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Ballistic magnon heat conduction and possible Poiseuille flow in the helimagnetic
insulator Cu2OSeO3
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We report on the observation of magnon thermal conductivity κm ∼ 70 W/mK near 5 K in the helimagnetic
insulator Cu2OSeO3, exceeding that measured in any other ferromagnet by almost two orders of magnitude.
Ballistic, boundary-limited transport for both magnons and phonons is established below 1 K, and Poiseuille
flow of magnons is proposed to explain a magnon mean-free path substantially exceeding the specimen width for
the least defective specimens in the range 2 K < T < 10 K. These observations establish Cu2OSeO3 as a model
system for studying long-wavelength magnon dynamics.
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I. INTRODUCTION

Spin-mediated heat conduction in ferromagnetic materials
has been of interest for decades, but a dearth of suitable
ferromagnetic or ferrimagnetic insulators exhibiting magnonic
heat conduction has limited investigation [1–8]. The most
widely studied example is yttrium-iron garnet (YIG), for which
a small magnonic thermal conductivity is well established
at low temperatures. Magnon heat conduction and energy
exchange between magnons and phonons have attracted
renewed attention recently because of their importance for
the burgeoning fields of spin caloritronics [9] and magnon
spintronics [10] wherein thermally driven spin currents induce
electrical signals. Essential to the development of related
technologies is a deeper understanding of magnon heat
conduction and magnon-phonon interactions generally, and
identifying suitable materials for realizing practical devices.

Here we report magnon thermal conductivities κm ∼ 70 W/

mK near 5 K in single crystals of the helimagnetic insulator
Cu2OSeO3, far exceeding those observed previously in any
other ferromagnets or ferrimagnets (including YIG). Distin-
guished in an applied magnetic field, both the magnon and
phonon (κL) thermal conductivities exhibit ballistic behavior
below 1 K, with mean-free paths (mfps) limited by the
specimen boundaries and κm ∝ T 2, κL ∝ T 3. At T > 1 K,
the κm for clean specimens increases substantially faster than
∝ T 2 and reaches values two times larger than expected from
spin-wave theory. We consider both magnon-phonon drag and
Poiseuille flow of magnons as potential mechanisms for this
enhancement, and present analysis supporting the latter.

Cu2OSeO3 is a cubic material [11,12] (space group P 213),
consisting of a three-dimensional distorted pyrochlore (ap-
proximately fcc) lattice of corner-sharing Cu tetrahedra.
The inequivalence of the copper sites and strong magnetic
interactions within tetrahedra lead to a 3-up-1-down, spin
S = 1 magnetic state [13,14] that persists above the long-range
magnetic ordering temperature [15,16]. Weaker interactions
between tetrahedra lead to their ferromagnetic ordering
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below TC � 58 K. Dzyaloshinsky-Moriya interactions induce
a long wavelength, incommensurate helical spin structure,
and promote a Skyrmion lattice phase [17,18] near TC that
has attracted considerable attention. At low temperatures
the low-field state is helimagnetic wherein the atomic spins
rotate within a plane perpendicular to the helical axis with
a wavelength λh � 62 nm; mutliple domains with helices
aligned along 〈100〉 directions characterize this phase. At
H � 300 Oe the helices of individual domains rotate along
the field to form a single-domain, conical phase in which
spins rotate on the surface of a cone. Further increasing the
field narrows the conical angle until H � 1 kOe where the
ferrimagnetic, collinear-spin state emerges.

II. EXPERIMENTAL METHODS

Phase pure, single crystals of Cu2OSeO3 were grown
by chemical vapor transport [19]. Cu2OSeO3 powder was
first synthesized by three stoichiometric (2 : 1CuO : SeO2)
heat treatments at 600◦ C, each followed by quenching and
grinding. The resulting powder was placed in an evacuated
fused-silica tube with a temperature gradient of 640 ◦C–
530 ◦ C, with NH4Cl as the transport additive. After six weeks,
single crystals with typical sizes of 75–125 mm3 were seen,
and seed crystals were also added to increase yield. The
purity of single crystals were verified by magnetization and
x-ray diffraction experiments, showing the reproducibility of
physical property behavior and good crystallinity.

Specimens were cut from single-crystal ingots, oriented
by x-ray diffraction, and polished into thin parallelopipeds.
We focus in this work on specimens with heat flow along
the [111] direction and perpendicular magnetic field applied
along [11̄0] for which our data are most extensive. Data
for other orientations of heat flow and applied field will
be presented elsewhere [20]. A two-thermometer, one-heater
method was employed to measure the thermal conductivity
in applied magnetic fields up to 50 kOe. Specimens were
suspended from a Cu heat sink with silver epoxy and affixed
with a 1 k� chip heater on the free end. A matched pair of
RuO bare-chip sensors, calibrated in separate experiments and
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FIG. 1. (a) Thermal conductivity measured along [111] for three specimens (at H = 0) labeled by their transverse dimensions �0.
(b) Magnetic field dependence of thermal conductivity (left ordinates) and average specimen temperature (right ordinates) at two temperatures
for �0 = 0.15 mm. Also shown in the upper panel is dM/dH at 1.9 K. Here H is the internal field, i.e., corrected for demagnetization. The gray
shading delineates the different spin phases. The lattice contribution κL is identified as the high-field saturation value of κ for T = 0.67 K, and
κm in the helical, conical, and collinear phases as differences (vertical arrows and dashed lines) (c) Low-T data for the same three specimens
from (a) at H = 0 (circles) and H = 50 kOe (triangles). The solid lines are linear-least-squares fits. (d) κL and κcon

m vs. �0 at T = 0.70 K for
the three specimens from (a).

mounted on thin Cu plates, were attached to the specimen
through 0.125-mm diameter Au-wire thermal links bonded to
the Cu plates and specimen with silver epoxy. Measurements
were performed in a 3He “dipper” probe with integrated
superconducting solenoid.

A total of five different crystals were studied with trans-
verse dimensions, �0 ≡ 2

√
a/π (a is the cross-sectional area)

ranging from 0.15–0.60 mm. Three of these (�0 = 0.15,0.31,

0.60 mm) are the primary focus of this work. A fourth crystal
for which data are less complete, was cut from the same ingot
as �0 = 0.15 mm and appears in Fig. 2. Data for the fifth crystal
appear in Appendix D, Fig. 7.

III. RESULTS AND DISCUSSION

A. Zero-field thermal conductivity

Figure 1(a) shows κ(T ) for H = 0 on three crystals labeled
by their transverse dimension (�0). Notable is the magnitude
which reaches ∼ 400 W/mK (for �0 = 0.60 mm) at the
maximum near T = 8 K, exceptional for a complex oxide.
κ is also strongly sample-dependent for T < 10 K, scaling
with �0 at the lowest T , but not in the region of the maxima.
As we discuss further below, the last feature is attributable to
differing point-defect concentrations to which κL is sensitive
near its maximum. Here we note the likely defects are Se
vacancies (common in Se compounds [21]) and numerical
modeling of κL (Appendixes D, E, Fig. 6) implies vacancy
concentrations per f.u. of 5.6×10−4, 1.6×10−3, and 4.1×10−3

for the specimens with �0 = 0.15 mm, 0.60 mm, and 0.31 mm,
respectively.

We assume the measured thermal conductivity to be a
sum of lattice (phonon) and magnon contributions, κ =
κL + κm, valid in the boundary scattering regime (T � 3 K
as discussed below) when the phonon-magnon relaxation time
(τph−m) exceeds, but is comparable to, the phonon-boundary
scattering time (τb) [22]. Assuming the q = 0 relaxation to
be representative of the magnon system, an estimate τph−m ∼
3×10−8 s at 30 K can be inferred from intrinsic ferromagnetic
resonance linewidths [23]. Since the magnon density declines
as T 3/2, τph−m should increase to ∼ 10−7−10−6 s at T � 3 K
where τb = �0/vph ∼ 10−7 s (using vph ≈ 2 km/s); thus the
assumption is justified.

B. Ballistic lattice and magnon thermal conductivities
distinguished in applied field

The magnetic field dependence of κ through the various spin
phases [Fig. 1(b)], allows for distinguishing κL and κm. The
key features of κ(H ) are as follows: (1) abrupt changes of κ at
the phase boundaries, (2) a suppression of κ with increasing
field in the collinear phase and saturation at the highest fields
(50 kOe) and lowest T . Behavior (2) is typical of κm in
ferromagnets and ferrimagnets [2–8]—spin-wave excitations
are depopulated (gapped) for fields such that gμBH � kBT

(Fig. 4 in Appendix A shows that the field at which κ(H )
saturates corresponds to gμBH/kBT � 6). With [24] g � 2.1
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the magnon gap is ∼ 0.14 K/kOe, such that κ(50 kOe) � κL

for T � 1.2 K.
We find κL ∝ T n [triangles, Fig. 1(c)] with n = 2.7–3,

consistent with phonon mfps limited by the specimen bound-
aries [Fig. 1(d)] and nearly diffuse scattering. The Casimir
expression for diffuse scattering, boundary-limited thermal
conductivity can be used to determine the phonon mean-free
path (�ph) [25]

κL =
(

2π2

15

)(
kBT

h̄

)3

kB〈v−2〉�ph,

where 〈v−2〉 = [(1/3)(1/v3
LA+2/v3

T A)]2/3 is the Debye-
averaged sound velocity. A fit of the low-T κL(T ) data
[Fig. 1(c)] to the form κL = AT n yields A = 1.52,2.32,5.62
and n = 2.96,2.80,2.70, respectively, for the specimens with
�0 = 0.15,0.31,0.60 mm. The power of T slightly less than
3 is common in insulators [26], indicating some specularity
to the boundary scattering. Consistent with observations, the
�0 = 0.60 mm specimen (n = 2.70) was polished on one
of its large faces with finer abrasive (1 μm) than the other
specimens (5 μm). Longitudinal and traverse sound velocities
for the [111] direction from ultrasonic measurements [27]
are vLA � 3.3 km/s and vT A � 1.85 km/s, respectively.
Combining these parameters in the above equation yields
�ph � 0.16,0.24,0.59 mm, in good agreement with the
effective transverse dimension of the specimens.

The corresponding κm in the helical and conical phases
computed by subtraction [vertical arrows and dashed lines,
Fig. 1(b)], are ∝ T 2 for T � 1 K, consistent with constant
magnon mfps (Fig. 2; κcol

m is omitted for clarity). For boundary-
limited spin-wave heat conduction we have [1]

κm = ζ (3)k3
B�m

4π2h̄D
T 2,

where ζ (3) � 1.202. A fit of the κcon
m (T ) data [Fig. 2(b)] at

T < 1 K to the form BT 2 gives B = 1.25,2.3,2.6 W/mK3,
respectively, for the specimens with �0 = 0.15,0.31,0.60 mm;
the equation above implies �m � 0.14,0.25,0.28 mm. The
value of �m for the �0 = 0.60 mm specimen is significantly
smaller than the specimen dimension, suggesting a maximum
magnetic domain size. Similarly, a value of �m ∼ 0.34 mm for
this specimen is inferred from a plot of κm vs �0 [Fig. 1(d)].
Within the multi-domain helical phase, values for �m are
roughly half as large.

The ballistic character of the magnon transport in the T 2

regime is further corroborated by using kinetic theory to
convert κcon

m (or κcol
m ) to magnetic specific heat (Cm) and

then comparing the latter to expectations of spin-wave the-
ory. We have Cm = 3κm/(vm�m), where vm = (2/h̄)Dq,D =
52.6 meV Å2 is the spin-wave stiffness [28] (the dispersion
at low energy is well described [29] by E = Dq2). The
dominant magnons for boundary-limited κm have [30] qdom =
(2.58kBT /D)1/2 such that vm � 1040T 1/2 m/s. Assuming
diffuse scattering of magnons at the crystal (or domain)
boundaries, the computed Cm for all crystals agrees well with
linear spin-wave theory (Appendix B, Fig. 5).

A transfer of energy from the spin system to the lattice
as the magnon gap opens is implied, given the near-adiabatic
conditions of the specimens during measurement. The corre-

FIG. 2. (a) κhel
m = κ(H = 0) − κ(H = 50 kOe) (triangles, right

ordinate) and 	κ = κcon
m − κhel

m (circles, left ordinate). (b) κcon
m

(circles) for the specimens from (a). Error bars reflect uncertainties
in the determination of κL from the Callaway model (Appendix D,
Fig. 6). Also shown are κm data for YIG (squares) from Ref. [8].

sponding increase in the average temperature of the sample
(Tavg) in the high-field regime [solid curves, right ordinates in
Fig. 1(b)] should reflect only a fraction of the total spin energy
since much of it must be distributed within thermometers,
thermal links, and heater. As a further self-consistency check
on our analysis, this fraction is determined (Appendix C) to be
∼4% (30%) at T = 0.67 K (5.2 K).

C. Determining the magnon thermal conductivites at higher T

Given that the phonon mfps are boundary-limited at T �
1 K, the abrupt increase in κ at the helical-conical transition
[H ≈ 250 Oe in Fig. 1(b)] must be attributed to an increase
in κm associated with the approximate doubling of �m noted
above. It is significant that this jump, 	κ = κcon

m − κhel
m
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FIG. 3. (a) Magnon mean-free paths for scattering from the model of Ref. [36] (see Appendix F for details). Subscripts refer to 3-magnon
and 4-magnon normal (3N , 4N ) and umklapp (3U , 4U ) processes, elastic impurity scattering (i), and total resistive scattering (R). The
Poiseuille conditions (see text) are met in the shaded region. (b) κcon

m (T ) for the three crystals from Figs. 1 and 2 with linear scaling. The solid
curves are model predictions for elastic defect concentrations (from top to bottom in ppm): 12, 22, and 62. The dashed curve for the �0 = 0.15
mm specimen represents the spin-wave contribution alone without Poiseuille enhancement. Inset: Magnon mfps from the model, normalized
by low-T boundary-limited values, for each specimen.

[Fig. 2(a)], exhibits the same ∝ T 2 behavior for magnon
boundary scattering at low T as found for both κhel

m and κcon
m

computed by subtracting κL (Fig. 2). Since 	κ is independent
of any assumptions regarding κL, it validates the implicit
assumption that κL is independent of field.

At T > 1.2 K where the applied field is insufficient to fully
suppress κm,	κ represents a lower bound on κcon

m [Fig. 2(b)]
since we expect κL < κhel

m as is clear in the data of Fig. 1(b)
at T = 5.2 K. Very similar results for 	κ(T ) were found
for a specimen with [110] heat flow and perpendicular field
along [11̄0], thus a large κm is not restricted to the [111]
direction [20]. The sharp decline of 	κ at T � 7 K, and its
disappearance for T � 12 K, indicate that κm has a maximum
at T ∼ 5–6 K and becomes negligible for T � 12 K. The last of
these is supported by recent spin-Seebeck measurements [31]
indicating a sharp decline in spin-polarized heat current in the
same temperature regime.

To estimate κcon
m at higher T , this behavior of κm and the

low-T κL are exploited as strong constraints on calculations of
κL(T ) at T � 1.2 K using the Callaway model (Appendix D,
Fig. 6). This procedure dictates the error bars on κcon

m in
Fig. 2(b) and, as noted above, provides estimates of specimen
defect (Se vacancy) concentrations (Appendix E).

D. Anomalous T dependence for κm and possible Poiseuille flow

A most striking feature of both 	κ(T ) and κcon
m (T ), aside

from unprecedented magnitudes, is their increase, for the
two least defective specimens, with a substantially higher

power of T than ∝ T 2 at T � 1 K (Fig. 2). An additional
contribution to Cm from spin-wave “optic” modes cannot
be expected in this temperature regime since those suffi-
ciently dispersive to contribute to κm have energies exceeding
25 meV [28]. We are aware of only two possible mechanisms
that can potentially explain this observation: (1) magnon-
phonon drag, (2) Poiseuille flow of magnons. Theory suggests
that for momentum-independent magnon relaxation time τm,
an additive phonon-magnon drag contribution should take the
general form [32], κdrag ∼ (1/3)CLv2

mτm ∝ T 4τm, thus offer-
ing a stronger T dependence. The relevant magnon-phonon
interactions are normal, momentum-conserving processes.

A more intriguing alternative is that magnons undergo
Poiseuille flow, predicted 50 years ago for both phonons
and magnons [33,34,36], but observed only for phonons
and only in exceptionally clean materials (e.g., crystalline
4He [37]). When the mfp for normal scattering (�N ) is much
shorter than both the transverse dimension (�0) and the mfp
for bulk resistive scattering processes (�R), quasiparticles
undergo many momentum-conserving scattering events before
losing their momentum at the specimen boundaries. Under the
stringent conditions �N < �0/2 < (�N�R)1/2, the effective mfp
approaches that for a particle undergoing random walk with
step size �N , mfp ∼ �2

0/4�N � �0. We pursue this scenario
further since all of the relevant scattering rates for magnons
have been computed [35,36] for a Heisenberg ferromag-
net in the low-T regime, and interactions with phonons
which underlie phonon-drag are predicted to be significantly
weaker.
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Forney and Jäckle [36] calculated rates for normal and
umklapp magnon scattering and elastic magnon-impurity
scattering (nonmagnetic defects). The expressions contain
three parameters (Appendix F), two of which are set by the
lattice constant and exchange coupling. The only remaining
free parameter is the defect concentration. Figure 3(a) shows
the relevant mfps employed for the least defective crystal
(�0 = 0.15 mm). The conditions for Poiseuille flow are met
in the shaded region. κcon

m is computed [solid curves, Fig. 3(b)]
from the kinetic theory expression with a mfp described by
an interpolation formula [Eq. (F1)] that yields the conven-
tional resistive scattering length well outside the Poiseuille
window, �B

R = (1/�0 + 1/�3U + 1/�4U + 1/�i)−1, and tends
toward �2

0/�N within the Poiseuille regime. Interpolation is
controlled by “switching factors” [34,38] related to the ratio
�N/�R (Appendix F and Fig. 8). The data are well described
by the model (with defect concentrations 12, 22, 62 ppm for
�0 = 0.15, 0.60, and 0.31 mm), though the computed maxima
for the more defective specimens deviate from experiment, a
consequence of the Poiseuille window being shifted to lower
T as the impurity scattering mfp decreases. This may signal
inadequacy of the magnon-impurity scattering model, perhaps
because spin defects in the present system may be associated
with Se vacancies as suggested by a correlation between
the defect concentrations inferred for magnons and phonons
(Appendix F, Fig. 9).

IV. SUMMARY

Our observations reveal Cu2OSeO3 to be a model system
for further study of long-wavelength magnon dynamics, e.g.,
our proposal that magnons undergo Poiseuille flow implies that

magnon “second sound” might also be observed. Since both
the conical and collinear-phase magnon heat conductivities
are similar in magnitude, helical magnetism is evidently not
the origin of its unusually large κm. Since long-wavelength
magnons play a prominent role in the spin-Seebeck effect [8,9]
the results presented here also make it possible to investigate
interfacial spin-current transfer using calibrated magnon heat
currents and to explore the possible role of the spin phases on
transfer efficiency.
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APPENDIX A: ADDITIONAL LOW-T κ(H) DATA

Figure 4 shows additional low-T κ(H ) data showing sup-
pression of the magnon contribution at high fields where we
infer κ = κL. We also plot the field Hsat at which κ becomes
field-independent against temperature.

APPENDIX B: MAGNETIC SPECIFIC HEAT
COMPUTED FROM κm

As noted in Ref. [28], the Cu4 tetrahedra of Cu2OSeO3

approximate an fcc lattice, the primitive cell of which is
four times smaller than that of the simple cubic cell. Thus
the standard low-temperature form of the magnetic specific

FIG. 4. Magnetic field dependence of thermal conductivity (left ordinates) and average specimen temperature (right ordinates) for
�0 = 0.31 mm (left panel) and �0 = 0.15 mm (upper right panel). The lower right plot shows the field at which κ becomes field-independent,
Hsat vs. T for all three crystals at the lowest T . Symbols employed are the same as those from Figs. 1 to 3.
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FIG. 5. Measured total specific heat from Ref. [18] and computed
magnetic specific heat from kinetic theory using κm and effective
transverse sample dimension �0 (specimen symbols are the same as
those from Figs. 1 to 3). The dashed line is a T 3 fit to the measured
specific heat data at T < 20 K, and the dash-dotted line represents
the specific heat for an fcc magnetic lattice, converted to molar units
for Cu2OSeO3 using 1mol = 5.35×10−5m3.

heat per volume becomes Cm = (0.113/4)kB (kBT /D)3/2 (this
factor of 1/4 also appears in expressions for the spin-wave
thermal conductivity). Values of Cm (as described in the text)
were computed from the measured κcol

m (or κcon
m ) using kinetic

theory and �m = �0 for the four crystals from Fig. 2(a), with
the exception of the �0 = 0.60 mm crystal for which we used
�m = 0.34 mm based on the effective length inferred from
Fig. 1(d). The theory and experiment agree well (Fig. 5).

APPENDIX C: ENERGY TRANSFER FROM
SPINS TO LATTICE AT HIGH FIELD

We estimate the fraction of total spin energy transferred to
the lattice of the �0 = 0.15 mm specimen at T = 0.67 K, upon
gapping out the spin waves in maximum field [Fig. 1(b)], as
Q/um where Q = CL	T is the heat transferred per volume,
computed from the lattice specific heat (CL) and change in
Tavg induced by applied field (	T ), and um is the total energy
per volume in the spin system

um = D

16π2

(
kBT

D

)5/2


(5/2)ζ (5/2; 1),


(5/2) = 3π1/2/4 and ζ (5/2; 1) � 1.341. With 	T = 0.043
K [Fig. 1(b)] and using the T 3 fit to the measured specific heat
(dashed line, Fig. 5) to compute CL, we find Q = 0.14 J/m3

and um � 3.8 J/m3, such that Q/um ≈ 0.036. At T = 5.2 K a
similar analysis yields Q/um ≈ 0.30.

FIG. 6. κ(H = 0,T ) for the three specimens shown in Fig. 1
(solid circles) and computed κL (solid and dash-dotted curves) for two
parameter sets for each specimen. Solid curves (from top to bottom,
with the same units of Table I): v = 2.06, A = 1.87, b = 6.35, C =
36, γ = 1/100; v = 2.06, A= 1.9, b = 6.76, C = 10, γ = 1/50;
v = 2.35, A = 1.72, b = 6.35, C = 90, γ = 0. Dash-dotted curves
(from top to bottom): v = 2.15, A = 1.77, b = 6.6, C = 37, γ =
1/100; v = 2.06, A = 1.87, b = 6.7, C = 14.5, γ = 0; v = 2.35,

A = 1.5, b = 6.35, C = 110, γ = 0.

APPENDIX D: CALCULATIONS OF κL(T )

The Callaway model [39], incorporating its recent up-
date [40], was employed to compute κL(T ) for each of the
crystals, with parameter ranges restricted by the following
constraints: (1) κL fits the low-T , high-field data (where
κL is inferred directly) and the T � 12 K, zero-field data
(where κm is inferred to be negligible by the vanishing of
	κ), (2) the maximum in κcon, computed by subtracting κL

from κ measured at the conical-collinear transition, should
occur at T ≈ 5−6 K where 	κ has its maximum, (3) κL �
κ(H = 50 kOe).

The integral expression for κL is

κL = kB

2π2v

(
kB

h̄

)3

T 3

[∫ �D/T

0

x4ex

(ex − 1)2 τC(x,T )dx

]

×
(

1 + τC(x,T )/τN (x,T )

τC(x,T )/τR(x,T )

)
,

with

f (T ) =
∫ �D/T

0

x4ex

(ex − 1)2 f (x,T )dx

/∫ �D/T

0

x4ex

(ex − 1)2 dx,

where v is the Debye-averaged sound velocity (see above),
�D = (h̄v/kB)(6π2N/V )1/3 the Debye temperature, x =
h̄ω/kBT the reduced phonon energy, τ−1

C (x,T ) = τ−1
N (x,T ) +

τ−1
R (x,T ), and τ−1

N (x,T ) and τ−1
R (x,T ) are phonon scatter-

ing rates for normal (momentum conserving) and resistive
(momentum nonconserving) processes, respectively. τ−1

R (x,T )

224407-6



BALLISTIC MAGNON HEAT CONDUCTION AND POSSIBLE . . . PHYSICAL REVIEW B 95, 224407 (2017)

TABLE I. Ranges of scattering parameters from Callaway mod-
eling of κL.

�0 (mm) v(km/s) A(104 K−4) b C(K−4)

0.15 2.06–2.15 1.8–2.0 6.6–6.9 10–15
0.31 2.15–2.35 1.5–1.8 6.0–6.6 80–110
0.60 2.06–2.3 1.75–2.0 6.3–6.6 34–40

included terms for scattering from boundaries, other phonons
(Umklapp scattering), and point-like defects (Rayleigh)

τ−1
R (x,T ) = v/�ph + Ax2T 4 exp

(
−�D

bT

)
+ Cx4T 4,

where �ph = �0 is the boundary-limited phonon mean-free
path and A, b,C are constants. The normal scattering rate
was taken to have the same frequency dependence as for
Umklapp scattering [40], but without the exponential T

dependency, τ−1
N (x,T ) = γAx2T 4, with γ a constant. A broad

range for γ was explored in the fitting and it was found that
only for γ � 1/50 were the constraints satisfied. γ = 1/50
implies a normal scattering rate that begins to exceed that for
Umklapp scattering at T � 10 K. Phonon-magnon scattering
was assumed to be substantially weaker than other scattering.

Figure 6 shows κ(H = 0,T ) data for the three specimens
from Fig. 1 along with two κL curves for each (solid and
dash-dotted curves). These curves border the ranges (shading)
defined by the constraints noted above. Data points for κm in
Fig. 2(b) correspond to the middle of these ranges with error
bars equal to the width of the shaded region. A summary of
the scattering parameters is provided in Table I.

In Fig. 7 we compare κ(T ) at H = 0 for the most defective
�0 = 0.31 mm specimen from Figs. 1 to 3 with a less defective
crystal having the same �0. Consistent with expectations,
Callaway-model parameter sets for κL (solid curves, right
panel) differ principally in the defect concentration (C).

APPENDIX E: ESTIMATE OF SE VACANCY
CONCENTRATION FROM POINT-DEFECT

FITTING PARAMETERS FOR κL

Interpreting the point-defect phonon scattering rate (Table I
above) as entirely due to Se vacancies, the vacancy concentra-
tion can be estimated using [42]

τ−1
d = n

7

9a3

4πv3

(
MSe

M

)2

ω4,

where n is the concentration of vacancies on the Se sublattice,
a = 1.22 Å is the Se atomic radius, v = 2060 m/s is the sound
velocity, and MSe/M � 2.05 is the ratio of the Se mass to the
average mass. Using values C = 13,37,95 K−4 from Table I
for the �0 = 0.15,0.60,0.31 mm crystals yields concentrations
per f.u., 5.6×10−4, 1.6×10−3, 4.1×10−3, respectively.

APPENDIX F: MAGNON SCATTERING RATES
AND MODELING OF POISEUILLE FLOW

Forney and Jäckle [36] computed the thermally averaged
3-magnon and 4-magnon normal (3N, 4N ) and umklapp
(3U, 4U ) scattering rates and magnon-impurity scattering
rate (i) for a quadratic magnon dispersion within the
Born approximation, valid for small impurity concentration,
T � TC and T � kB	, where 	 is the energy gap (∼12 μeV
for Cu2OSeO3):

τ−1
3N = 2.6S

kB

h̄
T 2

d T −3/2
e T 1/2, τ−1

4N = 6.1×10−4 kBT 4

S2h̄T 3
e

,

τ−1
3U = 1.4×103 SkBT 2

d

h̄(TeT )1/2
exp (−12Te/T ),

τ−1
4U = 2

S2

kBT 3/2

h̄T
1/2
e

exp (−12Te/T ),

τ−1
i = 0.4c

kB

h̄

kBT 5/2

T
3/2
e

,

FIG. 7. κ(H = 0,T ) for two crystals with �0 � 0.31 mm in log-log scaling (left) and linear scaling (right). Open circles are for the same
crystal from Figs. 1 to 3. Solid curves are produced using the Callaway model using (in units from Table I) v = 2.35, A = 1.72, γ = 1/50 and:
(upper curve) b = 6.4, C = 26; (lower curve) b = 6.2, C = 80.
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FIG. 8. �, �2, and F (Leff ) used for the Poiseuille analysis of κcon
m

for the least defective (�0 = 0.15 mm) crystal [Fig. 3(b)].

where

Td = (gμB)2

kBa3
, Te = 2SJ

kB

.

We initially rescaled the values Td = 0.012 K and Te =
1.0 K employed by the authors of Ref. [36] for EuS
(TC = 16.5 K) using the ratio of lattice constants and TC (as
a surrogate for J ). These gave Td = 0.004 K and Te = 3.5 K.
Subsequently we settled on Te = 4.2 K, which provided better
agreement with the data for the least defective specimen. The
scattering rates were adopted without modification with the
exception of the exponent of the Umklapp scattering rates (we
used 10 rather than 12 as above) and the prefactor of τ−1

4U

(we decreased it by a factor 380). As noted by that authors of
Ref. [36], these changes put our 4-magnon Umklapp scattering
rate in better agreement with that computed by Schwabel and
Michel [41], and produced better agreement with the data. With
these modifications, the only remaining adjustable parameter
was the impurity concentration (c).

FIG. 9. Nonmagnetic defect concentration for magnons from the
model fitting vs Se vacancy concentration inferred from Callaway
fitting of κL.

The scattering rates were incorporated into an interpolation
formula for the magnon thermal conductivity using the
function described in Ref. [38] and derived by Alvarez and
Jou [43]

κm = 1

3
Cmvm

[
�B

R(1 − �) + �RF (Leff)�
]
,

F (Leff) = 1

2π2

(
Leff

�

)2
⎛
⎝

√
1 + 4π2

(
�

Leff

)2

− 1

⎞
⎠, (F1)

where � = 1/(1 + �N/�R), Leff = π�0/(2
√

2), � ≡√
�N�R, �R = (1/�3U + 1/�4U + 1/�i)−1, and �B

R =
(1/�0 + 1/�R)−1. We used �2 in place of � in the
above expression as it provided a better interpolation → 0 at
low-T (Fig. 8).

The impurity scattering concentrations (c) employed to
produce the curves in Fig. 3 correlate with those found for
phonon-defect scattering (Fig. 9) in the Callaway analysis of
κL (Table I).
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