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Focusing of high-wave-vector magnons
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The focusing of spin waves in magnetic materials has a number of important advantages for directing energy
and thus information. In contrast to earlier works, we theoretically calculate the focusing of short-wavelength
spin waves. We show that strong focusing of large wave-vector spin waves naturally occurs about halfway out in
the Brillouin zone with no need for a magnetocrystalline anisotropy, dipolar effects, or an external magnetic field.
The fact that the wavelength is on the order of the lattice constant leads to a form of lattice-induced anisotropy
in the wave propagation. We also explore the tunability that is achieved by the application of both an external
field and a uniaxial anisotropy. In this case there is a rotation of the focusing pattern. The rotation angle can be
changed by varying the field strength, demonstrating tunability.
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I. INTRODUCTION

In an isotropic material the energy from a point source will
spread out uniformly in all directions. In contrast in anisotropic
materials the phase and group velocities are not parallel and
the energy from a point source may be preferentially focused
into specific directions. When focused beams are especially
narrow, these directions are known as caustic (for burning)
beams. (Technically caustics occur when the curvature of the
constant frequency curves in k space is zero.) Even when
reflected from a boundary, this energy follows very specific
directions and, surprisingly, the incident and reflected angles
are not equal.

There is considerable literature on the focusing of both bulk
and surface phonons in elastic solids. For example, phonon
focusing can be created by exciting a crystal with a pulsed
laser [1,2] or by heat pulses [3,4]. Depending on the elastic
anisotropy, the frequency, and the dispersion relation, it is
possible to precisely focus energy in limited and specific
directions. There are numerous examples of this in both theory
[5] and experiments [6,7] with excellent agreement.

Phonon systems are limited in practical applications be-
cause the focusing is not tunable. Recently, focusing of
magnetic spin waves has been observed [8] using Brillouin
light scattering (BLS) to examine the propagation of a spin
wave from a source on the surface of yttrium iron garnet (YIG).
The focusing of magnons, or spin waves in magnetic systems,
has a number of important advantages. As an example,
focusing in a magnetic system is tunable by varying both the
strength and direction of an applied magnetic field [9].

Until now, only long-wavelength spin waves have been
examined [8–15]. In this earlier work, the magnetic dispersion
relation was anisotropic because of dipolar interactions and
an external magnetic field. In addition to the anisotropic
magnon dispersion, observation of magnetic focusing gen-
erally requires the creation of spin waves in a localized region.
Experimentally this can be done by localized microwave
currents that create oscillating magnetic fields. Other methods
can also be used. For example, if we consider a magnetic
antidot in a continuous YIG lattice there is a nonuniform
internal magnetic field in the vicinity of the isolated antidot.
Exposing the sample to a harmonic microwave field, one can
excite only the regions near the antidot, because the resonance

field there is different from the rest of the structure. The antidot
will react as a point source and caustics can result [8,10].

Our work, in contrast, extends the theory by discussing
the focusing that occurs naturally in spin waves of shorter
wavelengths, without a requirement for an external magnetic
field, dipolar effects, or any magnetocrstalline anisotropy. We
find a number of interesting features

(1) Strong focusing, i.e., caustics, occurs about halfway
out in the first Brillouin zone, where the wavelengths are much
shorter than those examined previously.

(2) An effective anisotropy results from the lattice structure
itself rather than because of dipolar effects or magnetocrys-
talline anisotropy [15].

(3) The appearance of focusing and the focusing pattern
can be significantly changed by next nearest neighbor ex-
change interactions.

In this paper, we examine multiple scenarios. Nearest and
next nearest neighbor exchange interactions are explored,
with both an external field and/or anisotropy. We present
a short theoretical derivation for the dispersion relations of
various cases. The magnetic configurations and dispersion
relations are derived from the Landau-Lifshitz equations, and
the focusing patterns are obtained from constant frequency
curves (slowness surfaces) in wave-vector space.

We analyze the focusing patterns and their amplitudes
at various frequencies. With both a uniaxial anisotropy and
an external field, we find that the slowness surfaces and
focusing patterns can be rotated. This rotation provides an
important example of external field induced system tunability.
The existence of focusing along with the ability to control spin
wave direction allows the development of signal processing
systems [16]. This could be important for spintronics, where
the transfer of angular momentum is a key factor. The ability to
focus energy strongly in specific directions implies the ability
to focus angular momentum transport.

II. THEORY

We begin by obtaining the dispersion relation for various
physical cases. These dispersion relations are subsequently
used to obtain the focusing patterns.

We examine the following cases.
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FIG. 1. Diagram of the physical lattice in the zy plane. The
spacing between lattice points is a. When present, there is a magnetic
field along ẑ and the y axis is an easy axis for uniaxial anisotropy.
Notice the equilibrium angle θ between the field and the magnetic
moments.

(1) A two dimensional square lattice with nearest and next
nearest exchange interactions and with an external field or a
uniaxial anisotropy in the plane of the lattice.

(2) A two dimensional square lattice with nearest neighbor
exchange interactions, an external magnetic field in the plane
of the lattice, and a uniaxial anisotropy with an easy axis
perpendicular to the external field, also in the plane of the
lattice.

The geometry is illustrated in Fig. 1. In the absence of an
external field or anisotropy, we assume the spins lie in the yz

plane and are directed along the z axis. When both anisotropy
and a field are present the magnetic moments in equilibrium
will make an angle θ with the z axis.

We find equations of motion for the magnetic moment at a
site (i,j ), denoted by m(i,j ) = gμbS(i,j ), using the effective
field produced by the exchange,

ṁ(i,j ) = γ (m(i,j ) × Heff). (1)

The effective field is found from the exchange interaction,

Heff(i,j ) = J1

∑
δ1,δ2

m(i + δ1,j + δ2)

︸ ︷︷ ︸
nearest neighbor

+ J2

∑
δ1,δ2

m(i + δ1,j + δ2)

︸ ︷︷ ︸
next nearest neighbor

, (2)

where J1 is the nearest neighbor exchange constant and J2

is the next nearest neighbor exchange constant. We sum over
integers δ1 and δ2 to examine all of the nearest neighbor and
next nearest neighbor sites. We impose conditions on m in
order to linearize our equations of motion. We assume that in
the z direction mz ≈ m and that mx and my are small so second
order terms can be ignored. We also assume a wavelike solution

propagating in the yz plane:

m(i,j ) = m0e
ikzaieikyaj e−iωt . (3)

We obtain the dispersion relation,

ω = 2γ J1m(2 − cos(akz) − cos(aky))

+4γ J2m(1 − cos(akz) cos(aky)). (4)

For the situation where J2 = 0 this simplifies to the well
known result for nearest neighbors [17],

ω = γ Jm(4 − 2 cos(akz) − 2 cos(aky)). (5)

If we add either an external magnetic field H0 or a uniaxial
anisotropy, strength K , both in the plane of the lattice, the
results are not significantly different. The dispersion relation,
using nearest neighbor exchange, is then given by

ωanisotropy = 4γ Jm + γ K
m

− 2γ Jm(cos(kza) + cos(kya))

or

ωfield = 4γ Jm + γH0 − 2γ Jm(cos(kza) + cos(kya)). (6)

One can see that the frequency curves will be changed by a
constant. This will therefore not change the focusing patterns;
however, it will change the frequencies where focusing occurs.

We next consider the situation with uniaxial anisotropy
and an external field, both in the plane of the lattice and
perpendicular to each other. Assuming the H0 field is in the
ẑ direction and the y axis is the anisotropic easy axis, there
will be some angle θ from the z axis between the two fields
where the magnetization is at equilibrium. K is the anisotropy
constant and is assumed to be negative. We find this angle by
minimizing the total energy:

E(i,j ) = K

2
sin2 θ − m(i,j )H (i,j ) cos θ

−J
∑
δ1,δ2

m(i,j ) · m(i + δ1,j + δ2). (7)

Minimizing this gives the angle of the magnetic moment at
each site:

θ = arccos

(
−mH0

K

)
. (8)

We rotate about the x axis counterclockwise by θ and obtain
a new reference frame, the primed frame, with z′ along the
equilibrium direction. In order to linearize our equation, we
assume that mz′(i,j ) ≈ m. Furthermore, m1 · m2 is invariant
under rotation. From E(i,j ) we obtain the effective fields in
the new coordinate system:

(Heff)x ′ (i,j ) = −J
∑
δ1,δ2

mx ′ (i + δ1,j + δ2), (9)

(Heff)y ′ (i,j ) = −J
∑
δ1,δ2

my ′ (i + δ1,j + δ2)

− K

m2
cos2 θmy ′ (i,j ) + K

m
sin θ cos θ

+H0 sin θ, (10)

(Heff)z′(i,j ) = −4Jm − K

m
sin2 θ + H0 cos θ

+ K

m2
sin θ cos θmy ′(i,j ). (11)
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We find the equations of motions in the primed frame from
the effective fields using ṁ = γ (m × Heff). From our previous
solution for θ [Eq. (8)] we have the condition H0 sin θ =
K
m

sin θ cos θ . This shows that ṁz′ = 0. The equations for the
transverse components become

ṁx ′ (i,j ) =
(

−4γ Jm + γK

m
cos(2θ ) + γH0 cos θ

)
· my ′ (i,j )

+γ Jm
∑
δ1,δ2

my ′(i + δ1,j + δ2), (12)

ṁy ′ (i,j ) =
(

4γ Jm + γK

m
sin2 θ − γH0 cos θ

)
· mx ′ (i,j )

−γ Jm
∑
δ1,δ2

mx ′ (i + δ1,j + δ2). (13)

Assuming a wavelike solution for mx ′ and my ′ we obtain
the dispersion relation for the case where the external field is
perpendicular to an anisotropy and both are in the plane of the
lattice, with exchange interactions:

ω2 = −
(

γ Jm
(
4 − 2 cos(kza) − 2 cos(kya)

) − γK

m

cos(2θ ) − γH0 cos θ

)(
γ Jm(4 − 2 cos(kza)

−2 cos(kya)) + γK

m
sin2 θ − γH0 cos θ

)
. (14)

We find the focusing pattern from the slowness surface.
Because the group velocity is given by vgroup = �k(ω) the
direction of energy flow is normal to the constant frequency
curves. From earlier work [5], it is known that the amplitude
of the focusing is proportional to 1√

curvature
of the slowness

surface. We note that these analytic results were found for
the far-field region. This approximation for the amplitude of
the focusing is obviously only valid where the curvature is

FIG. 2. Contours of constant frequency (slowness surfaces) for
nearest neighbor interactions only. Focusing will occur near 4.5 THz.

FIG. 3. Focusing patterns (dark curves using bottom and left axes)
and associated slowness surfaces (light curves using top and right
axes) at (a) f = 3 THz, (b) f = 4 THz, and (c) f = 4.5 THz for
nearest neighbor interactions only. The pattern in (a) is hardly focused,
while the pattern in (c) shows strong focusing. Notice the change in
the axes from (a) to (c).

nonzero. As shown in [5] the focused energy is still finite even
when the curvature is zero. In order to find the curvature, the
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FIG. 4. Comparison of slowness surfaces for (a) J2 = 0.4J1 and
(b) J2 = −0.4J1, with no fields. For positive next nearest neighbor
interactions (a) the slowness surface is rounded and the next nearest
neighbor contribution provides a different focusing direction from
that of nearest neighbor interactions. Little focusing is expected. For
negative next nearest neighbor interactions (b) an interesting pattern
appears in the higher frequency cases (0.4 THz to 0.9 THz). There
are two changes in curvature on each side of the focusing pattern.

slope at three neighboring points is calculated on the slowness
surface. The change in slope between those three points gives
the curvature at the middle point. Thus the focusing pattern is
obtained by finding the vector normal to the slowness surface
at a point, and the amplitude is given by the inverse of the
square root of the curvature. Plotting the resulting amplitudes
along the angle of the normal at each point produces a focusing
pattern.

FIG. 5. Focusing patterns (dark curves using bottom and left axes)
and associated slowness surfaces (light curves using top and right
axis) for (a) J2 = 0.4J1 at f = 7 THz and (b) J2 = −0.4J1 at f =
0.7 THz, with no fields. For strong positive next nearest neighbor
interactions (a) there is almost no focusing that occurs even at high
frequencies. Note the focusing directions are different than in the
case of nearest neighbor exchange interactions only. However, for
strong negative next nearest neighbor exchange interactions (b) there
is strong focusing at very low values of f . The arrows indicate two
points on the slowness surface where the curvature is zero, giving
caustics. There are now extra focusing directions (eight) compared to
the four directions for nearest neighbor exchange only interactions.

III. RESULTS AND DISCUSSION

For our calculations we use parameters similar to those of
YIG, although we use the simplified spatial structure (square
lattice) discussed earlier. The experimentally determined
frequency of spin wave modes at the edge of the Brillouin
zone (using kya = π and kz = 0 as the edge of the Brillouin
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FIG. 6. Slowness surfaces for K

m
= −1 kOe with (a) H =

0.2 kOe and (b) H = 0.5 kOe (right). Nearest neighbor interactions
with an internal anisotropy field, and external H field perpendicular
to anisotropy. Changing the field rotates the slowness surface, but the
focusing still occurs between 4 and 5 THz as in the nearest neighbor
only situation.

zone) is at 7 THz [18]; this gives us Jm = 400 kOe and we
take γ = 0.0029 THz

kOe .
Slowness surfaces and focusing patterns for the simplest

case, nearest neighbor exchange only and no external magnetic
field, are presented in Fig. 2 and Fig. 3. Near k=0, ω≈Dk2,
where D is the exchange constant. This leads to an isotropic
slowness surface, i.e., a circle, in reciprocal k space resulting
in no focusing at longer wavelengths. As k increases, the
wavelength becomes shorter and closer to the lattice con-
stant, and the wave “sees” the microscopic structure which
introduces some anisotropy into the results. The constant
frequency curves become squarelike for values of k about
halfway through the Brillouin zone.

FIG. 7. Focusing patterns (dark curves using bottom and left axes)
and the corresponding slowness surfaces (light curves using top and
right axes) for K

m
= −1 kOe (a) with H = 0.2 kOe and (b) H =

0.5 kOe (right) at f = 4 THz. The rotation of the focusing pattern
demonstrates the tunability of the system. Notice the change in values
of the axes.

The change in the character of the slowness surface leads
to a strong frequency-dependent focusing. For the lower
frequency case of f = 3 THz, shown in Fig. 3(a), only weak
focusing occurs. Strong focusing occurs when the curvature is
near zero. In Fig. 3(b) and Fig. 3(c) we show focusing patterns
for f = 4 THz and f = 4.5 THz that exhibit strong focusing.

The slowness surfaces and focusing plots for the case with
both nearest and next nearest neighbor interactions are shown
in Fig. 4 and Fig. 5. As with the nearest neighbor interactions
shown in Fig. 3, only exchange interactions are considered, and
no external fields. We considered J2 with both the same sign
and the opposite sign as J1. For weak next nearest neighbor
interactions the slowness surfaces do not change significantly
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from that of nearest neighbor interactions. In contrast, Fig. 4(a)
shows the slowness surface for large, positive, J2. The slowness
surfaces are rounded even for large frequencies; this would
lead us to expect very weak focusing as is seen in Fig. 5(a).

When J2 is negative and J1 is positive the slowness surfaces
[Fig. 4(b)] show an interesting feature. For frequencies
between 0.4 THz and 0.9 THz the sides of the slowness surface
have two changes in curvature. This is indicated in the specific
case of f = 0.7 THz by arrows in Fig. 5(b). This leads to
caustics caused by each change in curvature. Instead of four
focusing directions as in Fig. 3, there are now eight directions
of focusing. Furthermore, in this case the frequencies are
shifted down significantly when compared to the nearest
neighbor only interactions shown in Fig. 3. Strong focusing
occurs around 0.1 THz compared to the 4.5 THz found with
nearest neighbor only interactions.

For a single external field or internal anisotropic field, the
character of the slowness surface from next nearest neighbor
interactions is not changed significantly from that seen in
the case of nearest neighbor exchange. The frequency values
change with the strength of the field; however, the shape of the
slowness surfaces remains the same.

In Fig. 6 and Fig. 7 we consider the case of an external
magnetic field and magnetocrystalline anisotropy. With the H

field in the z direction and a uniaxial anisotropy with the easy
axis in the ŷ direction, an equilibrium magnetization angle
results. This equilibrium angle leads to a rotation (equal to
the equilibrium angle) of both the slowness surfaces and the
focusing patterns in the zy plane. By varying the field strength,
the equilibrium angle and focusing direction change as seen
in Fig. 6(a) and Fig. 6(b). This indicates system tunability and
has potential as a spin-wave logic device [16]. Figure 7 shows
that at certain values for f quite strong focusing remains, even
when the slowness curve is rotated.

IV. SUMMARY

We examine the transmission of energy from a point source
in a thin magnetic film and find that the energy spreads
out uniformly for excitations with small wave vectors but
is naturally focused into a small number of directions for
excitations with larger wave vectors. This focusing does

not require an external magnetic field, dipolar effects, or
any magnetocrstalline anisotropy. Theoretical results were
determined using the magnetic characteristics of YIG and
show realistic values for the focusing frequencies. For the
simple cubic model above, the strongest focusing occurs for
frequencies between 4 and 5 THz.

We comment on the applicability of our calculation to real
systems. YIG itself is not a simple cubic ferromagnet so it is
unlikely to behave this way in reality. There are some simple
cubic ferromagnets: NiCrPB, for example [19]. Surprisingly
complex materials such as La0.7Pb0.3MnO3 can also behave
as simple cubic ferromagnets, and neutron scattering has
verified the dispersion curves for this material over the entire
Brillouin zone [20]. Although we derived focusing for a simple
cubic ferromagnet, other cubic structures will give similar
results. The relatively recent technique of spin-polarized
electron energy loss spectroscopy can measure the entire
spin-wave dispersion curve for very thin films, for example,
an 8 monolayer thick Co film [21]. Furthermore, dispersion
relations for high energy spin waves have been measured in
body centered cubic Fe by neutron scattering [22].

Using the Landau-Lifshitz equations, the dispersion rela-
tions and the resultant focusing patterns were obtained for
various cases. Constant frequency curves were plotted, and
by evaluating the curvature of the slowness surfaces, focusing
patterns were created. Strong focusing, i.e. caustics, occur
when the curvature is zero. We find that the inclusion of
next nearest neighbor exchange interactions can significantly
change the nature and direction of the focused beams.

With an external magnetic field in the ẑ direction and a
uniaxial anisotropy with ŷ as an easy axis, both in the plane
of the lattice, the direction of the caustics can be adjusted
by changing the magnetic field. The ability to control spin
wave direction allows the development of signal processing
systems. This could include, for example, demultiplexing of
high frequency signals, where multiple signals of different
frequencies could be incident on one antenna and then
automatically separate into individual frequency beams within
the magnetic material. Our results could also be important for
spintronics, where the transfer of angular momentum is a key
factor. We have shown the ability to strongly focus energy in
particular directions which clearly also implies a focusing of
angular momentum.
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