
PHYSICAL REVIEW B 95, 224204 (2017)

Multiple scaling power in liquid gallium under pressure conditions
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Generally, a single scaling exponent, Df , can characterize the fractal structures of metallic glasses according
to the scaling power law. However, when the scaling power law is applied to liquid gallium upon compression,
the results show multiple scaling exponents and the values are beyond 3 within the first four coordination spheres
in real space, indicating that the power law fails to describe the fractal feature in liquid gallium. The increase in
the first coordination number with pressure leads to the fact that first coordination spheres at different pressures
are not similar to each other in a geometrical sense. This multiple scaling power behavior is confined within a
correlation length of ξ ≈ 14–15 Å at applied pressure according to decay of G(r) in liquid gallium. Beyond this
length the liquid gallium system could roughly be viewed as homogeneous, as indicated by the scaling exponent,
Ds , which is close to 3 beyond the first four coordination spheres.
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In nature, many shapes exhibit fractal structures, such
as clouds, trees, mountains, rivers, coastlines, and so on.
The existence of these fractal structures originates from the
presence of disorder [1]. Consequently, it is accepted that
fractal structures spread into disordered condensed matter
systems, such as glass and liquid systems. Recently, Ma et al.
linked the structure of metallic glasses to the fractal network
and discovered that metallic glasses have fractal characteristics
within the medium-range length scale, as indicated by the 2.31
power-law scaling of the first peak position of the structure
factor with the atomic volume [2]. Subsequently, nonintegral
2.5 power-law scaling was discovered in metallic glasses under
pressure conditions, not only in reciprocal space but also in real
space, and it extended beyond the first peak, depending on the
specific system [3–6]. Any nonintegral power corresponds to a
fractal dimensionality, Df [7]. Thus, the volume dependence
of the first peak position for liquid alkali metals in both real and
reciprocal space follows the 3 power law under compressed
conditions, indicating that liquid alkali metals systems are
homogeneous and hence the corresponding Df is equivalent
to the Euclidean dimension, De [8,9]. In metallic glasses and
liquid alkali metal systems, a single scaling exponent, Df ,
characterizes the fractal structure of the object.

Due to the coexistence of metallic and covalent bonding,
gallium, a rich polymorphism metal, exhibits unusual and
unique physical properties [10–15]. It has a low melt-
ing temperature (303 K) and a high boiling temperature
(2478 K) at ambient pressure, displaying a wide stability
range [16]. At ambient pressure, the density of liquid gallium
exceeds that of its stable solid state by approximately 3%,
and this liquid metal is easily supercooled [17,18]. The
complex structure of the liquid gallium system under pressure
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conditions has been studied for many years [19,20]. However,
investigations into its fractal feature under pressure are rare,
and hence it is not yet well understood. A little over a decade
ago, the volume dependence of the first peak position of
the pair distribution function (PDF) g(r) for liquid gallium
deviating from the 3 power law [9] was demonstrated.
Recently, Yagafarov et al. reported that the scaling of the first
four peak positions of g(r) with the atomic volume under
pressure conditions presents different values in the liquid state
[21]. Thus, an interesting question has been raised: Could
these scaling exponents describe the fractal structure of liquid
gallium? In this work, we present the multiple scaling power
behavior of liquid gallium and investigate whether fractal
behavior exists in liquid gallium.

High-energy total x-ray scattering data of liquid gallium
under pressure at ambient temperature were collected at the
11-ID-B beamline at the Advanced Photon Source, Argonne
National Laboratory, with an energy of 86.7 keV. A solid
gallium sample with 99.9999% purity was heated to a liquid
state and then loaded into a T301 stainless steel gasket with a
hole as the sample chamber. The supercooled liquid gallium
sample was compressed up to 1.9 GPa using a diamond-anvil
cell, and a ruby ball was used as a pressure marker [22].

Raw image data were reduced using the software FIT-2D [23]
with masking strategy [24] to remove the diamond peaks to
obtain one-dimensional scattering data. The reduced PDF G(r)
and structure factor S(Q) were extracted using the PDFGETX2

program [25] after subtracting contributions from the sample
environment and background, and the program performed a
numerical Fourier transform of S(Q) according to

G(r) = 4πrρ0[g(r)− 1]= 2

π

∫ ∞

0
Q[S(Q)− 1] sin(Qr) dQ,

(1)

where ρ0 is the average atomic number density, and g(r) is
the PDF. The average atomic number density as a function
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FIG. 1. (a) Structure factor S(Q) and (b) reduced PDFs G(r)
of liquid gallium at various pressure conditions. The inset of
(a) shows the reconstructed three-dimensional images from x-ray
microtomography measurements on the volumes under the applied
pressures.

of the pressure at ambient temperature was based on x-ray
microtomography measurements in which the isothermal
bulk modulus was determined to be B0 = 23.6 GPa. The
experimental method used to obtain the volume measurements
was described in detail in our previous study [26].

The structure factor S(Q) and the corresponding PDFs under
various pressure conditions are shown in Fig. 1. In real space,
the G(r) of liquid gallium oscillates above and below zero,
and the amplitude falls off rapidly with increasing r . These
oscillations provide information regarding the correlations
of atomic pairs and suggest a heterogeneous density in the
system according to the atomic PDFs, ρ(r) = ρ0g(r). This
heterogeneous distribution of density and the decay of the
PDFs in real space may correspond to a fractal structure in
liquid gallium, displaying self-similarity and scale invariance
[2,27]. In a physical system, the self-similarity and scale
invariance are limited to a finite range between upper and lower
bounds. The lower scale is not less than the shortest distance

between two atoms in the system. The upper scale depends on
the correlation length according to the percolation model. The
correlation length ξ is the mean radius of the gyration of all the
finite clusters. This length gives an idea of the average distance
at which the connectivity makes itself felt. For any length scale
r > ξ , a percolating system is macroscopically homogeneous.
Whereas, for r < ξ , the system is not homogeneous. In this
regime, the sample-spanning cluster is self-similar on average
[28]. Suppose the site corresponds in some sense to gallium
atoms of a three-dimensional network. The sites are occupied
when the probability of finding two atoms is nonzero according
to G(r). In contrast, the nonoccupied sites are in the opposite
situation. The percolation transition is caused by variation of
the occupancy of the sites or bonds leading to the appearance
of the infinite cluster at the percolation threshold pc. At each
pressure condition, there are no parameter changes and hence
the probability of occupancy is unchanged. Thus, the liquid
gallium system can be viewed as a system that already formed
the infinite cluster. In other words, the concentration p is
over the percolation threshold pc already. Since correlation
length is finite above pc, the infinite cluster can be self-similar
only on length scales smaller than correlation length. For
length scales larger than correlation length, the structure is not
self-similar and can be considered as homogeneous [29,30].
This correlation length can be estimated as ξ ≈ 14–15 Å at all
pressures according to the decay of G(r) in liquid gallium, as
shown in Fig. 1(b).

Within the limitation of the correlation lengths, the struc-
tural unit clusters that constitute the liquid gallium system are
self-similar and have scale invariance. Thus, the mass of a
cluster increases with its linear dimension r according to the
relation [31]

M(r) ∝ rDf , (2)

where Df is the fractal dimensionility. To determine Df ,
a common method was employed. This method consists of
covering the object in Df dimension with boxes whose
volumes are taken as the unit of measurement. If ε is the
side of the box, and N is the number of boxes, then the volume
of the object is [32]

V0 = N × εDf . (3)

The Df dimension is determined by [33]

Df = log N/ log(1/ε). (4)

To assume that the compression is uniform in each
direction, Eq. (3) under compressed conditions can be written
as

VP = N × ε
Df

P , (5)

where VP is the volume, and εP is the counterpart of ε under
pressure conditions. According to Eqs. (3) and (5), we have

VP

V0
=

(
εP

ε

)Df

. (6)

To link the structure of the object to the fractal dimension,
let the length ri be the side of a unit box covering the object,
where ri is the peak position of the PDFs in real space. Then,
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FIG. 2. G(r) of liquid gallium obtained from Fourier transforming

the experimental S(Q) terminated at Qmax = 11 Å
−1

(indicated by

arrow) and Qmax = 12 Å
−1

under 1.0 GPa. The inset corresponds to
the experimental S(Q).

the scaling law in Eq. (6) is expressed as

VP

V0
=

(
riP

ri0

)Df

. (7)

Fractal dimensionality Df is a universal parameter, thus
the Df extracted from real space and reciprocal space is
equivalent. By analogy to Eq. (7) in real space, we have

VP

V0
=

(
Qi0

QiP

)Df

, (8)

where Qi is the peak position of the structure factor. The
scaling power-law equations (7) and (8) are consistent with the
results of previous studies of metallic glasses under pressure
[3–5]. According to the same volume compression rate and Df

in Eqs. (7) and (8), the Qi should be correlated to a distance in
real space. If A is a converted factor of the distance for Qi from
the reciprocal space to the real space, then 2πA/Qi is the side
of the covering unit box. The data points in PDF curves and
structure factor S(Q) raw curves could be transformed through
Eq. (1).

Whether the scaling power law is suitable for liquid gallium
and whether the scaling power is a fractal dimensionality
remain unclear. Thus, before the determination, Ds represented
the scaling power, and Df was the fractal dimensionality. In
an experimental S(Q), the range of Q is finite; as a result, ter-
mination ripples in G(r) appear in the Fourier transformation.
These ripples have an effect on the peak position of G(r), which
further affects the value of the scaling power Ds according to
Eq. (7). However, termination ripples are not a real issue if data
are measured to sufficiently high Qmax values as the signal in
the real S(Q) dies off because of the Debye-Waller factor [34].
For liquid gallium, the signal of S(Q) almost dies off, and S(Q)

converges to unity at ca. Q = 11 Å
−1

(inset of Fig. 2) in the
measured data. Thus, the Qmax in this study is high enough
that termination ripples have little effect on the peak position of
G(r). Figure 2 shows the G(r) of liquid gallium obtained from

FIG. 3. The relative volume VP /V0 scaling with (a) the ratio of
the ith peak position ri in real space, where i = 1, 2, 3, 4, 5, 6, and 7,
and (b) the ratio of the first and second peak positions in reciprocal
space.

Fourier transforming the experimental S(Q) terminated at two

selected Qmax = 11 Å
−1

and Qmax = 12 Å
−1

under selected
pressure conditions. Clearly, these two sets of peak positions
in G(r) are essentially the same, hence, the value of the scaling
exponent Ds for liquid gallium determined in this work is
precise.

To examine the fractal behavior of liquid gallium in real
space and reciprocal space, we applied Eqs. (7) and (8)
to the liquid gallium system under compressed conditions
and selected ri and 2πA/Qi as the units of measurement,
respectively. The volume as a function of pressure was
determined using x-ray microtomography measurements, as
presented in the inset of Fig. 1(a). In real space, the relation
between VP /V0 and riP /ri0(i > 7) becomes featureless and
could not be fitted because of the decay of the PDFs, whereas
the featured volume scaling relations were limited within Q2

in reciprocal space. The fitting results are shown in Fig. 3,
in which scaling of both riP /ri0 and Qi0/QiP with VP /V0

present multiple exponents. This phenomenon is consistent
with a previous study in which riP /ri0(i = 1−4) was scaled
by density for the first four coordination spheres [21]. The
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FIG. 4. The first CN as a function of the pressure in liquid gallium.
The inset shows the definition of the area under the first peak.

noncubic scaling of r1 was also reported in liquid metal
Bi [9]. The Dsr3,Dsr4, and DsQ1 are approximately equal,
indicating that the length corresponding to Q1 is between
r3 and r4. This result suggests that Q1 indeed embodied a
medium-range order. Likewise, the value of DsQ2 was close
to that of Dsr1 and far from that of Dsr2, indicating that Q2

indeed embodied the information of short-range order. Again,
these results suggest that the scaling power determined by the
real and reciprocal space are equivalent, as described above.
Therefore, the following discussion will focus on the real space
to simplify the argument.

In conventional single scaling, Df is independent of the
measurement unit; for example, Df = 2.5 is almost constant
in metallic glass systems under pressure. However, in the liquid
gallium system, Ds is a function of the measurement unit and
decreases with the linear dimension r . Although mathemati-
cally the exponent Ds in power-law fitting could be any real
number which loosely links to Hausdorff dimensionality, it
is generally accepted an inequality Df < De for the fractal
dimensionality. Hence the scaling exponent exceeding 3 within
the first coordination sphere directly indicates that the scaling
power fails to describe the fractal feature in liquid gallium. To
find out the reason for this failure, we examined the changes
of the atom number within the first coordination sphere with
pressure increased.

The first coordination number (CN) at various pressures
was calculated by

CN =
∫ r2

r1

R(r) dr, (9)

where R(r) = 4πr2ρ(r) is the radial distribution function
(RDF), and r1 and r2 define the beginning and ending
positions, respectively, of the RDF peak corresponding to the
coordination shell, as shown in Fig. 4 (inset). The limits of
the left side of the first peak r1 can be easily determined.
However, despite reducing the ripples in the RDF, the limits of
the right side of the first peak r2 may fluctuate because of the
contributions from different errors. The first CN is sensitive
to these fluctuations, thus the value of r2 was averaged for

all curves at various pressures [21] for consideration of the
minor changes in the first peak position and the low applied
pressure in this work. Defined r1 = 2.30 Å and r2 = 3.71 Å,
the first CN as a function of the pressure is presented in Fig. 4,
which displays that the value of CN for liquid gallium increases
gradually from 11.4 to 12.1 as the pressure increases from 0
to 1.9 GPa. Previous studies on liquid gallium also reported
an increase in the first CN with pressure [20,21,35–37].
This automatically indicates the first coordination spheres
are not similar to each other at various pressure conditions
in a geometrical sense, since the increased first coordination
number means more atoms move into the nearest-neighbor
shell. The scaling power of r1 with a volume in liquid gallium is
quite close to a constant and above 3, which is consequence of
the increased first coordination number. The multiple scaling
power for the first four peaks might result from different
paces of decrease in various coordination spheres. Thus, the
scaling power law in Eqs. (7) and (8) cannot be used to obtain
the fractal dimensionality for liquid gallium under pressure,
considering a prerequisite for both equations is that the fractal
dimensionality is constant under pressure.

The fractal feature relates to the nonuniformity of the
density in physical systems. In crystalline metal or alloy
systems, the density is uniform and a fractal feature is absent,
thus the fractal dimensionalities Df = De = 3 match the
scaling power of 3. For liquid gallium, although the scaling
power law fails to describe the fractal feature, fractal behavior
may exist because the fitting results show that Dsr5,Dsr6,
and Dsr7 are close to 3. It indicates that beyond the length
scale of r5, the system could be viewed as homogeneous and
the fractal feature disappears, which is consistent with the
range confined by the correlation length. Notably, the fractal
dimensionality is independent of the pressure when the density
is homogeneous (Df = De = 3), and hence examining the
homogeneous feature in liquid gallium according to Eq. (8) is
appropriate.

The multiple scaling power behavior illustrates that de-
creases in the volume and atomic distance follow the scaling
power, despite its failure to describe the fractal feature in
liquid gallium. This implies that the structural evolution in
liquid gallium under pressure likely obeys a general rule of
multiple scaling power. Furthermore, the multiple scaling
power behavior in liquid gallium provides information on
the contraction of the atomic distance ri(i < 8) or various
coordination spheres under pressure. The greater the power
Ds , the less contracted the coordination spheres should be. The
Dsr1 = 11.2(3) is far greater than Dsri(1 < i < 8), namely,
the rate of decrease in the first nearest coordination sphere is
slower than those of other coordination spheres, suggesting
that the decrease in the volume of liquid gallium under
pressure can be mainly attributed to the shrinkage of other
further coordination spheres. Moreover, the Dsr1 = 11.2(3)
embodies a moderate decrease in the first nearest coordination
sphere, which is correlated to an increase in the first CN under
compressed conditions [20,21].

In summary, although the scaling power law fails to
describe the fractal behavior in liquid gallium under pressure, it
provides important information on the changes of coordination
sphere. Furthermore, based on the percolation model, fractal
behavior is suggested in liquid gallium within a limited
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correlation length of ξ14–15 Å. The multiple scaling power
behavior observed in liquid gallium is supplementary to a
previous discovery of single fractal dimensionality in metallic
glass systems. We hope that our study can advance the
research on fractals in the broad field of disordered condensed
matter systems.

This work was performed at Argonne National Labo-
ratory and use of the Advanced Photon Source was sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No.
DE-AC02-06CH11357. Tomographic experiment was per-
formed at GeoSoilEnviroCARS (The University of Chicago,

Sector 13), Advanced Photon Source, Argonne National
Laboratory. GeoSoilEnviroCARS is supported by the National
Science Foundation (NSF)–Earth Sciences (EAR-1634415)
and Department of Energy (DoE)–GeoSciences (DE-FG02-
94ER14466). This work was supported by the National Natural
Science Foundation of China (Grants No. U1530402 and
No. 11374075), Heilongjiang Province Science Fund for Dis-
tinguished Young Scholars (JC201005), Longjiang Scholar,
the Fundamental Research Funds for the Central Universities
(HIT. BRET1.2010002 and HIT. IBRSEM.A.201403), HIT-
Argonne Overseas Collaborative Base Project, and Chinese
Scholarship Council. The authors acknowledge support from
US NSF EAR-1620548.

[1] B. B. Mandelbrot, The Fractal Geometry of Nature (updated
and augmented ed.) (W. H. Freeman, New York, 1983), Chap. 1,
p. 18.

[2] D. Ma, A. D. Stoica, and X. L.Wang, Nat. Mater. 8, 30 (2009).
[3] Q. Zeng, Y. Lin, Y. Liu, Z. Zeng, C. Y. Shi, B. Zhang, H. Lou,

S. V. Sinogeikin, Y. Kono, C. Kenney-Benson, C. Park, W. Yang,
W. Wang, H. Sheng, H-k. Mao, and W. L. Mao, Proc. Natl. Acad.
Sci. USA 113, 1714 (2016).

[4] Q. Zeng, Y. Kono, Y. Lin, Z. Zeng, J. Wang, S. V. Sinogeikin,
C. Park, Y. Meng, W. Yang, H. K. Mao, and W. L. Mao, Phys.
Rev. Lett. 112, 185502 (2014).

[5] D. Z. Chen, C. Y. Shi, Q. An, Q. Zeng, W. L. Mao, W. A.
Goddard, and J. R. Greer, Science 349, 1306 (2015).

[6] L. Li, L. Wang, R. Li, H. Zhao, D. Qu, K. W. Chapman, P. J.
Chupas, and H. Liu, Phys. Rev. B 94, 184201 (2016).

[7] B. B. Mandelbrot, The Fractal Geometry of Nature (updated
and augmented ed.) (W. H. Freeman, New York, 1983), Chap. 1,
p. 15.

[8] Y. Morimoto, S. Kato, N. Toda, Y. Katayama, K. Tsuji, K. Yaoita,
and O. Shimomura, Rev. High Pressure Sci. Technol. 7, 245
(1998).

[9] Y. Katayama and K. Tsuji, J. Phys.: Condens. Matter 15, 6085
(2003).

[10] O. Degtyareva, M. I. McMahon, D. R. Allan, and R. J. Nelmes,
Phys. Rev. Lett. 93, 205502 (2004).

[11] Z. Q. Li and J. S. Tse, Phys. Rev. B 62, 9900 (2000).
[12] X. G. Gong, G. L. Chiarotti, M. Parrinello, and E. Tosatti, Phys.

Rev. B 43, 14277 (1991).
[13] O. Züger and U. Dürig, Phys. Rev. B 46, 7319 (1992).
[14] D. A. Walko, I. K. Robinson, C. Grütter, and J. H. Bilgram,

Phys. Rev. Lett. 81, 626 (1998).
[15] M. Bernasconi, G. L. Chiarotti, and E. Tosatti, Phys. Rev. B 52,

9988 (1995).
[16] E. L. Gromnitskaya, O. F. Yagafarov, O. V. Stalgorova, V. V.

Brazhkin, and A. G. Lyapin, Phys. Rev. Lett. 98, 165503 (2007).
[17] L. Comez, A. Di Cicco, J. P. Itie, and A. Polian, Phys. Rev. B

65, 014114 (2001).
[18] R. Poloni, S. De Panfilis, A. Di Cicco, G. Pratesi, E. Principi, A.

Trapananti, and A. Filipponi, Phys. Rev. B 71, 184111 (2005).

[19] P. Ascarelli, Phys. Rev. 143, 36 (1966).
[20] T. Yu, J. Chen, L. Ehm, S. Huang, Q. Guo, S. N. Luo, and

J. Parise, J. Appl. Phys. 111, 112629 (2012).
[21] O. F. Yagafarov, Y. Katayama, V. V. Brazhkin, A. G. Lyapin,

and H. Saitoh, Phys. Rev. B 86, 174103 (2012).
[22] H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673

(1986).
[23] A. P. Hammersley, J. Appl. Cryst. 49, 646 (2016).
[24] K. W. Chapman, P. J. Chupas, G. J. Halder, J. A. Hriljac, C.

Kurtz, B. K. Greve, C. J. Ruschman, and A. P. Wilkinson, J.
Appl. Cryst. 43, 297 (2010).

[25] X. Qiu, J. W. Thompson, and S. J. L. Billinge, J. Appl. Cryst.
37, 678 (2004).

[26] R. Li, L. Li, T. Yu, L. Wang, J. Chen, Y. Wang, Z. Cai, J.
Chen, M. L. Rivers, and H. Liu, Appl. Phys. Lett. 105, 041906
(2014).

[27] L. Börjesson, R. L. McGreew, and W. S. Howells, Philos. Mag.
B 65, 261 (1992).

[28] M. Sahimi, Applications of Percolation Theory (Taylor &
Francis, Bristol, PA, 1994), Chap. 2, p. 16.

[29] A. A. Saberi, Phys. Rep. 578, 1 (2015).
[30] A. Bunde and S. Havlin, Fractals and Disordered Systems (2nd

rev. and enlarged ed.) (Springer, New York, 1996), Chap 2,
p. 66.

[31] T. Freltoft, J. K. Kjems, and S. K. Sinha, Phys. Rev. B 33, 269
(1986).

[32] J.-F. Gouyet, Physics and Fractal Structures (Springer, New
York, 1996), Chap 1, p. 5.

[33] B. B. Mandelbrot, The Fractal Geometry of Nature (updated and
augmented ed.) (W. H. Freeman, New York, 1983), Chap. 2, p.
37.

[34] T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks:
Structural Analysis of Complex Materials (Pergamon, New
York, 2003), Chap 3, p. 65.

[35] K. Tsuji, J. Non-Cryst. Solids 117-118, 27 (1990).
[36] J. Yang, J. S. Tse, and T. Iitaka, J. Chem. Phys. 135, 044507

(2011).
[37] O. F. Yagafarov, Y. Katayama, V. V. Brazhkin, A. G. Lyapin,

and H. Saitoh, High Pressure Res. 33, 191 (2013).

224204-5

https://doi.org/10.1038/nmat2340
https://doi.org/10.1038/nmat2340
https://doi.org/10.1038/nmat2340
https://doi.org/10.1038/nmat2340
https://doi.org/10.1073/pnas.1525390113
https://doi.org/10.1073/pnas.1525390113
https://doi.org/10.1073/pnas.1525390113
https://doi.org/10.1073/pnas.1525390113
https://doi.org/10.1103/PhysRevLett.112.185502
https://doi.org/10.1103/PhysRevLett.112.185502
https://doi.org/10.1103/PhysRevLett.112.185502
https://doi.org/10.1103/PhysRevLett.112.185502
https://doi.org/10.1126/science.aab1233
https://doi.org/10.1126/science.aab1233
https://doi.org/10.1126/science.aab1233
https://doi.org/10.1126/science.aab1233
https://doi.org/10.1103/PhysRevB.94.184201
https://doi.org/10.1103/PhysRevB.94.184201
https://doi.org/10.1103/PhysRevB.94.184201
https://doi.org/10.1103/PhysRevB.94.184201
https://doi.org/10.4131/jshpreview.7.245
https://doi.org/10.4131/jshpreview.7.245
https://doi.org/10.4131/jshpreview.7.245
https://doi.org/10.4131/jshpreview.7.245
https://doi.org/10.1088/0953-8984/15/36/302
https://doi.org/10.1088/0953-8984/15/36/302
https://doi.org/10.1088/0953-8984/15/36/302
https://doi.org/10.1088/0953-8984/15/36/302
https://doi.org/10.1103/PhysRevLett.93.205502
https://doi.org/10.1103/PhysRevLett.93.205502
https://doi.org/10.1103/PhysRevLett.93.205502
https://doi.org/10.1103/PhysRevLett.93.205502
https://doi.org/10.1103/PhysRevB.62.9900
https://doi.org/10.1103/PhysRevB.62.9900
https://doi.org/10.1103/PhysRevB.62.9900
https://doi.org/10.1103/PhysRevB.62.9900
https://doi.org/10.1103/PhysRevB.43.14277
https://doi.org/10.1103/PhysRevB.43.14277
https://doi.org/10.1103/PhysRevB.43.14277
https://doi.org/10.1103/PhysRevB.43.14277
https://doi.org/10.1103/PhysRevB.46.7319
https://doi.org/10.1103/PhysRevB.46.7319
https://doi.org/10.1103/PhysRevB.46.7319
https://doi.org/10.1103/PhysRevB.46.7319
https://doi.org/10.1103/PhysRevLett.81.626
https://doi.org/10.1103/PhysRevLett.81.626
https://doi.org/10.1103/PhysRevLett.81.626
https://doi.org/10.1103/PhysRevLett.81.626
https://doi.org/10.1103/PhysRevB.52.9988
https://doi.org/10.1103/PhysRevB.52.9988
https://doi.org/10.1103/PhysRevB.52.9988
https://doi.org/10.1103/PhysRevB.52.9988
https://doi.org/10.1103/PhysRevLett.98.165503
https://doi.org/10.1103/PhysRevLett.98.165503
https://doi.org/10.1103/PhysRevLett.98.165503
https://doi.org/10.1103/PhysRevLett.98.165503
https://doi.org/10.1103/PhysRevB.65.014114
https://doi.org/10.1103/PhysRevB.65.014114
https://doi.org/10.1103/PhysRevB.65.014114
https://doi.org/10.1103/PhysRevB.65.014114
https://doi.org/10.1103/PhysRevB.71.184111
https://doi.org/10.1103/PhysRevB.71.184111
https://doi.org/10.1103/PhysRevB.71.184111
https://doi.org/10.1103/PhysRevB.71.184111
https://doi.org/10.1103/PhysRev.143.36
https://doi.org/10.1103/PhysRev.143.36
https://doi.org/10.1103/PhysRev.143.36
https://doi.org/10.1103/PhysRev.143.36
https://doi.org/10.1063/1.4726256
https://doi.org/10.1063/1.4726256
https://doi.org/10.1063/1.4726256
https://doi.org/10.1063/1.4726256
https://doi.org/10.1103/PhysRevB.86.174103
https://doi.org/10.1103/PhysRevB.86.174103
https://doi.org/10.1103/PhysRevB.86.174103
https://doi.org/10.1103/PhysRevB.86.174103
https://doi.org/10.1029/JB091iB05p04673
https://doi.org/10.1029/JB091iB05p04673
https://doi.org/10.1029/JB091iB05p04673
https://doi.org/10.1029/JB091iB05p04673
https://doi.org/10.1107/S1600576716000455
https://doi.org/10.1107/S1600576716000455
https://doi.org/10.1107/S1600576716000455
https://doi.org/10.1107/S1600576716000455
https://doi.org/10.1107/S0021889810002050
https://doi.org/10.1107/S0021889810002050
https://doi.org/10.1107/S0021889810002050
https://doi.org/10.1107/S0021889810002050
https://doi.org/10.1107/S0021889804011744
https://doi.org/10.1107/S0021889804011744
https://doi.org/10.1107/S0021889804011744
https://doi.org/10.1107/S0021889804011744
https://doi.org/10.1063/1.4891572
https://doi.org/10.1063/1.4891572
https://doi.org/10.1063/1.4891572
https://doi.org/10.1063/1.4891572
https://doi.org/10.1080/13642819208217901
https://doi.org/10.1080/13642819208217901
https://doi.org/10.1080/13642819208217901
https://doi.org/10.1080/13642819208217901
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1016/j.physrep.2015.03.003
https://doi.org/10.1103/PhysRevB.33.269
https://doi.org/10.1103/PhysRevB.33.269
https://doi.org/10.1103/PhysRevB.33.269
https://doi.org/10.1103/PhysRevB.33.269
https://doi.org/10.1016/0022-3093(90)90872-J
https://doi.org/10.1016/0022-3093(90)90872-J
https://doi.org/10.1016/0022-3093(90)90872-J
https://doi.org/10.1016/0022-3093(90)90872-J
https://doi.org/10.1063/1.3615936
https://doi.org/10.1063/1.3615936
https://doi.org/10.1063/1.3615936
https://doi.org/10.1063/1.3615936
https://doi.org/10.1080/08957959.2012.757311
https://doi.org/10.1080/08957959.2012.757311
https://doi.org/10.1080/08957959.2012.757311
https://doi.org/10.1080/08957959.2012.757311



