμ1 + eβμ2 )N, (14)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the ab-
solute temperature, and the prefactor (1 − n1,j n2,j ) establishes
a hard-core constraint for both kinds of particles as each square
plaquette can host at most one 1-magnon state (12) or one
2-magnon state (6), or should be kept empty provided that a
square plaquette is fully polarized. The Helmholtz free energy
per spin can be calculated from the relation

f = −kBT lim
N→∞

1

5N
lnZ

= 1

5
(2J1 + J2) − h

2
− 1

5
kBT ln(1 + eβμ1 + eβμ2 ). (15)

The Helmholtz free energy (15) can be utilized for a calculation
of the magnetization per spin

m = 1

2
− 1

5

eβμ1 + 2eβμ2

1 + eβμ1 + eβμ2
(16)

and the specific heat per spin

c = μ2
1e

βμ1 + μ2
2e

βμ2 + (μ1 − μ2)2eβ(μ1+μ2)

5kBT 2(1 + eβμ1 + eβμ2 )2
. (17)

It is worthwhile to remark that the derived expressions for the
Helmholtz free energy (15), magnetization (16), and specific

heat (17) provide valuable descriptions of low-temperature
thermodynamics just in the highly frustrated parameter space
J2 > 2J1.

D. Local conservation law and DMRG treatment
of the effective mixed-spin chains

One of the most essential features of the spin- 1
2 Heisenberg

octahedral chain is being a local conservation of the total
spin on square plaquettes, which directly follows from a
validity of the commutation relation [Ĥ,Ŝ2

�,j
] = 0 between

Hamiltonian (1) and the square of spin operator Ŝ�,j =
Ŝ2,j + Ŝ3,j + Ŝ4,j + Ŝ5,j . It is therefore convenient to rewrite
the zero-field part of Hamiltonian (1) in terms of the total spin
operator Ŝ�,j of the square plaquette and two auxiliary spin
operators Ŝ24,j = Ŝ2,j + Ŝ4,j and Ŝ35,j = Ŝ3,j + Ŝ5,j related
to the spin pairs from opposite corners of square plaquettes
(see Figs. 1 and 2)

Ĥ = J1

N∑
j=1

(Ŝ1,j + Ŝ1,j+1) · Ŝ�,j

+ J2

2

N∑
j=1

(
Ŝ2

�,j − Ŝ2
24,j − Ŝ2

35,j

)
. (18)

The effective Hamiltonian (18) evidently corresponds to the
ferrimagnetic mixed spin-( 1

2 ,S�,j ) Heisenberg chains with
some shift of energy eigenvalues due to quantum spin
numbers S�,j , S24,j , and S35,j , whereas the quantum number
determining the total spin on a square plaquette may achieve
three different values S�,j = 0, 1, and 2. Hence, it follows
that the ground state of the spin- 1

2 Heisenberg octahedral
chain can be found from the lowest-energy eigenstates of
the effective Hamiltonian (18) by assuming all possible com-
binations of the involved quantum spin numbers. Assuming
that the translational period of a ground state is not broken,
one arrives at just three effective Hamiltonians correspond-
ing to the fragmentized (paramagnetic) mixed spin- 1

2 and
spin-0 system:

Ĥ(1/2)−0 = −2NJ2, (19)

the ferrimagnetic mixed spin-( 1
2 ,1) Heisenberg chain

Ĥ(1/2)−1 = J1

N∑
j=1

(Ŝ1,j + Ŝ1,j+1) · Ŝ�,j − NJ2 (S�,j = 1),

(20)

and the ferrimagnetic mixed spin-( 1
2 ,2) Heisenberg chain

Ĥ(1/2)−2 = J1

N∑
j=1

(Ŝ1,j + Ŝ1,j+1) · Ŝ�,j + NJ2 (S�,j = 2).

(21)

The lowest-energy eigenvalues of the effective Hamiltoni-
ans (19)–(21) of the spin- 1

2 Heisenberg octahedral chain then
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readily follow from

E(1/2)−0
(
2N,Sz

T

) = −2NJ2, (22)

E(1/2)−1
(
2N,Sz

T

) = 2NJ1ε(1/2)−1
(
2N,Sz

T

) − NJ2, (23)

E(1/2)−2
(
2N,Sz

T

) = 2NJ1ε(1/2)−2
(
2N,Sz

T

) + NJ2. (24)

Here, ε(1/2)−S� (2N,Sz
T ) denotes the lowest-energy eigenvalue

per spin of the mixed spin-( 1
2 ,S�) Heisenberg chain with the

unit coupling constant and the total number of 2N spins in
each sector with the z component of the total spin Sz

T . The
lowest-energy eigenvalue E(1/2)−0(2N,Sz

T ) = −2NJ2 appar-
ently corresponds to the monomer-tetramer ground state (7)
with the paramagnetic character of the monomeric spins and
all square plaquettes in the singlet-tetramer state (6), which
is the true ground state for J2 > 2J1 and h < J1 + J2 as
exemplified by the variational method presented in Sec. II A.
On the contrary, the effective mixed spin-( 1

2 ,S) Heisenberg
chains with a uniform nearest-neighbor antiferromagnetic
coupling exhibit at low enough magnetic fields the Lieb-
Mattis ferrimagnetic ground state manifested in the zero-
temperature magnetization curve as an intermediate plateau
at (2S − 1)/(2S + 1) of the saturation magnetization, which
breaks down at a field-driven quantum phase transition toward
the Tomonaga-Luttinger spin-liquid phase extending up to
the saturation field [63–70]. Hence, one may expect in the
magnetization process of the spin- 1

2 Heisenberg octahedral
chain the emergence of intermediate plateaus due to the
Lieb-Mattis ferrimagnetic ground state as well as a gapless
region inherent in the Tomonaga-Luttinger spin-liquid state.

However, one cannot exclude the possibility that the
period of a ground state is spontaneously broken and the
quantum spin number S�,j determining the total spin of
square plaquette varies along the effective mixed spin-( 1

2 ,S�,j )
Heisenberg chain. We have therefore taken into account the
possible doubling of the unit cell by considering another ef-
fective Hamiltonian of the ferrimagnetic mixed spin-( 1

2 ,2, 1
2 ,1)

Heisenberg chain

Ĥ(1/2)−2−(1/2)−1 = J1

N∑
j=1

(Ŝ1,j + Ŝ1,j+1) · Ŝ�,j , (25)

which assumes a regular alternation of the total spin S�,2j−1 =
2 and S�,2j = 1 on odd and even square plaquettes. Another
possible lowest-energy eigenvalue of the spin- 1

2 Heisenberg
octahedral chain may thus follow from the formula

E(1/2)−2−(1/2)−1
(
2N,Sz

T

) = 2NJ1ε(1/2)−2−(1/2)−1
(
2N,Sz

T

)
,

(26)

where ε(1/2)−2−(1/2)−1(2N,Sz
T ) denotes the lowest-energy

eigenvalue per spin of the mixed spin-( 1
2 ,2, 1

2 ,1) Heisenberg
chain with the unit coupling constant and the total number
of 2N spins in each sector with the z component of the total
spin Sz

T .
The lowest-energy eigenvalues ε(1/2)−2(2N,Sz

T ), ε(1/2)−1

(2N,Sz
T ), and ε(1/2)−2−(1/2)−1(2N,Sz

T ) of all aforedescribed
effective mixed-spin Heisenberg chains with the total number
of 120 spins (N = 60) were calculated for all available
sectors with the z component of the total spin Sz

T by
means of the numerical DMRG method when adapting the
subroutine from the Algorithms and Libraries for Physics
Simulations project [71]. It should be pointed out that the
obtained numerical DMRG data correspond to the spin- 1

2
Heisenberg octahedral chain with N = 60 unit cells, i.e.,
L = 300 spins.

Last but not least, the regular alternation of the total
spin of square plaquettes S�,2j−1 = 1 and S�,2j = 0 leads
to the effective Hamiltonian of the ferrimagnetic mixed spin-
( 1

2 ,1, 1
2 ,0) Heisenberg chain, whose lowest-energy eigenstate

can be found on analytical grounds because of a fragmentation
at even square plaquettes in the singlet-tetramer state (6)
with S�,2j = 0. Owing to this fact, the effective mixed
spin-( 1

2 ,1, 1
2 ,0) Heisenberg chain decomposes into a set of

the mixed spin-( 1
2 ,1, 1

2 ) Heisenberg trimers separated from
each other by the nonmagnetic spin-0 plaquettes. It can
be easily verified that the lowest-energy eigenstate of the
fragmentized mixed spin-( 1

2 ,1, 1
2 ,0) Heisenberg chain is the

singlet tetramer-hexamer state

|TH〉 =
N/2∏
j=1

|0,1,1,1,1〉2j−1 ⊗ |0,1,1〉2j . (27)

In the above, the former state vector refers to the spin- 1
2

Heisenberg octahedron in a singlet hexamer state

|0,1,1,1,1〉j = |ST,j = 0,S�,j = S24,j = S35,j = S16,j = 1〉

= 1√
12

(|↑1,j↑2,j↓3,j↑4,j↓5,j↓1,j+1〉 + |↓1,j↑2,j↓3,j↑4,j↓5,j↑1,j+1〉 + |↑1,j↓2,j↑3,j↓4,j↓5,j↑1,j+1〉

+ |↑1,j↓2,j↓3,j↓4,j↑5,j↑1,j+1〉 + |↓1,j↑2,j↑3,j↓4,j↑5,j↓1,j+1〉 + |↓1,j↓2,j↑3,j↑4,j↑5,j↓1,j+1〉
− |↑1,j↓2,j↑3,j↓4,j↑5,j↓1,j+1〉 − |↓1,j↓2,j↑3,j↓4,j↑5,j↑1,j+1〉 − |↑1,j↑2,j↓3,j↓4,j↓5,j↑1,j+1〉
− |↑1,j↓2,j↓3,j↑4,j↓5,j↑1,j+1〉 − |↓1,j↑2,j↑3,j↑4,j↓5,j↓1,j+1〉 − |↓1,j↑2,j↓3,j↑4,j↑5,j↓1,j+1〉), (28)

while the latter state vector refers to the spin- 1
2 Heisenberg

square in the singlet-tetramer state explicitly given by Eq. (6).
The singlet tetramer-hexamer state has a spontaneously broken
symmetry on behalf of a regular alternation of singlets, which
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FIG. 4. A schematic representation of the singlet tetramer-
hexamer state (27). Thick (black) ovals represent singlet states of
tetramers and hexamers given by Eqs. (6) and (28), respectively.

are being alternatively formed on octahedrons (hexamers) and
square plaquettes (tetramers) as schematically illustrated in
Fig. 4.

E. Exact diagonalization

To avoid a danger of overlooking some higher-period
ground state(s) of the spin- 1

2 Heisenberg octahedral chain we
have employed the numerical ED method based on the Lanczos
algorithm for the finite-size chains with L = 20,25,30,35,40
spins (N = 4,5,6,7,8 unit cells) imposing periodic boundary
conditions. The ED data can be regarded as a useful benchmark
for the numerical data obtained from DMRG simulations of the
effective ferrimagnetic mixed-spin Heisenberg chains, because
any substantial discrepancy between these numerical results
would indicate that some higher-period quantum ground state
was disregarded. The ED data for various chain lengths show
very small finite-size effects and fit well to the DMRG results
(see below).

Beside this, we have also performed the full ED of the
finite-size spin- 1

2 Heisenberg octahedral chain with up to
L = 20 spins (N = 4 unit cells) in order to verify reliability of
the developed localized-magnon approach for a description of
the low-temperature thermodynamics in the highly frustrated
parameter space J2 > 2J1. To this end, we have adapted for
the full ED calculations the subroutines from the Spinpack
project [72,73].

III. RESULTS AND DISCUSSION

In this section, we will perform a comprehensive analysis of
the most interesting results for the ground state, magnetization
process, and low-temperature thermodynamics of the spin- 1

2
Heisenberg octahedral chain.

A. Ground-state phase diagrams

Let us begin with the analysis of ground state at zero
magnetic field. The zero-field ground-state phase diagram is
schematically depicted in Fig. 5 and it totally involves five
different ground states (three quantum ferrimagnetic states, a
singlet tetramer-hexamer state, and a monomer-tetramer state)
depending on a relative strength of two considered coupling
constants. At small values of J2/J1 < 0.50 the ground state
of the spin- 1

2 Heisenberg octahedral chain can be described as
the quantum ferrimagnetic state of the effective mixed spin-
( 1

2 ,2) Heisenberg chain [74] with the energy eigenvalue (24).
Another quantum ferrimagnetic ground state with a doubled
period of the magnetic unit cell relates to the lowest-energy
eigenstate (26) of the effective mixed spin-( 1

2 ,2, 1
2 ,1) Heisen-

berg chain, which emerges just in a relatively narrow parameter

FIG. 5. The zero-field ground-state phase diagram of the spin- 1
2

Heisenberg octahedral chain. The numbers in square brackets
determine within a given ground state the total spin on monomeric
sites and square plaquettes. Note that the ferrimagnetic phase (1/2-
2-1/2-1) and the monomer-tetramer phase (1/2-1-1/2-0) break the
translational symmetry.

region J2/J1 ∈ (0.50,0.52). The last quantum ferrimagnetic
ground state of the spin- 1

2 Heisenberg octahedral chain stems
from the lowest-energy eigenstate (23) of the effective mixed
spin-( 1

2 ,1) Heisenberg chain, which has the lowest energy in
the parameter region J2/J1 ∈ (0.52,0.91). The bipartite nature
of the effective mixed spin-( 1

2 ,2) and spin-( 1
2 ,1) Heisenberg

chains implies that two related quantum ground states can
be identified with the conventional ferrimagnetic phases of
Lieb-Mattis type [75]. The same conclusion could be also
inferred for the third quantum ferrimagnetic ground state
even though the four-sublattice character of the effective
mixed spin-( 1

2 ,2, 1
2 ,1) Heisenberg chain precludes the simple

argumentation on the grounds of the Lieb-Mattis theorem [75].
Apart from the three aforementioned quantum ferri-

magnetic ground states one also encounters two quantum
ground states underlying fragmentation at square plaquettes
in the singlet-tetramer state (6). The singlet tetramer-hexamer
ground state (27) with a spontaneously broken symmetry
(Fig. 4) is the lowest-energy eigenstate of the spin- 1

2 Heisen-
berg octahedral chain at moderate values of the coupling
constants J2/J1 ∈ (0.91,2). Finally, the ground state of the
spin- 1

2 Heisenberg octahedral chain is the fully fragmentized
monomer-tetramer state (7) whenever the intraplaquette cou-
pling is at least twice as strong as the monomer-plaquette
coupling J2/J1 > 2.

FIG. 6. The ground-state phase diagram of the spin- 1
2 Heisenberg

octahedral chain in the J2/J1-h/J1 plane. A thick line schematically
shows the quantum ferrimagnetic ground state, which originates from
the effective mixed spin-( 1

2 ,2, 1
2 ,1) Heisenberg chain and is stable in

a very narrow interval of the magnetic fields.
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It is quite clear that the three quantum ferrimagnetic ground
states related to the lowest-energy eigenstates of the effective
mixed spin-( 1

2 ,2), spin-( 1
2 ,2, 1

2 ,1), and spin-( 1
2 ,1) Heisenberg

chains should be manifested in zero-temperature magnetiza-
tion curves as intermediate plateaus at 3/5, 2/5, and 1/5 of the
saturation magnetization, respectively. In addition, the singlet
tetramer-hexamer ground state (27) should be responsible for
a zero magnetization plateau, while the monomer-tetramer
state (7) affords another 1/5-plateau state due to a full polar-
ization of the monomeric spins. The overall ground-state phase
diagram of the spin- 1

2 Heisenberg octahedral chain elucidating
the effect of external magnetic field is displayed in Fig. 6 in
the J2/J1-h/J1 plane. It is evident that the highly frustrated
parameter region J2/J1 > 2 of the ground-state phase diagram
is fully consistent with the rigorous theoretical predictions
of the monomer-tetramer state (7) and the localized-magnon
state (13) gained in Secs. II A and II B by making use
of the variational procedure and localized-magnon approach.

Moreover, one finds that the intermediate 3/5 plateau due to
the localized-magnon state (13) with a single magnon trapped
on each square plaquette can alternatively be interpreted as the
saturated state of the effective ferrimagnetic mixed spin-( 1

2 ,1)
Heisenberg chain.

On the other hand, the ground-state phase diagram of the
spin- 1

2 Heisenberg octahedral chain is much more intricate in
the parameter region J2/J1 < 2 because of the presence of
two different spin-liquid ground states with short-range corre-
lations but without any spontaneously broken symmetry [6–8].
If the relative strength of the coupling constants is sufficiently
weak, i.e., J2/J1 < 0.50, the ground state of the spin- 1

2
Heisenberg octahedral chain entirely follows from the lowest-
energy eigenstates (24) of the effective mixed spin-( 1

2 ,2)
Heisenberg chain. Consequently, the intermediate 3/5 plateau
due to the Lieb-Mattis ferrimagnetic ( 1

2 − 2) ground state
breaks down at a field-driven quantum critical point toward the
gapless spin-liquid ( 1

2 − 2) ground state. A similar scenario can

FIG. 7. A few typical zero-temperature magnetization curves of the spin- 1
2 Heisenberg octahedral chain. Thick solid lines show numerical

results based on DMRG calculations for the finite-size chain of L = 300 spins (N = 60 unit cells) and thin broken lines illustrate numerical
ED results for the finite-size chain of L = 40 spins (N = 8 unit cells) by assuming six different values of the interaction ratio: (a) J2/J1 = 0.5,
(b) J2/J1 = 0.7, (c) J2/J1 = 1.2, (d) J2/J1 = 1.6, (e) J2/J1 = 1.8, and (f) J2/J1 = 2.0.
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be detected in the parameter space J2/J1 ∈ (0.50,0.52) except
that the tiny 2/5 plateau emerges at low enough magnetic
fields due to the quantum ferrimagnetic ( 1

2 − 2 − 1
2 − 1)

ground state stemming from the lowest-energy eigenstate (26)
of the effective mixed spin-( 1

2 ,2, 1
2 ,1) Heisenberg chain. In

the parameter region J2/J1 ∈ (0.52,0.91) the Lieb-Mattis
ferrimagnetic ( 1

2 − 1) ground state arising out from the
effective mixed spin-( 1

2 ,1) Heisenberg chain is responsible
for the extra 1/5 plateau at sufficiently low magnetic fields.
Last but not least, the zero magnetization plateau reflecting
the singlet tetramer-hexamer ground state (27) emerges at
moderate values of the coupling constants J2/J1 ∈ (0.91,2).
Within this parameter region, the 1/5 plateau emerging above
the zero magnetization plateau either corresponds to the
Lieb-Mattis quantum ferrimagnet ( 1

2 − 1) or the monomer-
tetramer phase (7) depending on whether a relative size of
the coupling constants is smaller or greater than the threshold
value J2/J1 = 1.45. Analogously, the intermediate 3/5 plateau
is either due to the Lieb-Mattis quantum ferrimagnet ( 1

2 − 2)
or the localized-magnon ground state (13) depending on
whether a relative strength of the coupling constants is smaller
or greater than the threshold value J2/J1 = 1.74. Finally,
another gapless spin-liquid ( 1

2 − 1) ground state can be found
in the parameter region J2/J1 ∈ (1.63,2) and h/J1 � 3 on
behalf of the lowest-energy eigenstate of the effective mixed
spin-( 1

2 ,1) Heisenberg chain. It is worthwhile to remark that all
displayed phase boundaries represent discontinuous quantum
phase transitions with the exception of three horizontal borders
related to continuous quantum phase transitions.

B. Zero-temperature magnetization curves

To illustrate the great diversity of possible scenarios of the
magnetization process of the spin- 1

2 Heisenberg octahedral
chain we have depicted in Fig. 7 a few typical examples
of zero-temperature magnetization curves. The magnetization
data obtained from the DMRG simulations of the effective
mixed-spin Heisenberg chains are shown in Fig. 7 by thick
solid lines and for a comparison, we have also plotted the
magnetization data from the ED method by thin broken
lines. As one can see, there is in general perfect coincidence
between the zero-temperature magnetization curves from
DMRG and ED calculations as far as the height and width
of all intermediate magnetization plateaus is concerned. The
only noticeable difference is thus attributable to a finite-
size effect of the ED method, which is most clearly seen
within both gapless spin-liquid ground states manifested
through a continuous rise of the magnetization with the
magnetic field.

It should also be stressed that the displayed magnetization
curves corroborate correctness of the established ground-state
phase diagram. The magnetization curve shown in Fig. 7(a)
demonstrates two continuous quantum phase transitions,
which occur at a rise and fall of the intermediate 3/5 plateau.
The magnetization curve plotted in Fig. 7(b) verifies the uprise
of the 1/5 and 2/5 plateaus, which is achieved upon small
strengthening of the relative ratio J2/J1. The emergence of a
zero magnetization plateau on account of the singlet tetramer-
hexamer ground state (27) can be seen in the magnetization
curve shown in Fig. 7(c). Furthermore, Fig. 7(d) illustrates

FIG. 8. The magnetization (upper panel) and specific heat (lower panel) of the spin- 1
2 Heisenberg octahedral chain as a function of the

magnetic field and temperature for the fixed value of the interaction ratio J2/J1 = 3. Solid lines follow from Eqs. (16) and (17) derived by
means of the localized-magnon approach, while broken lines of different styles illustrate the full ED data for the finite-size chain of L = 20
spins (N = 4 unit cells).
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the magnetization curve with a change in character of the 1/5
plateau as well as the disappearance of the subtle 2/5 plateau.
The magnetization curve plotted in Fig. 7(e) demonstrates a
change in the character of the 3/5 plateau as well as two
emergent magnetization jumps toward the spin-liquid ground
states. Finally, Fig. 7(f) displays a typical magnetization curve
in the highly frustrated region J2/J1 > 2 involving three abrupt
magnetization jumps.

C. Low-temperature thermodynamics

Next, let us proceed to a discussion of the most interesting
results for the low-temperature thermodynamics of the spin- 1

2
Heisenberg octahedral chain, which were obtained within
the framework of the localized-magnon approach elaborated
in Sec. II C. It is worthwhile to recall, however, that the
localized-magnon theory provides reasonable results only in
the highly frustrated parameter region J2/J1 > 2, where the
many-magnon states constructed from the lowest-energy one-
magnon (12) and two-magnon (6) localized states are the most
relevant ones for a proper description of the low-temperature
thermodynamics.

For the sake of comparison and verification, the magnetiza-
tion and specific heat of the spin- 1

2 Heisenberg octahedral chain
obtained from the localized-magnon approach are plotted in
Fig. 8 along with the analogous data for the finite-size chain
of L = 20 spins obtained within the full ED method. Let
us first emphasize two interesting features, namely, (i) the
extra low-temperature peak in the specific heat for magnetic
fields slightly below the saturation field [cf. Fig. 8(d)] and
(ii) the noticeable increase of the magnetization with growing
temperature for h/J1 = 3.9 and 6.9 [cf. Fig. 8(b)]. Both
unconventional features are related to the flatbands in the
one-magnon excitations (cf. Fig. 3).

It can be understood from Fig. 8 that the localized-magnon
theory provides a plausible description of the low-temperature
magnetization and thermodynamics whenever the external
magnetic field drives the investigated spin system above a
midpoint of the lowest intermediate 1/5 plateau appearing
due to the monomer-tetramer ground state (7). Under this cir-
cumstance, the magnetization calculated according to Eq. (16)
exhibits for J2/J1 = 3 a perfect agreement with the ED data
on assumption that the temperature is below kBT/J1 � 0.5.
Compared to this, the derived formula (17) for the specific
heat affords a reliable description of the numerical ED data for
the same value of the interaction ratio J2/J1 = 3, just for much
smaller temperatures kBT/J1 � 0.2. It should be pointed out,
however, that the height and position of the low-temperature
maximum of the heat capacity is in excellent accordance with
the numerical ED data provided that the magnetic field is
fixed sufficiently close to the saturation field or the field-driven
transition between the 1/5-and 3/5-plateaus.

IV. CONCLUSION

The present work deals with the ground-state phase di-
agram, the magnetization process, and the low-temperature
thermodynamics of the spin- 1

2 Heisenberg octahedral chain,
which has been treated by means of various analytical and
numerical techniques. It has been demonstrated that the highly

frustrated parameter region of the ground-state phase diagram
can be rigorously found on the grounds of the variational
principle and the localized-magnon approach, which provide
exact evidence for the monomer-tetramer (7) and localized-
magnon (13) ground states at low and high magnetic fields, re-
spectively. On the other hand, the remaining part of the ground-
state phase diagram was established through the numerical data
gained from DMRG simulations of the effective mixed-spin
Heisenberg chains, which were additionally corroborated by
ED data exploiting the Lanczos algorithm. It has been verified
that the spin- 1

2 Heisenberg octahedral chain exhibits in this
parameter space an unexpected diversity of intriguing ground
states including three different quantum ferrimagnetic phases,
two spin-liquid phases, as well as the unconventional singlet
tetramer-hexamer phase (27).

The notable diversity of available quantum ground states
can also be regarded as a primary reason for the astonishing
versatility of zero-temperature magnetization curves. As a
matter of fact, the magnetization curves of the spin- 1

2 Heisen-
berg octahedral chain may involve intermediate plateaus at
zero, one-fifth, two-fifths, and three-fifths of the saturation
magnetization in addition to two gapless spin-liquid regimes
with continuously varying magnetization. The field-driven
quantum phase transition between individual ground states
can therefore have either the character of a first-order phase
transition accompanied with a discontinuous magnetization
jump or of a second-order phase transition accompanied with
a continuous rise of the magnetization.

Last but not least, we have developed the modified
localized-magnon theory accounting for the lowest-energy
one-magnon and two-magnon states, which are essential for
a design of the many-magnon states relevant for a proper
description of low-temperature thermodynamics of the spin-
1
2 Heisenberg octahedral chain. The validity and exactness
of the developed localized-magnon approach in the highly
frustrated parameter region has been verified through a direct
comparison with the full ED data. It has been found that
the localized-magnon theory gives plausible estimates of
thermodynamic quantities at low up to moderate temperatures
whenever the magnetic field drives the investigated quantum
spin system above a midpoint of the intermediate 1/5 plateau
due to the monomer-tetramer (7) phase. Our future goal is
to extend a validity of the localized-magnon approach down
to zero field, because a steep variation of the magnetization
at low magnetic fields is of great potential applicability for
low-temperature magnetic refrigeration achieved through the
enhanced magnetocaloric effect [76–79].
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