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Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides
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We present a fully three-dimensional Bloch mode expansion technique and a photon Green function formalism
to compute the quality factors, mode volumes, and Purcell enhancement distributions of a disordered W1 photonic
crystal slab waveguide in the slow-light Anderson-localization regime. By considering fabrication (intrinsic) and
intentional (extrinsic) disorder we find that the Purcell enhancement statistics are well described by log-normal
distributions without any fitting parameters. We also compare directly the effects of hole size fluctuations as
well as fluctuations in the hole position. The functional dependence of the mean and standard deviation of
the quality factor and Purcell enhancement distributions is found to decrease exponentially with the square
root of the extrinsic disorder parameter. The strong coupling probability between a single quantum dot and
an Anderson-localized mode is numerically computed and found to exponentially decrease with the squared
extrinsic disorder parameter, where low disordered systems give rise to larger probabilities when state-of-the-art
quantum dots are considered. The optimal spatial regions to position quantum dots in the W1 waveguide are
also discussed. These theoretical results are fundamentally interesting for disordered photonics and connect to
recent experimental works on photonic crystal slab waveguides in the slow-light regime. Our three-dimensional
slab results also contradict some previous findings that use simpler two-dimensional models to understand these
complex planar systems.
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I. INTRODUCTION

Periodic dielectric optical structures, known as photonic
crystals (PCs), have been the focus of intense research over
the last four decades since Yablonovitch [1] and John [2]
investigated their capabilities to profoundly modify the local
density of optical states (LDOS); these works have served as
inspiration to develop a detailed optical theory of PCs [3].
In particular, PC slabs, which are practical two-dimensional
PCs embedded in semiconductor dielectric membranes, have
become an excellent candidates for on-chip integration given
their flexibility to tailor the confinement and propagation
of light, aided by continuously improving fabrication tech-
niques [4]. A wide range of cavity quantum electrodynamics
(cavity-QED) phenomena have been observed in PC slabs
using quantum dots (QDs) as quantum emitters, in both
weak and strong coupling regimes [5,6], as have resonant
interactions between several quantum emitters within PC
slabs [7], with promising functionalities in quantum informa-
tion processing [8,9]. Rich optical nonlinear phenomena have
also been experimentally and theoretically addressed in these
systems [10,11].

With regards to waveguide geometries, PC slab waveguides
(PCWs) have attracted much attention as a platform for
single photon generation [12,13], optical buffering [14], and
for enhancing nonlinear optical processes in the slow-light
regime [15–17]. However, PCWs are known to be extremely
sensitive to fabrication disorder [18–20], which becomes
relevant for practical applications [21–23]. Interestingly, struc-
tural disorder in PCs can also induce coherent scattering of
light [24], giving rise to the formation of random cavities
where the optical fields can be strongly localized, leading to the
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quasi-one-dimensional Anderson-localization regime [2,25].
Currently, the Anderson-localization phenomenon have been
intensively studied in PCWs with potential applications on
cavity-QED [26] and lasing [27], especially near the photonic
band-edge frequency region, where the DOS becomes very
sensitive to structural disorder [28]. Furthermore, the role of
intentional or deliberate disorder has also been addressed in
the literature [29] with potential for forming high-Q cavity
modes [30,31] (where Q is the mode quality factor) and
transverse localization below the diffraction limit [32].

Despite the relevance of the various studies on disordered
PCWs, many of the so-called numerically exact theoretical
calculations are carried out by using two-dimensional (2D)
models [33,34] and even one-dimensional (1D) ones [35].
This is mainly due to the high computational cost required
to solve large photonic structures in three-dimensional (3D)
calculations, e.g., 3D-FDTD calculations, and the statistical
nature of the Anderson phenomenon, where several realiza-
tions of the disordered system must be calculated to obtain
accurate results. Thus, the numerically easier (faster) two- and
one-dimensional approaches allow one to carry out statistical
analysis with moderate computational effort. One main focus
of such studies is the understanding of in-plane light scattering
induced by disorder, which gives rise to the nonzero width
of the Lifshitz tail, in the band-edge region, and allows the
quantification of the amount of disorder in the actual PCW
system [33]. The in-plane extension of the Anderson-cavity
modes, controlled by the in-plane coherent scattering, has
been used to establish boundaries in the magnitude of the
effective mode volumes [34], and the quasi-1D light scattering
through the disordered waveguide has been employed to
quantify the localization length of disordered samples and
the statical properties of the Anderson phenomenon with
pre-assumed loss length distributions [35]. Nevertheless, these
approaches are certainly limited, and they cannot quantify the
out-of-plane losses (or equivalently loss length distributions),
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coming from coupling to modes above the slab light line,
and the actual electric field value throughout the photonic
structure can also be quite different. These two important
quantities and the frequency spectrum of the system determine
the quality factor, mode volume, and Purcell enhancement
(PE) statistics, which, to the best of our knowledge, have
not been rigorously studied in three-dimensional models for
large scale disordered PCWs. Yet, they are critically important
in realistically understanding the properties of such modes,
especially for accurately assessing how such modes couple to
single quantum emitters such as QDs.

In this paper we present a three-dimensional Bloch mode
expansion (BME) method and a Green function formalism
to accurately calculate the quality factor, mode volume, and
PE distributions of localized modes in a disordered W1 PCW;
fabrication (intrinsic) and two models of intentional (extrinsic)
disorder are considered in our calculations, including varia-
tions in hole radii as well as position. We find that the cavity-
mode quality factor statistics is in general well described by
log-normal distributions, which is in good agreement with
previous experimental findings [35], as well as the PE statistics
for moderate quantities of intentional disorder. The latter is a
consequence of the dominant behavior of Q over the PE given
the small variation range of the mode volumes in comparison
to the variation range of the quality factors. In particular, we
show that the intensity of the emission enhancement is slightly
larger in the x̂ projected direction (waveguide direction) than in
the ŷ projected one (perpendicular to the waveguide direction
within the PC plane), which is due to the larger value of the
x-polarized electric field component peak in comparison to
the corresponding y component. A decreasing exponential
dependence of the mean quality factors and mean PE on the
square root of the extrinsic disorder parameter is found, as well
as for the standard deviation of the corresponding statistical
distributions. Finally, using our three-dimensional model, we
also compute the probability of strong coupling between
state-of-the-art QDs and to the (so-called) Anderson-localized
modes, and find the optimal spatial regions to maximize
coupling of these quantum emitters in the PCW. A decreasing
exponential dependence of the strong coupling probability on
the squared extrinsic disorder parameter is seen, and such
probability is found to be more robust against hole-position
disorder than hole-size disorder. Our theoretical results are
of particular relevance to complement recent (and emerging)
experimental works on probing the statistical properties of
Anderson localization [35], statistical measurements of Purcell
enhancements [36], and cavity-QED [26]. In contrast to a
recent approximate model by Thyrrestrup et al. [37], where the
in-plane and perpendicular fields are considered to contribute
independently to the total LDOS and the scattering out of the
membrane is considered to arise due to material absorption
(leading to inaccurate predictions for a slab structure), the
BME method naturally takes into account the coupled in-plane
and perpendicular field components, and the out-of-plane
losses, since the computed electromagnetic fields come from a
rigorous three-dimensional solution of Maxwell equations in
the disordered PCW system.

The rest of our paper is organized as follows. In Sec. II
we briefly discuss the BME method recently introduced by
Savona [38,39]. In Sec. III we study the nondisordered W1

PCW using the guided mode expansion method, compute
the Bloch mode basis to solve the disordered W1 PCW,
and establish the intrinsic and extrinsic disorder models.
The statistics of the quality factor and mode volumes of
disorder-induced cavity modes are presented in Sec. IV, and
the disordered DOS, as well as the statistics of PEs, are
presented in Sec. V. Finally, we compute the probability of
strong coupling between a quantum emitter and the Anderson-
localized modes in Sec. VI. The main conclusions of the work
are presented in Sec. VII.

II. THE BLOCH MODE EXPANSION METHOD

The eigenmodes of perfect (i.e., nondisordered) PCs can be
described by the following wave equation [3]

∇ ×
[

1

ε(r)
∇ × Hkn(r)

]
− ω2

kn

c2
Hkn(r) = 0, (1)

subject to the Bloch boundary condition, i.e., Hkn(r + R) =
eik·RHkn(r), where R is the lattice vector. Equation (1) applies
for linear and isotropic nonmagnetic materials, and we also
assume that the dielectric function describing the system is
real and positive (transparent materials) without any explicit
dependence on ω (nondispersive material). The eigenstate
Hkn is the magnetic Bloch mode with band index n and
momentum k, and the corresponding eigenvalue defines the
resonant frequency of the mode. The periodic potential is
represented by 1/ε(r), where the dielectric function ε(r) has
the same periodicity of the nondisordered PC. In the presence
of disorder, the new dielectric profile 1/ε′(r) is written as

1

ε′(r)
= 1

ε(r)
+ η(r), (2)

and Eq. (1) can be applied with the Bloch boundary conditions,
in a disordered supercell with dielectric function ε′(r), for the
disordered eigenstates Hβ , yielding

∇ ×
[

1

ε′(r)
∇ × Hβ(r)

]
− ω2

β

c2
Hβ(r) = 0. (3)

The eigenmodes in Eq. (3) are labeled with a new index
β since k is not conserved when disorder is taken into
account. Following Savona [38,39], the disordered modes can
be expanded in an orthonormal basis of Bloch modes, using
the solutions of Eq. (1):

Hβ(r) =
∑
k,n

Uβ(k,n)Hkn(r), (4)

turning Eq. (3) into the following linear eigenvalue problem:

∑
k,n

[
Vkn,k′n′ + ω2

kn

c2
δkk′,nn′

]
Uβ(k,n) = ω2

β

c2
Uβ(k′,n′), (5)

with disordered matrix elements defined as

Vkn,k′n′ =
∫

s.cell
η(r)[∇ × Hkn(r)] · [∇ × H∗

k′n′(r)]dr, (6)

where the integration is carried out over the entire supercell.
In the same way as it is considered in Refs. [38,40], we
adopt the guided mode expansion (GME) approach to compute
the integral of Eq. (6), which conveniently turns the matrix
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elements into analytical closed expressions [41]. Such an
approach has shown to be very accurate and efficient to
describe photonic eigenmodes in high-dielectric-contrast PC
slabs with complex two-dimensional profiles [10,18,42], as is
the case of the photonic structures in the present work. Once
the disordered magnetic field is computed, the electric field is
obtained via Maxwell’s equations, so that

Eβ(r) = ic

ωβε′(r)
∇ × Hβ(r), (7)

which is normalized through∫
s.cell

ε′(r)|Eβ(r)|2dr = 1. (8)

This normalization allows the calculation of the effective
mode volume Vβ = 1/[ε′(r0)|Eβ(r0)|2], where r0 is usually
taken at the antinode position of the electric field peak. The
imaginary part of the eigenfrequency, associated with the
assumed real eigenvalue in Eq. (5), leads to out-of-plane losses
for PC slabs, and can be estimated using the same formulation
of the photonic golden rule given in Ref. [41], where the
radiative decay from a disordered mode to radiative modes is
calculated above the light line using first-order time-dependent
perturbation theory. This approach is expected to be a good
approximation when the real part of the eigenvalue is much
larger than its imaginary part (low-loss regime). The complex
frequencies of the system are then approximately defined as
ω̃β = ωβ − i�β , where the quality factor of the disordered
photonic eigenmode is computed by Qβ = ωβ/(2�β). While
such cavity modes are formally quasinormal modes [43], for
high Q resonators, the effective mode volume defined earlier
is expected to be an excellent approximation for the typical
spatial domains we use [44].

III. DELIBERATELY DISORDERED W1 PHOTONIC
CRYSTAL SLAB WAVEGUIDES

In order to develop a suitable Bloch mode basis to describe
a disordered air-bridge W1 system, we first solve the regular
(nondisordered) one-period W1 PCW. Typical parameters
relevant to GaAs structures are considered: in-plane hexagonal
pattern of circular holes whose radii are 70.9 nm, lattice
parameter a = 240 nm, and slab thickness d = 150 nm with
dielectric constant ε = 12.11. The TE-like projected band
structure, associated with a regular supercell of dimensions
a × 5a

√
3, is shown in Fig. 1 for the first Brillouin zone of

the periodic W1 PCW. The band edge of the fundamental W1
mode, which is the focus of the present work, is located at 932
nm. The photonic dispersion has been calculated employing
the GME approach using 243 reciprocal lattice vectors G,
tested for numerical convergence, within a circle of radius
a|G|max = 19 centered at G = 0 in the reciprocal space of the
regular supercell. Since we are interested in a frequency region
below the second-order guided mode, we consider only one
guided mode in the GME expansion. We have verified that the
second-order guided mode introduces only a small correction
of about 0.1% in the band-edge frequency of the fundamental
W1 guided mode, and consequently it can be safely neglected.
By considering one guided mode into the GME method we are
able to solve the present fully three-dimensional system with

FIG. 1. (Black lines) Projected photonic dispersion of the one-
period regular W1 PCW by considering a regular supercell of
dimensions a × 5a

√
3, as it is shown in the inset. (Blue lines) Light

lines of the slab. (Orange points) Set of modes considered in the BME
calculation.

the computational effort of a two-dimensional calculation [41].
In addition, the real part of the quasinormal mode frequencies,
associated with the bands above the light line of the system,
are naturally obtained using the GME approach.

Figure 1 shows the Bloch mode basis to be considered
in the BME calculation; specifically, we use the four bands
highlighted with orange points in the figure, which correspond
to the dominant terms in the expansion of Eq. (4) near to
the band edge of the fundamental W1 mode, when disorder
is introduced in the system [38]. In the present paper, we
focus in a disordered waveguide of length 100a (disordered
supercell dimension of 100a × 5a

√
3), which automatically

determines a complete set of 100 k points in the Brillouin zone
of Fig. 1. We choose this set to be formed by the centers of the
disordered-W1 reciprocal lattice unit cells, which have length
2π/(100a), as it is represented by the orange points along the
four Bloch basis bands in Fig. 1.

In order to study optical Anderson-localization modes, we
introduce disorder in the position (x(0)

m ,y(0)
m ) and radius r (0)

m

of the mth hole, by considering random fluctuations δ with
Gaussian probability

(xm,ym) = (
x(0)

m + δx,y(0)
m + δy

)
,

(9)
rm = r (0)

m + δr,

where (xm,ym) and rm are the fluctuated position and radius of
the mth hole. The standard deviation of the random fluctuations
in position σp = σx = σy , and radius (size) σs , are taken as our
disorder parameters. Since PCs are also subject to intrinsic
disorder, i.e., unintentionally introduced in the fabrication
process, the total amount of disorder that will be considered in
the system is [33]

σ 2 = σ 2
i + σ 2

e , (10)

where σi is the magnitude of intrinsic disorder and σe is
either σp or σs . Intrinsic disorder can be introduced by
fluctuating either the hole positions [29,33] or hole sizes [18],
or both [38,40], and more sophisticated models can be also
introduced to take into account the hole roughness [45,46].
We consider fluctuations in the hole positions as the main
intrinsic disorder contribution and set σi = 0.005a in all
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our calculations, corresponding to the state-of-the-art in
GasAs/InGaAs fabrication techniques [33]. The modeling of
intrinsic disorder is not so important here, as our main focus
is on the role of the referred model of extrinsic disorder.

We solve the 400 × 400 Hermitian eigenvalue problem of
Eq. (3) for each statistical realization of the disordered system,
and only the modes whose localization lengths are smaller than
25a and that are within the Lifshitz tail of the fundamental
waveguide mode are considered in the statistical analysis,
corresponding to the disorder-induced Anderson-localized
states. The localization length of the mode Lβ is calculated
by using the inverse participation number [38]

Lβ =
[∫

s.cell
|Hβ(x,y = 0,z = 0)|4dx

]−1

, (11)

which has units of length if we compute first the normalization
integral

∫
s.cell |Hβ(x,y = 0,z = 0)|2dx = N , and we use the

rescaled magnetic field Hβ → Hβ/
√

N . Employing the cutoff
condition Lmax = 25a we minimize finite-size effects coming
from the Bloch periodic condition of the disordered supercell.
In all the results that follow, we consider 20 statistical
realizations, and have verified that such number of instances
is enough to achieve the convergence of the first and second
moments of the computed distributions.

IV. STATISTICS OF DISORDER-INDUCED QUALITY
FACTORS AND MODE VOLUMES

Figure 2 shows the quality factor and mode volume
distributions of the Anderson-localized modes for different
values of σp [Figs. 2(a) and 2(b)] and σs [Figs. 2(c) and 2(d)].
In all cases, there is also an intrinsic disorder contribution of
σi = 0.005a as described above. The peak position of the Q

factor distributions is displaced to smaller values as the degree

FIG. 2. (a) Histograms of the natural logarithm of the quality
factors and (b) histograms of the mode volumes in units of (λ/n)3,
for the Anderson-localized modes in the band-edge region of the
fundamental waveguide mode, by considering disorder in the hole
positions of the PC. (c) and (d) The same histograms of (a) and
(b), respectively, by considering disorder in the hole radii of the PC.
In all cases, we also include an intrinsic disorder contribution of
σi = 0.005a.

of disorder increases, which was already addressed in previous
theoretical [37] and experimental works [35]; moreover, the
width of the distributions in the natural-logarithm histograms
of Figs. 2(a) and 2(b) is approximately constant, which
suggests that the standard deviation decreases when the
magnitude of disorder increases. The peak and width of the
Q distributions display similar σe dependence for the two
models of disorder considered in this work. The behavior of
the modal volume distributions, shown in Figs. 2(b) and 2(d),
is however quantitatively different from the Q distributions,
since the volumes are concentrated in the small-volume region
for large σp, Fig. 2(b), and slightly affected by large values of
σs , Fig. 2(d).

The explicit dependence of the mean value and standard
deviation on the disorder parameter for Q, V , and L (local-
ization length) distributions are shown in Fig. 3. Figure 3(a)
shows a fast decreasing of the mean quality factor 〈Q〉 when
σp increases; such behavior is also present in the standard
deviation of the quality factor distribution δQ as is suggested
by the results in Fig. 2(a). In the inset of Fig. 3(a), we show
the natural logarithm of 〈Q〉 and δQ as a function of

√
σp,

where we clearly see a linear decreasing of these parameters
as

√
σp increases for deliberated disorder magnitudes larger

than 1% of the lattice parameter; thus we have an exponential
dependence of both 〈Q〉 and δQ on the square root of the
disorder parameter. The system displays the same qualitative
behavior by considering disorder in the hole radii, Fig. 3(c),
with approximately the same exponential constants found in
the case of

√
σp disorder for 〈Q〉 and δQ. We have also

identified such a linear behavior for σp and σs values smaller
than 1% (results not shown here); nevertheless, when the
degree of extrinsic disorder approaches zero, the localization
length is comparable to the length of the disordered supercell
considered in this work, leading to unphysical results due
to finite-size effects. However, this numerical artifact can be

FIG. 3. (a) Mean 〈Q〉 and standard deviation δQ of the quality
factors as a function of σp , where the inset show the natural logarithm
of 〈Q〉 and δQ as a function of

√
σp . The corresponding means 〈V 〉

and 〈L〉 and standard deviations δV and δL of the mode volumes and
localization lengths are shown in (b). (c) and (d) The same analysis
shown in (a) and (b), respectively, by considering disorder in the hole
radii of the PC with disorder parameter σs . The lines only connect the
individual points and serve as a guide for the eye.
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avoided by considering a much larger disordered waveguide;
for extrinsic disorder magnitudes of the order of 0.005a or
larger, relevant for deliberately disordered samples [29,33,35],
a waveguide length of 100a is sufficient to describe the main
physics of the Anderson-localized modes. The mean of the
effective mode volumes 〈V 〉 and their standard deviation δV

as a function of the disorder magnitude are shown in Figs. 3(b)
and 3(d) for σp and σs , respectively.

Our results show that the fluctuations in the mode vol-
ume are much smaller than the fluctuations in the quality
factors, and a lower bound in the value of 〈V 〉 as suggested
already theoretically and experimentally in recent works [34].
Furthermore, in the region of large σe, and in contrast to
the quality factor statistics, the behavior of 〈V 〉 and δV is
slightly different for both models of disorder; when deliberate
disorder in the hole radii of the PC is considered the mean
and the standard deviation of V display a prominent minimum
in the studied region of σe [Fig. 3(b)], while they display a
much more soft behavior when deliberated disorder in the
hole positions is introduced in the system [Fig. 3(d)]. These
interesting results for the mode volume statistics suggest that
in both models of disorder the localization length begins to
increase when σe is larger than 3% of the lattice parameter,
as is evidenced in the 〈L〉 and δL behaviors, which is in
good agreement with experimental work [35]. In fact, by
adding more disorder after the lower mode volume bound is
reached, the average size of the spontaneously formed random
cavities increases, leading to an average increasing of the mean
mode volumes. Nevertheless, between σe = 0 and σe = 0.03a,
the mode volume decreases with increasing disorder, leading
to a localization length decreasing as intuitively expected
and reported in the literature [23]. In addition to this, by
considering the standard deviation of V , the smallest volumes
in Fig. 3 [around1(λ/n)3] are in agreement with previous
PC cavity mode volumes in GaAs membranes [47], and
they are about one order or magnitude smaller than previous
approximate calculations carried out by Thyrrestrup et al.
using two-dimensional models [37]. Utilizing the results from
Fig. 3, we plot in Fig. 4 the mean quality factor as a
function of the mean localization length in the disordered
PCW, where it is clearly seen an overall increasing trend of
〈Q〉 as 〈L〉 increases. In the regime of large 〈L〉, one expects

6 8 10 12 14
<L> (a)

103

104

105

106

<Q
>

σp
σs

FIG. 4. Mean quality factor 〈Q〉 as a function of the mean
localization length 〈L〉 for σp and σs extrinsic disorder. The lines
only connect the individual points and serve as a guide for the eye.

FIG. 5. Probability density function (PDF) for the quality factor
of the Anderson-localized modes in the region of the fundamental
waveguide mode band edge. Left panels correspond to deliberated
σp disorder and right panels correspond to deliberated σs disorder. In
all cases, we also include an intrinsic disorder contribution of σi =
0.005a. The continuous red curves are the corresponding log-normal
distributions calculated with 〈Q〉 and δQ.

an increasing behavior of 〈Q〉 since the localization length
of the Anderson modes approaches the waveguide length,
which is the limit where the perfect waveguide mode is
recovered in the system (infinite Q factor at the band-edge
region). On the other hand, in the regime of small 〈L〉,
the behavior of 〈Q〉 is mainly determined by the functional
dependence of 〈V 〉 on σe. It is important to note that these
trends of our computed Q factors as a function of 〈L〉 are
quite different to the two-dimensional models of Thyrrestrup
et al., where Q decreases superexponentially as a function
of L.

The symmetric Gaussian-like distributions in the log-
histograms of Figs. 3(a) and 3(c) demonstrate a log-normal
distribution in the quality factor statistics. In order to clarify
this trend, we plot the Q probability density function (PDF)
in Fig. 5, obtained from the Anderson-localized modes for all
the statistical instances, superimposed with a log-normal dis-
tribution (red-solid curve) whose mean and standard deviation
are calculated using 〈Q〉 and δQ. The left panels correspond
to extrinsic σp disorder, while the right panels correspond to
extrinsic σs disorder. When deliberate disorder in the hole
positions is considered in the system, the quality factors
statistics are very well described by a log-normal distribution,
which has been assumed in previous works [35] but, from our
knowledge, never explicitly calculated for disordered PCWs
with a realistic three-dimensional model. Interestingly, when
intermediate deliberated disorder magnitudes are introduced
in the hole radii of the PC, the distributions of Q are slightly
different from the log-normal distribution, which suggests
that, in the intermediate region of σe, the quality factors are
differently distributed when different models of deliberated
disorder are considered.

The results shown in Figs. 2(a), 2(c), 3(a), 3(c), and 5
were computed by naturally considering the loss distributions
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FIG. 6. Histograms of the decay rates for (a) σp = 0.02a and
σp = 0.04a and (b) σs = 0.02a and σs = 0.04a. The mean 〈γ 〉 and
standard deviation δγ of the decay rates are shown in (c) and (d) as
a function of σp and σs , respectively. The lines in (c) and (d) only
connect the individual points and serve as a guide for the eye.

associated with the imaginary part of the eigenfrequency of
Eq. (5) into the BME approximation. The corresponding decay
rates γβ = 2�β , which are inversely proportional to the loss
lengths, are shown in Fig. 6. The histograms of Figs. 6(a)
and 6(b) show that the mean value of the distribution suffer a
blueshift in frequency when structural disorder increases, and
it is considerably broader when large amounts of disorder are
taken into account. Such behavior is confirmed in Figs. 6(c)
and 6(d), where it is clearly seen that the mean and standard
variation of γ increase for increasing σe. These results
are equivalent for both models of disorder. We have also
verified that the corresponding probability density functions
determined by the Anderson decay rates are in general well
described by log-normal distributions as it is expected from
Fig. 5 (results not shown here). The decay rate, or equivalently
loss length, distributions are fundamental to obtain the correct
behavior in the quality factor statistics [35]; in fact, we have
checked in our calculations that it is not possible to reproduce
the actual Q statistics by considering an averaged loss length.

V. DENSITY OF STATES AND STATISTICS OF PURCELL
FACTOR ENHANCEMENT

One of the main advantages of the BME method, discussed
in Sec. II, is the possibility to compute the out-of-plane
losses of the disordered modes as well as their field profiles,
allowing the calculation of the LDOS and PE using the
photonic Green function formalism. To accomplish this, we
adopt the following mode expansion of the transverse Green’s
function [13]:

←→
G (r,r′,ω) =

∑
β

ω2E∗
β(r′)Eβ(r)

ω̃2
β − ω2

, (12)

with the electric field subject to the normalization condition of
Eq. (8). The Green’s function of Eq. (12) is a solution of the

dipole-source differential equation[
∇ × ∇ × −ω2

c2
ε(r)

]←→
G (r,r′,ω) = ω2

c2

←→
I δ(r − r′), (13)

where
←→

I is the unit dyadic. The projected LDOS in the n̂μ

direction is computed via [48]

ρμ(r,ω) = 6

πω
[n̂μ · Im{←→G (r,r,ω)} · n̂μ], (14)

and the projected PE can be defined by

PEμ(r,ω) = ρμ(r,ω)

ρ0
μ(r,ω)

= n̂μ · Im{←→G (r,r,ω)} · n̂μ

n̂μ · Im{←→G 0(r,r,ω)} · n̂μ

, (15)

where [49]

n̂μ · Im{←→G 0(r,r,ω)} · n̂μ = ω3√ε

6πc3
(16)

is the corresponding projection of the imaginary part of the
Green’s tensor in the bulk semiconductor, with dielectric
constant ε. From Eqs. (12), (15), and (16), the PE factor at
the position r and frequency ω, projected in the n̂μ direction,
reads

PEμ(r,ω) = 6πc3

ω
√

ε
Im

⎧⎨
⎩

∑
β

|Eμ,β(r)|2
ω̃2

β − ω2

⎫⎬
⎭. (17)

At a field antinode, the sum of the three orthogonal
contributions of Eq. (17) reduces to the well known result for
the Purcell factor of [3/(4π2)](λ/n)3(Qβ/Vβ ), where n = √

ε,
and we use ω = ωβ . The DOS can be calculated by tracing
the Green’s tensor over the three orthogonal spatial directions
(associated with the total LDOS) and integrating its imaginary
part over all space. In units of PE, i.e., over the bulk DOS
ω2√ε/(π2c3), the DOS has the simple form:

DOS(ω) = 6πc3

ωε3/2
Im

⎧⎨
⎩

∑
β

1

ω̃2
β − ω2

⎫⎬
⎭, (18)

where we have used the normalization condition of Eq. (8) to
compute the electric field integral.

Figure 7 shows the computed averaged DOS, over 20
statistical realizations, by considering three values of σp

[Fig. 7(a)] and σs [Fig. 7(b)] disorder magnitudes. Since the
DOS is a property of the whole spectrum of the system,

FIG. 7. Averaged DOS over 20 statistical realizations, in PE units,
by (a) considering deliberated disorder in the hole positions of the PC
and by (b) considering deliberated disorder in their hole radii. The
intrinsic disorder contribution in all cases is σi = 0.005a.
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FIG. 8. Histograms of the natural logarithm of the projected PEs
in the (a) x̂ and (b) ŷ directions, associated with the corresponding
electric field component peaks of the Anderson-localized modes,
within the Lifshitz tail, by considering σp disorder. (c) and (d)
The same histograms of (a) and (b), respectively, by considering
σs disorder. The intrinsic disorder contribution in all cases is
σi = 0.005a.

we have used all the solutions coming from Eq. (5) in the
region displayed in the figure, i.e., we have not considered any
cutoff condition in the localization length of the eigenmodes.
The characteristic Lifshitz tail is clearly obtained and we
also capture the disorder-induced broadening of the DOS
and the disorder-induced blueshift of its peak, as already
experimentally and theoretically reported (the latter using a
perturbative approach with local field corrections) [29]. In the
present analysis, the behavior of the PC band edge (right peak)
is also captured, due to the inclusion of this band in the Bloch
mode basis (see the lowest frequency red band in Fig. 1).
Notice that the divergent Van Hove singularity at the band
edge of the fundamental waveguide mode is not present for

σp = 0 or σs = 0 since we are considering a nominal amount
of intrinsic disorder in the system. Our results also show that
when extrinsic disorder is considered in the hole radii of the
PC, the DOS is slightly more affected than in the case when
disorder in the hole position is deliberately introduced in the
system.

The natural-logarithm histograms of the x̂ and ŷ projections
(the waveguide is along x direction) of the PE, Eq. (17),
evaluated at the disorder mode frequencies and at the corre-
sponding electric field component peaks, are shown in Fig. 8 by
considering σp [Figs. 8(a) and 8(b)] and σs [Figs. 8(c) and 8(d)]
extrinsic disorder models. We find very broad PE distributions
of the Anderson-localized modes within the Lifshitz tail, which
are left-displaced for increasing degree of intentional disorder.
The mean and standard deviation of the histograms are plotted
in Figs. 9(a) and 9(b) as a function of σp and σs , respectively.
Both x̂ and ŷ, projections of the mean PE, display a decreasing
behavior when the extrinsic amount of disorder increases. The
same trend is seen in the standard deviation of the distributions
leading to a concentration of the enhancement for large delib-
erated disorder magnitudes. From Figs. 9(a) and 9(b), it is also
clear that the enhancement factor is larger in the x̂ direction
(along the waveguide) than in the ŷ direction (perpendicular
to the waveguide in the PC plane), which is expected given the
slightly larger peak of the Ex component in comparison to the
peak of Ey . Our results demonstrate that the positions of the Ex

peaks are therefore the best places for cavity-QED applications
with QDs, as will be discussed in Sec. VI. The system also
displays approximately the same behavior for both models of
extrinsic disorder. In the insets of Figs. 9(a) and 9(b) we show
the natural logarithm of 〈PE〉 and δPE for hole position and
hole size disorder, respectively, as a function of the square
root of the intentional disorder parameter. We find the same
linear behavior seen in the corresponding insets for the quality
factor analysis presented in Figs. 3(a) and 3(b): an exponential
dependence of the PE projections on the square root of the

FIG. 9. Mean 〈PE〉 and standard deviation δPE of the x and y PEs as a function of (a) σp and as a function of (b) σs . The corresponding
insets show their natural logarithms as a function of the square root of the extrinsic disorder parameter. The intensity profiles of the displacement
field Dx and Dy components associated with an Anderson-photonic mode, are shown in (c) and (d), respectively, for one statistical instance of
the case σp = 0.01a. (e) and (f) The PE at the peaks of Dx and Dy , respectively, from (c) and (d), as a function of λ. The lines in (a) and (b)
only connect the individual points and serve as a guide for the eye.
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extrinsic disorder parameter
√

σe with approximately the same
exponential constants found for the quality factors in the case
of σp, and slightly smaller than the corresponding exponential
constants found for them in the case of σs . The small difference
between the exponential constants for these two different
disorder models appears due to the slightly different response
of the DOS to hole position and size disorder (see Fig. 7).
However, since the mean of the mode volumes changes within
a much less broad region, in (λ/n)3 units, in comparison to
the quality factors, where the means change about two orders
of magnitude for the σe values considered (see Fig. 3), the
PEs, which are roughly proportional to Q/V , are mainly
determined by the Q statistics of the Anderson-localized
modes; this explains why the PE always decreases even for
decreasing V . Future works could focus on the regime where
the Q and V variation ranges are comparable, i.e., very large
intentional disorder, in which the dependence of PE on σe is
determined by both Q and V statistics.

It is also important to realize that the variation range of
the Anderson-localized mode volumes is strongly dependent
on the waveguide length and consequently on the cutoff
condition Lmax. Since the change in the mode volume is mainly
determined by the change in the localization length and we are
within a narrow region of the spectrum, the former is roughly
proportional to the latter, so that Vβ ∝ Lβ [see Figs. 3(b)
and 3(d)]; thus, given a 〈V 〉 variation of one (λ/n)3 unit
and taking into account from our calculations that the mean
localization length varies 6 units of a, we estimate a variation of
∼16(λ/n)3 units for 〈V 〉 by considering a Lmax = 416a cutoff,
corresponding to a typical waveguide length, i.e., 100μm.
Therefore, we believe that the Q statistics also dominate the
behavior of the PE for state-of-the-art samples, well into
the disorder regime investigated in the present work. The
intensity profiles of the displacement field [D(r) = ε′(r)E(r)]

FIG. 10. Probability density function of the PEs in the x̂, left
panels, and ŷ, right panels, directions when deliberated disorder
is introduced in the hole positions of the PC. The continuous red
curves are the corresponding log-normal distributions calculated with
〈PE〉 and δPE. The intrinsic disorder contribution in all cases is
σi = 0.005a.

FIG. 11. Probability density function of the PEs in the x̂, left
panels, and ŷ, right panels, directions when deliberated disorder is
introduced in the hole radii of the PC. The continuous red curves are
the corresponding log-normal distributions calculated with 〈PE〉 and
δPE. The intrinsic disorder contribution in all cases is σi = 0.005a.

components Dx and Dy , for an Anderson-localized mode with
σp = 0.01a, are shown in Figs. 9(c) and 9(d), respectively,
where the strong localization in the waveguide region is clearly
seen. We compute the PE for this mode at the corresponding
electric field component peaks, and we show the results in
Fig. 9(e), for x̂ projection, and in Fig. 9(f), for ŷ projection.
As is expected, the enhancement is magnified at resonance
with the Anderson-localized photonic mode. Figures 10 and 11
show the PDF of the PE when deliberate disorder is introduced
in the hole positions and hole radii, respectively, and the red
curve is the corresponding log-normal distribution determined
by 〈PE〉 and δPE. Given the Gaussian-like histograms of
Fig. 8, whose behavior is dominated by the quality factors
of the Anderson-localized modes, the PE statistics is thus
well described by log-normal distributions in the considered
extrinsic disorder regime.

The present calculations on the statistics of PEs, as already
discussed, were carried out by considering optimal spectral
and spatial conditions, i.e., Eq. (17) is evaluated at the
frequency of the Anderson-localized mode (zero detuning) and
at the electric field component peak. Consequently, our results
determine upper bounds on the PEs that can be measured in
state-of-the-art W1 PCW samples, for which lower bounds
have already been experimentally established [36].

VI. PROBABILITY OF STRONG COUPLING WITH A
SINGLE QUANTUM EMITTER

The possibility to achieve the strong coupling regime
between the quasi-1D Anderson-localized photonic modes
and a single quantum emitter has been partly theoretically
addressed by Thyrrestrup et al. [37] using a two-dimensional
model of disordered PCWs, with experimental signatures
experimentally observed by Gao et al. [50] in the slow-light
regime. Furthermore, Cazé et al. [51] studied the strong
coupling criteria with two-dimensional Anderson-localized
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modes. Here we compute numerically the probability of strong
coupling using the criterion obtained by Cazé et al., and
consider, in a realistic way, the cavity loss spatial distributions
determined by the out-of-plane quality factor statistics; thus we
generalize the simpler model result obtained by Thyrrestrup
et al. where the same loss length is assumed for all Anderson-
localized modes. Indeed, Smolka et al. [35] discussed the
importance of including a loss length distribution in order
to obtain accurate statistical results. Using a simple quantum
theory of cavity-matter interaction, the coupling constant
between a quantum emitter and an electromagnetic eigenmode,
in the dipole approximation, is given as [52]

gβ =
√

ωβ

2h̄ε0
d · Eβ(rd ), (19)

where rd and d = dê are the position and the ê-oriented dipole
moment, respectively, of the quantum dipole emitter. Here
we consider dipole moments of d = 40 Debye, relevant to
self-organized InGaAs QDs [53–55]. Notice that the coupling
strength of Eq. (19) depends on the electric field value
at the position of the QD, which is accurately given by
the three-dimensional BME method, which can be quite
different to those predicted by one-dimensional [35] or two-
dimensional [34,37] approaches. To quantify this difference,
Fig. 2 of Thyrrestrup et al. [37] computes Anderson-localized
mode volumes of around 0.2–1 μm3 which yields, in normal-
ized units, a value of 9–45 (λ/n)3, i.e., an order of magnitude
larger than our computed values [see Figs. 3(b) and 3(d)]. Our
results thus demonstrate that the two-dimensional calculations
can fail to obtain the correct effective mode volumes which
are critical for accurate use in quantum optics and Purcell
factor calculations. By assuming that the QD mimics a simple
two-level system in the frequency regime of interest, we adopt
the approximate condition for strong coupling [51]:

g2
β �

γ 2
β + γ 2

d

8
, (20)

where γβ = ωβ/Qβ is the photonic cavity decay rate and γd

represents an overall exciton decay rate in the quantum dot ex-
citon (without cavity coupling), including the rate of radiative
decay into the photonic modes and any possible nonradiative
mechanism. Equation (20) ensures that the Rabi splitting is
larger than the polariton linewidth, which is a necessary and
sufficient condition to observe the frequency splitting between
the polariton states, and it is more restrictive than the usual
adopted condition g2

β � (γ 2
β − γ 2

d )/16, which ensures only the
existence of a nonzero Rabi splitting between the exciton-
photon coupled modes [56,57]. We then define the quantity

SCβ = g2
β − γ 2

β + γ 2
d

8
, (21)

and calculate the probability that SCβ is larger than zero within
the sample space defined by all the statistical realizations of
the disordered system, which is merely the probability that the
quantum emitter is strongly coupled to an Anderson-localized
photonic mode. We specifically consider rd = (xd,yd,0),
which is the region where the field is more intense for our TE-
like polarization, and separate the contributions of Ex and Ey

electric field components in Eq. (19) (the Ez is zero at z = 0),

which is equivalent to consider dipole orientations in either x̂ or
ŷ directions, respectively. Since the PC is randomly perturbed
when disorder is introduced, the probability of field local-
ization must be the same along the waveguide for Anderson
modes, and hence the probability of strong coupling should be
independent on the emitter position along this region. Never-
theless, special care must be taken into account since the local-
ization positions of the field antinodes do not vary continuously
along the waveguide and the strength of the dot-field interac-
tion depends on the dipole orientation of the quantum emitter.

From the insets of Figs. 9(e) and 9(f) we clearly see that
the antinodes of the Ex component are positioned between the
missing holes defining the waveguide and they are outward
displaced from the line y = 0, while the antinodes of the
Ey component are positioned at approximately the same
positions of such missing holes. We have verified this for
all the Anderson-localized modes studied in the present work.
Based on our numerical results, we then obtain the optimal
regions and orientations for positioning the QD: between
missing holes at y = 0.433a for a x̂ oriented dipole, and at
the missing holes with y = 0 for a ŷ oriented one. We choose
one point of these optimal statistically equivalent regions
for each orientation to compute the probability of strong
coupling. In our particular coordinate system, where there is no
missing hole at (x = 0,y = 0), we have (xd,yd ) = (0,0.433a)
and (xd,yd ) = (0.5a,0.0) for the x̂ and ŷ oriented dipoles,
respectively. Results are shown in Figs. 12(a) and 12(b)
for σp, and Figs. 12(c) and 12(d) for σs extrinsic disorder
parameters, where we have considered γd = 1 μeV (black
circles), γd = 10 μeV (red squares), and γd = 30 μeV (blue
triangles). The probability of strong coupling always decreases
for increasing magnitudes of deliberated disorder, and it is

FIG. 12. Probability of a d = 40 Debye QD exciton with overall
exciton decay rate of γd = 1 μeV (black circles), γd = 10 μeV
(red squares), and γd = 30 μeV (blue triangles) be strongly coupled
(SC) to an Anderson-localized mode. (a) and (b) Dipole moment
orientations in the x̂ and ŷ directions, respectively, by considering
σp disorder. The intrinsic disorder contribution in all cases is σi =
0.005a. (c) and (d) The same plots in (a) and (b), respectively, by
considering σs disorder. The insets show the natural logarithm of
the strong coupling probability as a function of the squared extrinsic
disorder parameter. The lines only connect the individual points and
serve as a guide for the eye.
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slightly larger when the dipole moment is oriented in x̂, i.e.,
along the waveguide direction (see inset scheme), which is a
direct consequence of the x̂ projected PE being larger than the
ŷ projected one (see Fig. 9). We also note that the differences
on the strong coupling probabilities for different values of γd

at the same σe, decreases when σe increases, which is due to
the dominant effect of γβ (low Qβ) for large disorder. This
result suggest that state-of-the-art QDs, corresponding to the
region between the red and black curves, may lead to large
strong coupling probabilities only in the low disorder regime,
around 60% for nonintentional disordered samples and around
30% for intentional disorder of the order of 0.01a. Also note
that these results correspond to upper bounds on the actual
strong coupling probability since we are considering QDs
with a mean overall rate γd , perfectly oriented, on resonance
with the Anderson-photonic mode and positioned at the field
antinodes. The latter is not however a great limitation given the
state-of-the-art precision on QD positioning (around 20 nm)
in modern nanofabrication techniques [4,6]; and the resonant
condition can be achieved, e.g., by using the quantum confined
Stark effect [7,58]. In the insets of Fig. 12 we plot the natural
logarithms of P(SC) as a function of σ 2

e , and we see that the
probability of strong coupling is well described by a decreasing
exponential behavior on the square of the extrinsic disorder
parameter. When disorder in the hole radii is considered
[Figs. 12(c) and 12(d)], the exponential constants are found to
be around 25% larger than the case when the hole positions are
deliberately disordered [Figs. 12(a) and 12(b)], and therefore,
the strong coupling probability is more robust when the latter
model of intentional disorder is considered in the system. We
attribute the difference in the exponential constants to the fact
that the total DOS is more affected by σs than by σp, as can be
seen from Fig. 7.

VII. CONCLUSIONS

Using the fully three-dimensional Bloch mode expansion
method we have realistically calculated the quality factor
and mode volumes distributions of the Anderson-localized
modes in deliberately disordered W1 PC slab waveguides. We
have considered intentional disorder in the PCW by randomly
fluctuating either its hole positions (standard deviation σp)
or its hole radii (standard deviation σs) with a Gaussian
probability, and we also account for state-of-the-art intrinsic
disorder by introducing additional Gaussian fluctuations in
the hole positions with standard deviation σi . We find that
the mean effective mode volume of the Anderson modes
decreases with increasing small disorder degrees and increases
with increasing large disorder degrees, displaying a lower
bound as it was recently predicted for the localization length
using (simpler) two-dimensional calculations. Such behavior

is seen to be more accentuated when disorder in the hole
sizes is considered. By studying the functional dependence
of the mean and standard deviation of the quality factor
distributions on σp and σs , we have found that these statistical
parameters decrease exponentially on the square root of
the intentional disorder parameter. Furthermore, we have
explicitly shown that the quality factor distributions are in gen-
eral well described by log-normal distributions, without any
fitting parameter, as already suggested in recent experimental
works [35]. Adopting a photonic Green function approach,
we also computed the statistical distributions of Purcell
enhancements using the projected LDOS in the orthogonal x̂

and ŷ directions. The mean values of the Purcell enhancements
found in this work, as a function of the extrinsic disorder
parameter, represent upper bounds to the corresponding values
that could be experimentally measured in the present system,
for which lower bounds have already been addressed in
recent experiments [36]. Moreover, in the studied disorder
regime, the statistics of the Purcell enhancement is mainly
determined by the quality factor distributions, which is verified
by the same exponential dependence of the enhancement
on the square root of the intentional disorder parameter. As
a consequence of the Q dominant behavior on the Purcell
enhancement, we have found that the Purcell enhancement
statistics is also well described by log-normal distributions.
We have also discussed the possibility of strong coupling
between a single quantum emitter, positioned within the
waveguide, and an Anderson-localized mode. We determined
the best regions for positioning the quantum emitter and found
that the probability of strong coupling always decreases for
increasing intentional disorder, where low disordered systems
give rise to larger probabilities when state-of-the-art QDs
are considered. These results are important for guiding and
motivating new experiments involving Anderson-localized
modes with applications for open cavity QED [26]. Finally,
we studied the functional dependence of the strong coupling
probability on the intentional disorder parameter and we found
an exponential decreasing on σ 2

s and σ 2
p , where the exponential

constants of the former disorder are larger than exponential
constants of the latter one, i.e., the strong coupling probability
is more robust against hole-position disorder than against
hole-size disorder.
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E. L. Hu, and A. Imamoğlu, Nat. Photon. 6, 93 (2011).

[5] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs,
G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature
(London) 432, 200 (2004).

224202-10

http://cac.queensu.ca
http://www.computecanada.ca
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1038/nphoton.2011.321
https://doi.org/10.1038/nphoton.2011.321
https://doi.org/10.1038/nphoton.2011.321
https://doi.org/10.1038/nphoton.2011.321
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03119
https://doi.org/10.1038/nature03119


STATISTICS OF ANDERSON-LOCALIZED MODES IN . . . PHYSICAL REVIEW B 95, 224202 (2017)

[6] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre,
S. Gulde, S. Fält, E. L. Hu, and Imamoǧlu, Nature (London)
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