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Attenuation process of the longitudinal phonon mode in a TeO2 crystal in the 20-GHz range

S. Ohno,1,* T. Sonehara,1 E. Tatsu,1 A. Koreeda,2 and S. Saikan1

1Department of Physics, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
2Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University, Kusatsu 525-8577, Japan

(Received 13 July 2016; revised manuscript received 15 May 2017; published 5 June 2017)

We experimentally investigated the hypersonic attenuation process of a longitudinal mode (L-mode) sound
wave in TeO2 from room temperature to a lower temperature using Brillouin scattering and impulsive stimulated
thermal scattering (ISTS) measurements. For precise measurement of the Brillouin linewidth at low temperatures,
whereby the mean free path of the phonon becomes longer than the sample length, it is indispensable that the
phonon should propagate along the phonon-resonance direction. To figure out the suitable direction, we defined
two indices characterizing a degree of phonon divergence and a purity of propagation direction. The best
direction that we found from these indices is [110] direction in TeO2, and it was used to discuss the temperature
and frequency dependences of Brillouin spectra. We extracted the temperature dependence of the attenuation
rate of T 4 from the modulated Brillouin spectra due to the phonon resonance below Debye temperature. The
frequency dependence ω1 of the hypersonic attenuation was also estimated from the polarization dependence of
the Brillouin linewidth. Theoretically, it predicted that the L-mode phonon attenuation at low temperatures in
TeO2 is a result of Herring’s process, which shows the attenuation behavior of ω2T 3. The ω1T 4 dependence is
not allowed in Herring’s process but is allowed by the L + L → L process, which has been considered to be
forbidden so far. We evaluated the thermal phonon lifetime using ISTS and established that it was finite even at
20 K, thereby allowing the L + L → L process. Therefore, we conclude that the L + L → L process dominates
the attenuation of an L-mode phonon in TeO2 in the low-temperature region.

DOI: 10.1103/PhysRevB.95.224301

I. INTRODUCTION

Phonon-scattering processes in crystals is a long-standing
subject in the fundamental physics of condensed matter
[1,2], moreover it is also an attractive issue from engineering
that treats recent thermal transfer problems [3,4]. Recent
improvements in techniques of radio frequency and lasers
have enabled very precise measurements of high-frequency
acoustic phonons.

We have developed a high-resolution, high-sensitivity
stimulated Brillouin spectrometer [5,6], and it has been applied
to investigate the elastic properties of some materials at
low temperatures [7–11]. In crystals, the stimulated Brillouin
spectrum at low temperatures can be substantially modulated
(“jagged”) as we reported in Ref. [5], due to the multiple
reflection of long-lived phonons at the sample boundaries.
Although the effect had obscured precise estimate of the
phonon lifetime, our recently-established methodology [12]
has enabled us to successfully extract the essential lifetime
of the longitudinal (L)-mode phonons in a TeO2 crystal, even
from a modulated Brillouin spectrum.

The hypersonic attenuation in TeO2 was reported by Damen
et al., and their experimental results were accounted for in
terms of the phonon-phonon scattering process [13]. They
argued that Herring’s scattering process [14], in which an
L-mode phonon collides with a slow transverse mode phonon
(ST-mode) and then a fast transverse mode (FT-mode) phonon
is created, L + ST → FT , was observed in the phonon
propagating along the [001] direction. However, Tamura et al.
theoretically showed [15] that the Herring’s process along the
[001] direction cannot occur and they concluded that Herring’s
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process could not account for the experimental results of
Damen et al. when the thermal phonon lifetime was not
taken into account. The purpose of the present paper is to
clarify the attenuation process of an L-mode phonon in TeO2

by considering the thermal-phonon lifetime measured in the
low-temperature range as well as the appropriate treatment of
the modulated Brillouin spectra.

Historically, the discussions taking account of a finite
lifetime of thermal phonon at the temperature region in
which the sound wave duration 1/ω is shorter than the
thermal phonon lifetime τ , i.e., ωτ > 1, have been succeeded
to explain the attenuation behavior in various materials. A
finite lifetime of thermal phonon changes the situation of the
selection rule derived on three phonon processes assuming the
infinite thermal phonon lifetime. Experimental [16,17] and
theoretical [18] works in quartz crystal have been revealed
that the L + L → L process can be allowed by considering
the finite τ . Furthermore strong temperature dependence of
the attenuation rate shown in the low temperature region in
quartz crystal has been turned out to be attributed to the
temperature dependence of τ . In silicon, a finite thermal
phonon lifetime has been required to explain the attenuation
process of L and T mode waves [19]. Recently, subterahertz
acoustic phonon attenuation due to Herring process has been
reported in composite semiconductors, e.g., GaN [20], GaAs
[21], with ground swell of interest in thermoelectric and/or
nanodevices. These experimental conditions were designed so
that ωτ was much larger than unity. We consider that the finite
lifetime of thermal phonon should be taken into account in
TeO2 as well. In the present work, we experimentally estimate
the value ωτ in TeO2 and discuss the origin of the L-mode
phonon attenuation based on the value.

TeO2 has been utilized in acousto-optic devices due to
its highly photoelastic performance. To reveal the attenuation
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process in TeO2 is important not only from the viewpoint of
fundamental material physics but also from the engineering
for photoelastic devices including phononic metamaterials.
As it has been discussed in photonic metamaterials [22,23],
the attenuation of wave is one of the significant features to
characterize the functionalities of a consisting metamaterial.
We consider that the investigation of attenuation process in
functional materials is one of conventional and novel issues.

In the next section, we introduce two indices to assess and
quantify the phonon divergence and the purity of propagation
in order to determine the best direction for the phonon
resonance. Then we briefly review some theoretical predictions
that have been reported so far in regard to the behaviors
of the hypersonic attenuation depending on temperature and
phonon frequency. In the experimental section, we show the
analyzed results of the Brillouin spectra and thermal phonon
lifetimes obtained by impulsive stimulated thermal scattering
measurement (ISTS) in a TeO2 crystal. After that, we discuss
the origin of the behavior of the attenuation rate and finally
show our conclusions.

II. THEORETICAL BACKGROUND

In this section we introduce and organize some theoretical
background necessary for discussion of the attenuation process
of phonons in a crystal.

A. Optimal direction for Brillouin spectroscopy

The phononic properties of a crystal are characterized by
the crystal’s anisotropic features [1,24–26], which affects the
propagation direction of sound waves. We have to treat the
anisotropy carefully in the Brillouin scattering measurement
at low temperature, in which the mean free path of a phonon is
longer than the size of the interaction region characterized
by the laser beam width and the sample length. As we
pointed out in Ref. [12], one must confine the phonon in
the interaction region in a crystal and cause the phonon to
undergo multireflection along the pure propagation direction.
In practice, this lengthens the interaction length enough to
estimate the attenuation rate from the Brillouin spectra.

At low temperature, phonon divergence and off-axis prop-
agation make the interaction length shorten. In order to
estimate the two kinds of propagation properties, we propose
corresponding indices of div v′′

g and β. div v′′
g shows the degree

of divergence of a phonon through the propagation. Since a
large value means that the phonon beam is apt to diverge while
propagating, one should choose the minimum value direction
for the phonon propagation as to avoid phonon divergence
effect. This index is very similar to the inverse of phonon
focusing factor introduced by Maris [27,28] whereas a factor
of inner product with a phonon wave vector q does not appear
in our index. In order to separate the purity of propagation
of phonons from the phonon divergence (focusing) effect,
the angle between the energy flux and the wave vector, β, is
appropriate as another index: a direction of β = 0 is called the
pure propagation direction. The definition and the derivation
of these indices are detailed in Appendix A. By using these
indices, one can find a suitable direction to measure phonon
attenuation rate through the multireflection of phonon.
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FIG. 1. Distribution of div v′′
g for the L-mode phonon in TeO2

crystal.

The distribution of div v′′
g for an L-mode phonon on

the (θ,φ) plane of a TeO2 crystal is shown in Fig. 1. In
this calculation, we used the values of density and the
stiffness tensor given in Ref. [29]. In the figure, the red and
purple regions indicate the focusing and diverging directions,
respectively. It can be seen that the directions of the minimal
index were [110] [(θ,φ) = (90◦,45◦)] and [001] (θ = 0◦), as
well as their symmetrical equivalents. Hence, the divergence
of phonons propagating in these directions is suppressed. In
particular, since the red region around the [110] direction
is quite wide, this direction has an advantage in robustness
against experimental misalignment of the laser beam. On the
contrary, in the [100] [(θ,φ) = (90◦,0◦)] direction, the phonon
is likely to diverge.

In an L-mode phonon in TeO2 crystal, the distribution of β

is shown in Fig. 2. In this figure, the region β < 5◦ is colored
in order to emphasize the tiny variation of the index of purity.
We find that the directions [100], [001], and [110], as well as
the direction around (θ = 40◦,φ = 45◦) and their symmetrical
equivalents, are pure propagation directions.

From the results of the indices both for the divergence and
for the purity of the propagating L-mode phonon in TeO2, the
phonon along the [110] direction is found to propagate with the
lowest divergence and perfect purity. Thus, we can conclude
that the [110] direction is the most appropriate for measuring
the Brillouin spectrum in TeO2 at low temperature.

B. Supersonic attenuation process

In this section, we summarize the theories to date for
the supersonic attenuation process of the L-mode phonon in
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FIG. 2. The index of pure propagation in an L-mode phonon of
TeO2 crystal.
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TABLE I. Scattering process, coefficient a,b in ��1 ∝ ω�1
aT b, and assumed condition of thermal phonon lifetime τ .

Dependence Lifetime

Process a b τ Remarks Reference

L + L → L 1 4 ∞ Collinearly ordered in a Herring diagram [26]
1 4 finite Allowed due to uncertainty of thermal phonon energy [18,26]
0 >6 finite Temperature dependence of τ is predominant. [17,26]

L + FT → FT 1 4 finite Forbidden when τ → ∞ due to mode dispersion [17,26]
L + T → L 4 1 ∞ [25]
L + ST → FT 2 3 ∞ Herring process is forbidden in isotropic materials [14,15]

crystals. In particular, we briefly review three-phonon process
and Akhiezer damping, which are dominant at low temperature
and room temperature, respectively.

1. Three phonon process

In the 1950s, Landau and Rumer considered that collision
with a thermal phonon, termed the three-phonon process,
may cause supersonic attenuation in crystals [30]. In their
discussion, the anisotropy of the crystal was neglected and the
thermal phonon lifetime τ was not considered, namely τ was
assumed to be infinite. Later, the theory of the three-phonon
process was improved to consider the dispersion of the sound
velocity. According to the theory [15,26], the phonon under
consideration, �1, collides with a thermal phonon, �2, and
generates another thermal phonon, �3; the attenuation rate
��1 can be written as

��1 = πh̄

8ρ3V ω�1

∑
�2,�3

∣∣��1�2�3

∣∣2

ω�2ω�3

2
(
n0

�2
− n0

�3

)

× δ
(
q�1

+ q�2
− q�3

)
δ
(
ω�1 + ω�2 − ω�3

)
, (1)

where ��1�2�3 is a three-phonon matrix element including
information about the stiffness tensor and the anharmonicity
tensor in a crystal and n0

�i
denotes the Bose-Einstein (BE)

distribution function for the phonon �i . The BE distribution
function depends upon the temperature of the crystal. The
energy of the phonons under consideration is conserved by
the term δ(ω�1 + ω�2 − ω�3 ), which originates with Fermi’s
golden rule. The derivation of the delta function is based on the
assumption that the lifetime of the thermal phonons is suffi-
ciently longer than the interacting time. In view of this premise,
the theory of the three-phonon process is mainly applicable
at lower temperature than the Debye temperature of the
crystal. The term δ(q�1

+ q�2
− q�3

) is related to momentum
conservation. The summation

∑
�2,�3

running over all thermal
phonon modes that satisfy both energy and momentum conser-
vation contributes to the attenuation rate in the three-phonon
process in a crystal at low temperature. Hereafter, we will omit
the subscription beside the phonon mode for simplicity accord-
ing to the conventional notation, e.g., L + L → L, in which
the terms indicate �1, �2, and �3 from the left, respectively.

The contribution to the attenuation rate was classified into
some kinds of scattering processes according to different
vibration modes of the thermal phonon and the way how the
models deal with their lifetimes. In Table I, we can see the
classified processes that have been predicted in the literature,

together with their temperature and frequency dependences
[14,15,17,18,25,26]. For the cases of the infinite thermal
phonon lifetime in the table, one can see the relation

��1 ∝ ω�1
aT b a + b = 5, (2)

which is known as Herring’s scaling rule [14]. This relation is
useful to indicate validity for both frequency and temperature
dependences of attenuation rate given by the analysis of
experimental results.

In particular, the L + L → L process under the condition
of infinite thermal phonon lifetime can be satisfied only
in the situation where all the wave vectors of the three
phonons are similarly directed, since the wave vectors of the
L-mode phonon are shorter than those of two other T modes.
Herring’s diagram for the L + L → L process along the [110]
direction in TeO2 is shown in Fig. 3 [14]. The slowness
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FIG. 3. Herring’s diagram for the L1 + L2 → L3 process in TeO2

along the [110] direction. Upper and lower panels depict the cross
sections of the slowness surfaces within the xy- and z-[110] planes,
respectively.
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surfaces for ω2 and ω3 have origins O and O ′, respectively;
the displacement between these origins is q1. The slowness

surfaces touch together at point P . The vectors
−→
OP and

−−→
O ′P ,

respectively, correspond to q3 and q2. Considering an apparent
characteristic of a slowness surface of L mode on which
has no negative curvatures, a strict energy-conservation rule
related to participating phonons, consequently, guides such
a situation of a point contact. Furthermore, the momentum
conservation in the L + L → L process is not possible owing
to both the frequency dispersion of the acoustic phonon and the
long-wave-vector feature of the thermal phonon. This situation
is very similar with the difficulty to satisfy the phase matching
condition of nonlinear optical effects in a dispersive nonlinear
crystal [31]. Hence, it has been believed that the L + L → L

process does not dominate attenuation in TeO2.
However, if finite thermal phonon lifetime is assumed, L +

L → L can be allowed. For example, the L + L → L in a
quartz has been observed and b becomes higher than 6, due to
temperature dependence of τ [17,18]. In TeO2, the fact that the
two slowness surfaces, shown in Fig. 3, have approximately
the same positive curvature in the vicinity of the point of
contact plays an important role in the case that the uncertainty
of energy is allowed as discussed later.

2. Akhiezer damping

Akhiezer [32] described the phonon attenuation of sound
wave when the lifetime of the thermal phonon τ is significantly
shorter than the oscillation period of the considered sound
wave 1/ω, namely, ωτ � 1, thus it should be realized at room
temperature. This theory incorporates the energy loss which
is attributed to a modulated thermal equilibrium state of the
thermal phonons due to the deformation by the sound wave.
Accordingly, the attenuation is given as [26,33]

� = CVγ 2T ω2τ

3ρv3
, (3)

where γ is the Grüneisen constant of a crystal. Using the
thermal conductivity relation κ = 1

3CVv2τ , � is written as

� = γ 2κT ω2

3ρv5
. (4)

This means that the attenuation rate linearly depends on
the temperature around this temperature region. Furthermore,
since in the case of sufficient high-temperature limit, temper-
ature dependence of κ becomes κ ∝ 1/T , the attenuation rate
is independent of the temperature [34].

III. EXPERIMENTS

A. Stimulated Brillouin scattering measurement

1. Temperature dependence

Previously, we measured the temperature dependence of
the stimulated Brillouin spectra of the L-mode phonon in
TeO2 crystal with a high resolution stimulated Brillouin
spectrometer [5]. The measurement setup is shown in Fig.
4. Tunable monolithic type lasers are employed as pump and
probe beam. The frequency difference between the two lasers is
real-time monitored through the beat frequency measurement

Isolator

Isolator

Lock-in amp.

PC

FP

ABPR

Sig.
Ref.

Freq. counter

Spectral analyzer
Pump

Probe

Lasers 
1.064 μm

Sample

Cryostat

Chopper

Detector

Beat freq.Frequency tune

Signal

8888888Hz

FIG. 4. Experimental setup for a stimulated Brillouin scattering
spectrometer. Monolithic type Nd:YAG lasers are used for the pump
and probe lasers. The frequency difference between the pump and
probe waves is real-timely monitored by using a frequency counter
through the beat frequency between the waves. The counterpropa-
gating laser beams are focused into a sample crystal in a continuous
flow type cryostat. FP and ABPR denote a scanning Fabry-Perot
interferometer and an auto-balanced photoreceiver, respectively. See
Ref. [12] for details.

by a frequency counter. The use of stable monolithic type
lasers and the real-time monitoring of the frequency difference
enable us to achieve very high frequency resolution of 20 kHz.
The counterpropagating pump and probe beams are focused
into a continuous-flow type cryostat in which a TeO2 crystal
was set.

In the measurement, the directions of phonon propagation
and the polarization of both the pump and probe laser beams
were set to [110] and [001], respectively. The conditions to
observe Brillouin signal in an anisotropic crystal are available
by using the selection rule of the Brillouin scattering [35].
As the above discussion suggests, [110] in TeO2 is the
best direction for measuring the Brillouin scattering at low
temperature using the L-mode phonon, so that we succeeded
in observing the spectral modulation at low temperatures by
reflecting the phonon resonance effect.

The obtained Brillouin spectra in a 5 mm thickness sample
along the [110] direction are shown in Fig. 5 with blue symbols,
from which, in our previous work [12], we have selectively
introduced characteristic spectra. The Brillouin frequency
gradually moves to a high frequency region with decreasing
temperature. The linewidth narrows and the spectral shape
was significantly modulated from trivial Lorentz function to
multipeak structure below 50 K. The modulated spectrum was
reproduced by the model in which the phonon resonated in
a one-dimensional system. We were also able to estimate
the attenuation rate from the modulated spectrum [12]. The
analyzed temperature dependence of the attenuation rate is
shown in Fig. 6.

In the temperature region from 10 to 50 K, the attenuation
agreed with � ∝ T 4. Gradually, the slope decreased as the
temperature increased and finally became shallower than � ∝
T 1 at room temperature. Below 10 K, the attenuation rate
could not be measured precisely because it is comparable with
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the spectral resolution of 20 kHz of the spectrometer. The
behavior of the temperature dependence of the Brillouin shift
is not presented here but followed our previous work [7].

2. Frequency dependence

To obtain the frequency dependence of the attenuation rate,
one must measure the Brillouin linewidth with changing ωB.
Here, we tried to measure the frequency dependence of the
attenuation rate utilizing the high spectral resolution of our
Brillouin spectrometer. In the condition of Brillouin scattering,
the Brillouin shift ωB is given by

ωB = 2�n
v

c
sin

θ

2
, (5)

where � is the angular frequency of the incident light, c is
the speed of light, n is the refractive index of the medium,
and θ is the scattering angle. In general, the spontaneous
Brillouin scattering measurements can change ωB by tilting
the incident angle θ/2. However, we had to devise another
approach as to utilize the same experimental setup from the
following reasons: (i) a back-scattering setup (θ = π ) for a
sufficiently long interaction length to get a high signal-to-noise
ratio and to suppress transit time broadening of the Brillouin
linewidth, and (ii) a limit of tunable range of laser waves
up to ��/2π = 30 GHz that implies a too small change of
�ωB/ωB ∼ 0.01% to reveal the frequency dependence.

Our idea for changing ωB was to apply the difference in
the refractive indices of ordinary and extraordinary waves,
i.e., no and ne, in a uniaxial crystal. According to Ref. [36],
the refractive indices in TeO2 are given as no = 2.2005, or
ne = 2.3431 for a 1.0642 μm light. In this case, �ωB/ωB ∼
6% is expected, and it may be possible to detect the frequency
dependence of the attenuation rate in the temperature region
in which the Brillouin linewidth is relatively broad.

We measured the Brillouin spectrum in the L-mode phonon
along the [110] direction of TeO2 at several temperatures,
including 373, 298, 100, and 70 K, with polarization directions
of [110] and [001] being the ordinary and extraordinary
directions, respectively. A sample was set into a cryostat
and an oven for the measurements below and above room
temperatures, respectively. The cryostat has a thermometer
which enables us to acquire temperature in real time. We could
precisely estimate the temperature fluctuation during the data
integration. On the other hand, our oven did not have any
system to output monitoring temperature.

The most prominent difference in the linewidth was
observed at 373 K, as shown in Fig. 7. In this figure the
central frequencies of both spectra are shifted for comparison
of the linewidth, and the signal height is normalized to
unity. The center frequencies of the spectra for ordinary and
extraordinary were observed 18.258 96 and 19.437 33 GHz by
our high resolution Brillouin scattering spectroscopic system,
respectively. It is observed that the spectral linewidth provided
by the ordinary index is significantly narrower than the other.

The analyzed results of frequency dependence as a function
of temperature are shown in Fig. 8. The frequency dependence
a on the vertical axis is obtained by

a = log (�(ne)/�(no))
log (ωB(ne)/ωB(no))

, (6)
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where �(n) and ωB(n) are, respectively, the Brillouin linewidth
and the shift of the refractive index n. Hence, the relationship
between a and � is given by

� ∝ ωa. (7)

The temperature dependence of a is shown in Fig. 8.
We estimated experimental error bars through the spectral
broadening �� due to the temperature fluctuation �T during
the measurement as

� + �� 	 � + ∂ωB

∂T
�T, (8)

where ∂ωB/∂T means Brillouin shift change with temperature.
We could estimate the error bars only for the red symbols
measured in the cryostat but not for the green crosses measured
in the oven. The value of a is around 2 above room temperature
and decreases with temperature. Below 100 K, a is sufficiently
less than 2 even with taking into account its large error bar.

B. ISTS measurement

In earlier discussions about the attenuation process of an
L-mode phonon in TeO2, it is assumed that the lifetime of
the thermal phonon is much longer than the interaction time

 0
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a 
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FIG. 8. Frequency dependence of the Brillouin linewidth in the
[110] L-mode phonon of TeO2 as a function of temperature.
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FIG. 9. A schematic of the impulsively stimulated thermal scat-
tering (ISTS) method for measuring thermal phonon lifetimes. The
probe laser was scattered by the thermal grating generated by the
pump pulses. The scattered probe intensity varying in time was
measured with an oscilloscope.

[13,15]. However, the lifetimes of actual thermal phonons
are finite. Here we experimentally estimate the lifetime
using ISTS measurement. In ISTS measurement, the phonon
lifetime is estimated by the duration time of a diffracted
light due to the thermal grating impulsively generated by a
pulsed laser interference. This method was experimentally
developed by Eichler et al. [37], and its theoretical treatments
were comprehensively discussed by Yan and Nelson [38,39].
We used the same experimental setup with that reported
previously [40]. A schematic of the experimental setup for
ISTS measurement is shown in Fig. 9. A frequency doubled
Nd:YAG laser was used for a pump laser. Its wavelength
and pulse width were 532 nm and 8 ns, respectively. For a
probe beam, we used a continuous wave Ar ion laser whose
wavelength was 488 nm. The pulse beam was split in two
paths and focused into a TeO2 crystal with an intersecting
angle of 9.14 mrad in order to make a thermal grating by their
interference. Simultaneously, a probe beam was incident to
the crystal and the Bragg-diffracted light due to the thermal
grating was detected by a photomultiplier. The transient signal
of the diffracted light was measured by an oscilloscope after
amplification.

The thermal grating decays with the diffusion of the local
thermal distribution due to the thermal diffusion process.
From this measurement, one can obtain the decay rate of the
thermal distribution �therm and can derive the thermal diffusion
constant D as D = �therm/q2, where q is the wave number of
the thermal grating [40]. Consequently, the lifetime of thermal
phonon τ is given as

τ = 3D/v2 = 3�therm

q2v2
, (9)

where v is the sound velocity. It is worth noting that, by ISTS,
one can obtain the lifetime of the “resistive” thermal phonons
in the hydrodynamic (and diffusive) phonon regime [41]. Thus,
unless the normal phonon scattering (N process) is dominant,
ISTS gives a reasonable estimate of the thermal phonon
lifetimes consistent with those estimated from literature values
of the specific heat and the thermal conductivity [40–42]. Since
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FIG. 10. Temperature dependence of the thermal phonon lifetime
estimated by the ISTS measurement.

second sound has not been observed in TeO2, N process is not
considered to be dominant. Therefore, ISTS should give us a
reasonable estimate of the thermal phonon lifetime relevant
to the attenuation of the longitudinal sound wave investigated
here.

Our result of temperature dependence of thermal phonon
lifetime is shown in Fig. 10. In this derivation, we used v =
2.3 × 103 m/s, which is the mean value of the transverse and
longitudinal sound velocities. In our experiment, the value of
q was 1.08 × 105 m−1. The lifetime becomes longer as the
temperature decreases. Compared with the reported values,
the order of our results at 77 and 300 K due to ISTS are in
good agreement with the lifetime in TeO2 reported by Ewbank
and Newman [43]. The plateau of the lifetime around 1 ns,
shown in the low-temperature region, is caused by the time
resolution of the oscilloscope that we used.

IV. DISCUSSION

A. Above Debye temperature

First, we discuss the behavior of the attenuation rate in the
relatively high-temperature region. The Debye temperature
of TeO2 has been reported to be around 230 K [7,44]. As
shown in Fig. 6, around the Debye temperature, the atten-
uation linearly depends on temperature. Furthermore, in the
temperature region, T > 300 K, the temperature dependence
b of the attenuation rate in � ∝ T b decreases with increasing
temperature and becomes lower than unity. This behavior is
consistent with the attenuation rate, Eq. (4), given by the
Akhiezer theory. Around room temperature, which is higher
than Debye temperature in TeO2, the thermal conductivity κ

in a phonon gas model can be given as

κ = 1
3Cvl, (10)

where C and l are the specific heat and mean free path of
thermal phonons, respectively [1]. In the Debye model, the
specific heat depends little on temperature above the Debye
temperature; this is well known as the Dulong-Petit law. The
sound velocity v in TeO2 also depends little on temperature, as
shown in the Brillouin shift [7]. The temperature dependence
of the mean free path of thermal phonons is given as l ∝ 1/T in

the sufficiently high-temperature region [34]. Hence, at higher
temperatures, the index b may be lower than unity. On the other
hand, we obtained the power of the frequency dependence a

is around 2 in this temperature region as shown in Fig. 8. This
fact also supports the Akhiezer theory given in Eq. (4). From
these results, we can conclude that the hypersonic attenuation
process of the L-mode phonon in TeO2 above the Debye
temperature is given by Akhiezer theory.

B. Below Debye temperature

Here we discuss the attenuation rate below the Debye
temperature. In this temperature region, it has been believed
that the L + L → L process, corresponding to � ∝ ω1T 4, is
forbidden and the Herring process of L + ST → FT , in which
� ∝ ω2T 3, is allowed according to Ref. [15]. However, it
seems that our experimental results T 4 shown in Fig. 6 support
the L + L → L process, and the frequency dependence, a ∼
1, below 100 K shown in Fig. 8 does not conflict with ω1T 4.

1. Comparison with Herring process

According to theoretical predictions [14,15], if L + L →
L is not dominant, the Herring process should dominate
in anisotropic crystals. However, our results for both the
temperature and frequency dependences are not consistent
with Herring’s prediction of � ∝ ω2T 3. Firstly, we compare
the absolute value of the attenuation rate of our result with
the expected value under the Herring process. If our result
is larger than the prediction, it implies that a process other
than the Herring process is dominant. Otherwise, the Herring
process may originally not occur for an unknown reason(s) at
least in our experiments.

According to Ref. [15], the attenuation rate is given as

� = A(θ,φ)ω2T 3, (11)

where the proportional parameter A(θ,φ) depends upon the
propagation directions θ and φ of the phonon, and the value in
TeO2 is given as shown in Table II.

In Fig. 11, the temperature dependence of the attenuation
rate obtained using A in the [110] direction and the Brillouin
shift, ωB/2π = 20.3193 GHz, at helium temperature [7] is
indicated by the blue line with our experimental data of
red points and the pink line proportional to T 4. The unit
of the vertical axis is scaled according to the literature. At
temperatures above 20 K, in which the measurement accuracy
is sufficient, the attenuation rate in our result is similar to,
or larger than, that obtained in the Herring process. This fact
suggests that the phonon attenuation through an attenuation
channel dominates over the Herring process.

Here, we show additional evidence that suggests that
attenuation processes other than the Herring one exist. As
shown in Table II, the Herring process is forbidden in the [001]
direction by symmetry [15]. We also measured the attenuation

TABLE II. Proportional factor A(sK−3) in TeO2 [15].

Direction [001] [100] [110]

A (sK−3) 0 1.97 × 10−22 7.96 × 10−22
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FIG. 11. Comparison of attenuation rates between our results and
the Herring process in TeO2. Attenuation rates measured in [110] and
[001] directions are depicted with red and green point, respectively.
Since the phonon resonance effect was not observed in the Brillouin
spectra measured in the [001] direction, the determination accuracy
of attenuation rate was lower than that in the [110] direction at
low temperatures. The blue colored line represents Aω2T 3 with
A = 7.69 × 10−22 [(rad./s)−1K−3], which is estimated from Eq. (11)
for the [110] direction. The pink colored line represents Bω1T 4.
B = 4 × 10−12 (K−4) is observed in Fig. 6. For both lines, ω/2π =
20.3193 GHz is used.

rate in the [001] direction, even though the accurate attenuation
rate utilizing the phonon resonance could not be observed
because the divergence index of [001] was lower than that
of [110]. The estimated attenuation rate is shown with green
symbols in Fig. 11. The behavior is very similar to that in
the [110] direction between room temperature and 30 K. The
attenuation rate below 30 K could not be defined with accuracy
because of the transit time broadening of Brillouin spectra. It
is noteworthy that the attenuation rate of [001] is similar to,
or slightly larger than, that of [110] in which the Herring
process is allowed. Furthermore, the temperature dependence
goes as T 4. These suggest that another process exists beside the
Herring one. The Brillouin shift in the [001] direction reached
17.928 GHz with decreasing temperature [7].

2. Validity of L + L → L

In order to identify an attenuation process which depends
on T 4 as mentioned above, we come back to the possibility
that the L + L → L process exists from points of view of
the energy- and momentum- conservation within the three-
phonon process. As reviewed in the theoretical section, the
three-phonon process of L + L → L is unlikely to occur for
two reasons. The first is the severe condition of satisfying
both energy and momentum conservation, as shown in Fig. 3.
The second reason is the frequency dispersion of the acoustic
phonon in TeO2. If the dispersion of the acoustic phonon
between frequency and wave number is deviated from a linear
relation, the momentum cannot be conserved in the scattering
process. In this section we re-consider these situations with
involving the thermal phonon lifetime.

ω
τ

ω/2π = 20 GHz

Temperature (K)

FIG. 12. Temperature dependence of the estimated value of ωτ

for ω/2π = 20 GHz.

Because of the uncertainty of the energy under a finite
lifetime for the thermal phonon, the energy conservation
δ(�ω), where �ω = ω�1 + ω�2 − ω�3 in Eq. (1), should be
rewritten as

δ(�ω) = lim
τ→∞

τ

2πh̄

sin2 (�ωτ/2)

(�ωτ
/

2)2
. (12)

This means that the energy has an uncertainty of 2πh̄/τ . If
this is sufficiently smaller than the phonon energy, it can be
ignored. In order to estimate the magnitude, the relationship
between the uncertainty and phonon energy ωτ is a convenient
index. If ωτ is sufficiently larger than unity, the energy
conservation in the three-phonon process is acceptable. We
estimated the temperature dependence of ωτ for a phonon with
ω/2π = 20 GHz using the result from the ISTS measurement,
as shown in Fig. 12. This figure indicates that uncertainties of
a few percent and several tens of percent are expected around
20 and 50 K, respectively. This means that we have to treat
the �ω as a finite value in this temperature region. Note that
ωτ ∼ 1 around 70 K at which the frequency dependence a

was around unity as shown in Fig. 8, and below which the
temperature dependence met T 4 as shown in Figs. 6 and 11.
It seems that the predominant attenuation process gradually
changes from the Akiezer regime to the three-phonon
scattering regime through this temperature region.

Here, we treat the actual dispersion curve of acoustic
phonon mode in TeO2. Kimura and Sato investigated the
phonon modes in TeO2 and drew their band diagram in
Ref. [45]. We traced this diagram in the [ξ,ξ,0] direction
and enlarged it in Fig. 13. In this figure, the vertical axis
is converted from energy to temperature using the relation
1 K 	 0.7 cm−1. The L-mode branch seems to be the third
curve drawn from the lowest energy on the � point. We found
that the dispersion curve of the L-mode phonon behaved
almost as linear functions at temperatures below 50 K. This
means that the L + L → L process is not suppressed by the
frequency dispersion of the phonon in the temperature region
below 50 K.

Next, using the long-wavelength approximation (ω/v =
const.), we considered the effect of energy uncertainty on the
momentum matching in the L + L → L process. As shown
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FIG. 13. Phonon dispersion relation in the [110] direction of
TeO2. The data were traced in the low-energy region given by Fig. 3 in
Ref. [45]. The vertical axis was reduced from energy to temperature
using 1 K 	 0.7 cm−1.

in Fig. 3, the slowness surfaces touched one another only at a
point P . However, if the thermal phonons had finite lifetimes,
this condition could be relaxed. We numerically calculated
how much uncertainty of energy could be accepted in the
relation of ω1 + ω2 = ω3 + �ω on the slowness surface of ω2

while keeping q1 along the [110] direction. The results are
shown in Fig. 14. In this calculation, the ratio between ω2 and
ω1 was set to ω2/ω1 = 20. Since the energy of ω1 ∼ 20 GHz is
nearly equal to 1 K, this condition corresponds to the situation
at 20 K. The red area shown in Fig. 14 indicates that �ω of
only 1% permits the relaxed energy conservation rule to be
established, and its shape is directly interpreted as a contact
area between slowness surfaces of ω2 and ω3. This is not a
point contact any longer. We found the scattering area to be
very sensitive to decreases of a few percent of �ω because
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FIG. 14. The area satisfying ω1 + ω2 = ω3 + �ω with varying
�ω around the [110] direction for the L + L → L process in
TeO2. (Upper) mapping in the θ,φ plane. (Lower) three-dimensional
mapping of the slowness surface of the L-mode phonon.

of the flat shape of the slowness surface around the [110]
direction (see the lower panel in Fig. 14). Compared with the
phonon lifetime estimated from Fig. 12 around 20 K, it seems
that the condition of ω1 + ω2 = ω3 + �ω is easily satisfied in
a finite scattering area on the slowness surface. The similar
sensitivities are observed at 5 and 10 K as the scattering area
little changed with temperature. Thus, the finite lifetime of the
thermal phonon allows attenuation by the L + L → L process,
explaining the T 4 dependence.

The L + FT → FT process, in which the attenuation rate
has the same dependence of ω1T 4 with the L + L → L pro-
cess, has been discussed with a finite thermal phonon lifetime
in prior works in quartz. In the discussion, due to the large
mode dispersion, the temperature range to allow this process
is quite limited in the vicinity of the situation ωτ ∼ 1 [17]. This
situation is similar to our TeO2 case. As is shown in Fig. 17 in
Appendix B, the L + FT → FT process requires much larger
energy uncertainty to satisfy the relaxed energy conservation
rule compared with the L + L → L process. We consider the
L + FT → FT process is also able to occur in a quite narrow
temperature range of ωτ ∼ 1, namely 50–70 K in TeO2 though,
at least below that temperature range, the L + L → L process
should be a predominant cause of T 4 dependence. Further-
more, we did not observe the strong temperature dependence
(exponent of higher than 4) in the lower temperature unlike the
report on quartz. Considering the shape of a slowness surface
of L mode along the [110] direction of TeO2, we suppose this
difference comes from the temperature dependence of τ to be
attributed to the flatness of slowness surface.

V. CONCLUSION

We investigated the attenuation process of L-mode phonons
in TeO2 by exploiting high-resolution Brillouin scattering
and ISTS measurements. We proposed two kinds of indices
for the divergence and pure propagation of phonon in a
anisotropic crystal. By using these indices, we found the [110]
direction in TeO2 is the most suitable direction for a precise
Brillouin measurement. Above the Debye temperature, the
attenuation behavior can be understood by considering
Akhiezer’s damping. In the lower-temperature region, the
L + L → L process, which depends upon T 4, exceeds the
previously-predicted Herring process. The finite thermal
phonon lifetime is a key for the occurrence of the L + L → L

process. To observe the Herring process in a TeO2 crystal,
one should investigate the lower-temperature region in which
the thermal phonon lifetime is sufficiently long.
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APPENDIX A: PHONON DIVERGENCE AND PURE
PROPAGATION

Here, we introduce two indices indicating phonon di-
vergence and pure propagation, respectively. These indices
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are based on separate viewpoints of phonon propagation in
anisotropic crystals. Both conditions contribute to determina-
tion of the best direction in a given crystal so as to obtain fine
Brillouin spectra at low temperatures.

1. Wave equation

The propagation of a sound wave with wave vector q and
frequency ω can be described by Christoffel’s equation:

(ρv2δik − Cijkl q̂j q̂l)ek = 0, (A1)

where ρ, v(=ω/q), and Cijkl are, respectively, the density, the
sound velocity, and the elastic stiffness tensor of the crystal,
ek is the kth component of a unit vector along a vibrational
direction, q̂ = q/|q| is a unit vector along the direction of the
wave vector, and δij is the Kronecker delta. The equation

det |ρv2δik − Cijkl q̂j q̂l| = 0 (A2)

should be satisfied if nontrivial solutions of Christoffel’s
equation exist. By solving this eigenvalue problem for the fixed
wave vector direction of q̂, one can derive the phase velocity
v and the corresponding vibrational eigenmode e. Generally,
this equation gives three independent propagation modes for
a certain direction. One is an L mode whose velocity is the
fastest. The others are two transverse modes classified by the
velocity as FT and ST mode. The sets of phase velocities for
all solid angles make surfaces for each mode and are known
as the phase-velocity surfaces. In isotropic media, the surface
has a spherical shape. In a general crystal, this shape may be
deformed due to the anisotropy of the stiffness tensor. As is
well known [46], the relation between the group velocity vg

given vgi
= ∂ω

∂qi
and the energy flux 〈Pi〉 is given by

〈Pi〉 = 1
2ρA2ω2vgi

, (A3)

where A is the amplitude of the sound wave. This means
that the direction of the group velocity identifies the direction
of the energy flux. The reciprocal of the phase velocity is
proportional to the wave number |q| and is called the slowness.
When the frequency ω is fixed, the set of slownesses for all
solid angles form a surface, which is known as the slowness
surface. On the slowness surface, ∂ω(q)/∂q · dq = vg · q = 0
is satisfied. Thus, the energy of the sound wave with wave
vector q propagates in a direction normal to the corresponding
slowness surface. This significant feature of the sound wave is
convenient for estimating the degree of phonon divergence.

2. Definition and derivation

As mentioned above, the propagation direction (energy
flux) of a phonon at a certain frequency disperses with the
direction of wave vector in a general crystal. In a relatively
dispersive direction, the phonon diverges while propagating
in the crystal and the effective interaction length between the
phonon and light beams in the Brillouin scattering process
becomes short. For the same reason, the propagation direction
of a phonon is also important. If the propagation direction
tilts away from the wave vector, the phonon escapes from the
interaction region as it propagates in the medium. Such effects
are dominant in measurements at low temperature, where the
mean free path of the measured phonon may be longer than
the interaction region, rather than at room temperature, where
the phonon becomes extinct within a range sufficiently shorter
than the interaction region. Here, we propose methodologies
for finding the directions in which the divergence of a phonon
is minimized and the propagation direction perfectly overlaps
with the optical axis, i.e., pure propagation.

In order to estimate the divergence of the phonon, we
introduce the index obtained from the following procedure:

(1) Derive the group velocity vector, vg(θ,φ), for all
directions in the polar coordinate shown in Fig. 15 after solving
Christoffel’s equation.

(2) Derive a vector,

v′
g(θ,φ) ≡ vg

vgr

=
(

1,
vgθ

vgr

,
vgφ

vgr

)
, (A4)

whose component in the er direction, i.e., the direction of q,
is unity.

FIG. 16. Schematics of the proposed index for divergence. (a),(b) Projection of the normalized group velocity onto a sphere of r = 1. (c)
The divergence of the normalized group velocity in a (θ,φ) plane.
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(3) Project v′
g onto a sphere with unit radius [Figs. 16(a)

and 16(b)] as

v′′
g(θ,φ) ≡

(
vgθ

vgr

,
vgφ

vgr

)
, (A5)

which is defined on a two-dimensional (θ,φ) plane.
(4) Calculate the in-plane divergence as

divθ,φ v′′
g(θ,φ), (A6)

which is an index of the phonon divergence [Fig. 16(c)].
This index indicates the degree of divergence of the phonon

in a crystalline direction. For example, in the direction in
which the value of the index is large, the phonon beam
should diverge while propagating. One should determine the
direction in which the value becomes minimal. If the group
velocity vector is normal to the sphere of r = 1, the length of
v′′

g on the (θ,φ) plane and the index of divergence should
be zero. Hence, in the isotropic material whose slowness
surface is spherical in shape, the index of the divergence
should be zero all around. In the direction where the index
is much smaller than zero, the phonon may be defocused
after experiencing tight focusing. However, such a situation
cannot occur for the L-mode phonon, because its slowness
surface cannot have negative curvature [28]. Around the
smallest index direction on the L-mode slowness surface,
the group velocity vectors will be likely parallel, rather than
crossing. Note that to simplify the calculation for the L-mode
phonon, we introduced the index shown above; however,
for precise treatment of the divergences including FT- or
ST-mode phonons, whose slowness surfaces can have negative
curvatures, the Gauss curvature of the slowness surface may be
convenient.

Next, we introduce another index for the pure-propagation
direction in which the direction of energy flux tends to be
the same as that of the wave vector. If the angle between
these directions is finite, the concerning sound wave in the
Brillouin scattering process deviates from the interaction
region with propagation. Here, we adopt the angle β between
the direction of the energy flux and the wave vector as an index
for pure propagation. The index of purity can be obtained
as

β = arccos

(
q̂ · vg

|vg|
)

. (A7)
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�ω around the [110] direction for the L + FT → FT process
in TeO2.

One can obtain the pure propagation direction as a result of
the numerical calculation of the distribution of β in the (θ,φ)
plane.

APPENDIX B: POSSIBILITY OF L + FT → FT

Here, assuming the long-wavelength approximation
(ω/v = const.), we considered the effect of energy uncertainty
on the momentum matching in the L + FT → FT process
as well as the L + L → L process shown in Fig. 14. The
calculation was performed under the same condition with
Fig. 14 except for the oscillation mode of the thermal phonons.
A slowness surface for an FT mode is larger than that for an
L mode and has both positive and negative curvature [29].
The result is shown in Fig. 17. This figure shows that the
energy uncertainty �ω itself should become comparable with
ω3 in order to satisfy the condition of L + FT → FT in the
sufficiently wide aria on the map, whereas the only few percent
of uncertainty is necessary in the L + L → L process. Hence,
L + FT → FT could be allowed under the condition of
τ ∼ 1/ω which is quite limited comparing with the L + L →
L process. Therefore we consider L + L → L process is
dominant in the temperature range of ωτ > 1, i.e., T < 50 K.
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