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Ab initio study and theoretical analysis
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We perform ab initio molecular dynamics simulations of liquid Zn near the melting point in order to study
the longitudinal and transverse dynamic properties of the system. We find two propagating excitations in both
of them in a wide range of wave vectors. This is in agreement with some experimental observations of the
dynamic structure factor in the region around half the position of the main peak. Moreover, the two-mode
structure in the transverse and longitudinal current correlation functions had also been previously observed in
high pressure liquid metallic systems. We perform a theoretical analysis in order to investigate the possible origin
of such two components by resorting to mode-coupling theories. They are found to describe qualitatively the
appearance of two modes in the dynamics, but their relative intensities are not quantitatively reproduced. We
suggest some possible improvements of the theory through the analysis of the structure of the memory functions.
We also analyze the single-particle dynamics embedded in the velocity autocorrelation function, and explain its
characteristics through mode-coupling concepts.
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I. INTRODUCTION

The dynamic behavior of a liquid at long times (compared to
interatomic collision times) and large length scales (compared
to atomic sizes) can be well understood in terms of continuum
theories, namely hydrodynamics. This indicates that only two
mechanisms are required to understand longitudinal dynamics:
thermal relaxation and adiabatic propagation of attenuated
pressure waves (sound). Transverse stress can however only be
relaxed via shear viscosity, since the lack of elasticity prevents
the propagation of shear waves. In this hydrodynamic regime
the dynamic structure factor of the liquid, S(q,ω), has the form
of a Rayleigh-Brillouin triplet, with a central Lorentzian peak,
whose width is related to the thermal diffusivity, and a pair
of stretched-Lorentzian side peaks at positive and negative
frequencies, whose position is dictated by the adiabatic sound
velocity and whose width is related to the sound attenuation.
The transverse spectrum is also Lorentzian, and its width is
related to the shear viscosity [1,2].

This picture changes when the explored length scales and
times decrease, entering in the so-called kinetic regime. Ad-
ditional mechanisms can appear in the longitudinal dynamics
(for instance, structural relaxation), leading to a more complex
behavior, and viscoelasticity of the liquid can lead to the
emergence of shear waves for wave vectors larger than a critical
one [1,2].

If length scales become smaller than interatomic distances
and times shorter than collision times, the dynamics are
dictated by free-particle-like motion (lacking therefore any
type of collective wave propagation), which is characterized
simply by the thermal velocity of the particles. In this regime
the correlation functions take a Gaussian form [1,2].

The kinetic regime is by far the one less well understood,
and this has prompted experimental as well as theoretical
studies of liquid dynamics in this regime, which comprises
wave vectors q spanning typically the range from 10−1 to
101 Å−1 and frequencies ω in the THz range. Experimental
techniques include inelastic scattering of radiation, either x
rays or neutrons, which exchange energy and momentum

with the density fluctuations in the liquid. These studies
only probe longitudinal dynamics, and have shown that, in
general, the shape of the dynamic structure factor evolves from
the Rayleigh-Brillouin hydrodynamic form by changing the
positions of the peak frequencies, reflecting the dispersion of
the collective longitudinal excitations, and varying the widths
of the central and side peaks. This type of behavior has been
reproduced by molecular dynamics simulation studies, and
also by different theoretical approaches. Transverse dynamics
is, on the other hand, not accessible directly to experimental
techniques for liquids, and their study relies on molecular
dynamics simulations and/or theoretical approaches. The
general behavior obtained through these methods is, as
mentioned before, the transition from pure relaxation at
small q values, to a propagating scenario above a critical q.
Upon increasing the wave vector (decreasing the length scale
explored) the dynamics eventually become free-particle-like
and propagation again disappears.

Recently, however, a careful analysis of the measured
scattering intensities in several liquid metals has unveiled the
existence of a second propagating excitation in a wave-vector
region around qp/2, where qp is the position of the main
peak of the static structure factor, S(q), of the liquid [3–11].
Interestingly, the frequency associated to this excitation is
similar to the one associated to transverse waves at the same
wave vector. This fact prompted the interpretation of this
second contribution as a fingerprint of transverse excitations in
the longitudinal spectrum. Such interpretation is merely based
on the similarity of the corresponding frequencies, but it is
not backed by any theoretical approach that may explain such
coupling between transverse and longitudinal excitations.

A similar situation appears in relation with the transverse
dynamics. Recent studies of high-pressure liquid Li, Fe, and Na
have unveiled the existence of two (not just one) propagating
excitations in the transverse dynamics [12], now for wave
vectors around qp. In this case a tentative interpretation
would be to attribute the second mode to the coupling with
longitudinal propagating excitations. Moreover, analysis of the
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longitudinal currents in this region also suggest the existence
of two propagating modes. It was first assumed that this type
of behavior was a pressure-induced effect, but more recent
calculations for liquid Ni at room pressure have unveiled a
quite similar behavior [11]. Again, the association of these
phenomena to coupling between longitudinal and transverse
modes has not been backed by theoretical schemes yet.

In this paper we try to make some advance into the
explanation of such couplings as responsible for the two-mode
structure of the longitudinal and transverse spectra, using
in particular mode-coupling ideas. Mode-coupling theories
were developed starting in the 1970s and, since then, they
have been mostly applied in simplified forms to the study
of the dynamic glass transition [13]. There have been some
applications to the study of the longitudinal dynamics of a
few liquid metals but none for the transverse dynamics yet.
The basic idea of mode-coupling approaches is to separate the
dynamics into two contributions with different decay rates.
A fast one is related mostly to binary collisions, although
it can also include couplings with fast-decaying modes. A
second, slowly decaying, contribution is due to the coupling
of the magnitude studied with hydrodynamic modes, which
vary slowly for small wave vectors. This decomposition is
performed at the level of the memory functions, as introduced
by Mori and Zwanzig [2,14].

Our study is here applied to the dynamics of liquid Zn
(l-Zn). This system is among those for which a second mode
in S(q,ω) around qp/2 has been suggested by experimental
observation. In fact it has been found both in inelastic x-ray
scattering (IXS) experiments [6] and in inelastic neutron-
scattering (INS) experiments [7]. Zinc has a full d shell that
contributes in an essential way to its properties. The structure
of Zn systems is quite peculiar in all phases, from clusters [15]
to the hcp solid phase, where a very large c/a ratio is observed
[16], to the liquid, where an asymmetric main peak is found
[17–19]. Most of these characteristics are shared only with
Cd, which is immediately below in the periodic table. Such
complexities obviously demand the use of highly accurate
methods to describe the interatomic interactions.

We have determined the dynamic properties of liquid Zn
(l-Zn) through molecular dynamics (MD) simulations, where
the total energy and the forces on the atoms are evaluated ab
initio on the fly using density functional theory (DFT) [20].
This type of simulation, referred to as ab initio molecular
dynamics (AIMD), is very accurate, but also very costly
computationally, and therefore the simulated samples are
relatively small. We have, however, performed rather long
simulation runs in order to keep the statistical noise as small
as feasible.

Single-particle dynamics can also be computed from
molecular dynamics runs, and we will show the results for
the velocity autocorrelation function (VACF) and its Fourier
transform, usually called the power spectrum. The motion of
a particle in a dense fluid is influenced by the motion of the
“cage” of neighbors that surround it, against which it bounces,
and therefore it can be easily understood that the behavior of
collective magnitudes has some effect on the single-particle
dynamics. This influence can be described in a way similar to
that considered previously for the collective dynamics, i.e., the
memory function of the VACF can be separated into fast and

slow components, with the latter determined by the coupling
with slow modes [21,22]. We have found it more convenient
to follow a different route that includes the coupling of the
particle velocity with longitudinal and transverse currents
directly in the VACF [23]. This type of theory has already
been applied to several liquids and yielded a good description
of the VACF [10,24], so we check if it still holds in the complex
dynamics scenario of l-Zn.

The layout of the paper is as follows: in Sec. II we describe
briefly the AIMD simulation setup, in Sec. III we define the
magnitudes studied and the theoretical approaches used, in
Sec. IV we show the results obtained for collective dynamics
from both the simulation (Sec. IV A) and the theoretical
approach (Sec. IV B). The last section is devoted to the analysis
of the velocity autocorrelation function obtained through the
simulation and from the theoretical approach. Some conclu-
sions are finally drawn, and possible improvements in the
theoretical analysis are discussed. The Appendix goes through
the full mathematical expressions used in the theoretical study.

II. COMPUTATIONAL DETAILS

We have enclosed 90 Zn atoms into a cubic simulation
cell of side L = 11.35 Å, so that the ionic number density

is ρ = 0.061 55 atoms/Å
3
. We have considered explicitly 12

valence electrons per atom (10d + 2s), and their interaction
with ionic cores has been modeled through an ultrasoft
pseudopotential taken from the dataset included within the
VASP utility [25]. This code has been used in order to perform
the molecular dynamics run, evaluating for each configuration
the ground-state energy from DFT and the forces on the atoms
through the Helmann-Feynmann theorem. The exchange and
correlation energy has been treated within the generalized
gradient approximation using the Perdew-Burke-Ernzerhof
(PBE) parametrization and nonlinear core corrections have
also been included. The cutoff for the plane-wave expansion
of the orbitals has been 300 eV. The ionic equations of motion
have been solved using a time step of 4 fs.

After the equilibration period, when the temperature has
stabilized at 723 K, we have let the system evolve for 36 000
configurations (144 ps), and these configurations have been
used in order to sample the properties of interest which were
subsequently analyzed as described below.

The atomic positions and velocities at each time step are
directly available from the simulations, so that any function
depending on them can be computed straightforwardly. More-
over, the periodic boundary conditions associated to the sim-
ulation box fix the wave vectors compatible with the imposed
periodicity, and consequently �q-dependent magnitudes can
only be obtained for such a set of wave vectors. In particular the
minimum feasible wave vector is qmin = 2π/L = 0.55 Å−1.

III. THEORY

A basic variable used in the description of the dynamic
properties of a monoatomic liquid is the �q-dependent particle
density, defined as ρ(�q,t) = ∑

i exp[−i �q · �ri], where i runs
over particles and �ri denote their positions.

The liquid static structure factor S(q) is obtained as the
autocorrelation of this magnitude at equal times (averaged over
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wave vectors with the same module and over configurations),
whereas the intermediate scattering function F (q,t) is its time
autocorrelation function (now averaged over wave vectors and
time origins),

F (q,t) = 1

N
〈ρ(�q,t + t0)ρ(−�q,t0)〉. (1)

The dynamic structure factor S(q,ω) is the Fourier trans-
form (FT) of F (q,t) into the frequency domain. The scattered
intensity in an IXS experiment for given momentum and
energy transfer (after the background signal has been sub-
stracted), I (q,E), is directly related to S(q,ω), if appropriate
corrections for detailed balance and energy resolution are
applied. In the case of INS experiments the signal also includes
incoherent contributions that must be accounted for, but in
the particular case of Zn the incoherent cross section is very
small, so it can be considered a purely coherent scatterer. For
INS measurements additional contributions corresponding to
multiple scattering are in general also important and must be
appropriately substracted.

Another most important dynamic magnitude
is the �q-dependent particle current, defined as
�j (�q,t) = ∑

i �vi exp[−i �q · �ri], with �vi the particle’s velocity.
The �j vector is then decomposed into a term parallel to �q,
which is the longitudinal current, and a term perpendicular to
�q, which is the transverse current. Obviously the longitudinal
current can be described by a number, but the transverse
current is a vector. The corresponding time autocorrelation
functions are

CL(q,t) = 1

N
〈jL(�q,t + t0)jL(−�q,t0)〉, (2)

and

CT (q,t) = 1

2N
〈 �jT (�q,t + t0) · �jT (−�q,t0)〉. (3)

Note that, by definition, CL(q,t) = −F̈ (q,t)/q2, where the
dot denotes the time derivative, and consequently, CL(q,ω) =
ω2S(q,ω)/q2, so both functions reflect exactly the same
information.

Rotational symmetry in the system implies that these two
polarizations are independent and do not mix directly, and
that the correlation function between any two coordinate
components of the current vector is uniquely determined by CL

and CT . The instantaneous configuration of atoms in a liquid is
not spherically symmetric (even more so in simulations where
a periodicity of the simulation cell is imposed) so that some
transverse-longitudinal mixing might occur, but such direct
mixing should be expected to be quite small. The existence of
transient structures (such as “dimers”) that destroy rotational
symmetry has been suggested to justify the mixing, but the
argument is not totally convincing, since the lifetime of such
structures is very short, and, moreover, not all liquids exhibit
them.

We propose below a different approach, where the coupling
between longitudinal and transverse modes does not occur
directly, at the same wave vector, but indirectly, through all
possible wave vectors, using mode-coupling ideas. These
are routinely posed in terms of memory functions of the
autocorrelation functions, which are described next.

A. Memory functions

The memory function of the intermediate scattering func-
tion can be defined either in the time domain or in the Laplace
transform (LT) domain:

Ḟ (t) = −
∫ t

0
dτM(τ )F (|t − τ |) ; F̃ (z) = F0

z + M̃(z)
, (4)

where F0 = F (t = 0), is the initial value of the function, and
the tilde denotes the LT, F̃ (z) = ∫ ∞

0 dtF (t) exp[−zt].
The same procedure can be followed for any time-

dependent function, so we also define N (q,t) as the memory
function of M(q,t), i.e., the second-order memory function of
F (q,t), and MT (q,t) as the memory function of CT (q,t).

Note that the short-time behavior of the correlation func-
tions and the memory functions (also related to their frequency
moments) is dictated by static properties which can be directly
evaluated from atomic positions, velocities, accelerations,
and, if necessary, higher-order derivatives of the positions.
Also note that the odd-order initial time derivatives of the
correlation functions and memory functions must vanish due
to time-reversal symmetry.

An interesting feature of memory functions is that usually
their time decay is faster than that of the original function.
Therefore at some point in the memory function hierarchy it
is possible to invoke a Markovian approximation, according
to which the decay of a certain order memory function is
instantaneous, thus leading to a simplified model for the
previous lower-order memory function, namely an exponential
function,

fEx(t) = a exp[−bt], f̃Ex(z) = a

z + b
. (5)

The particular form of the LT of an exponential function (a
rational function of z of first degree in the denominator) means
that all the previous lower-order memory functions are also
rational functions of z (of higher degrees in the denominator).
These can then be separated into simple fractions, leading
therefore to a sum of several exponential functions in the time
domain. The number of exponential functions increases by
1 for each level one moves up in the hierarchy of memory
functions. In the next subsection we mention several models
of this type, frequently used in the analysis of MD or
experimental data. We note however that exponential functions
do not behave correctly for short times, since the odd-order
derivatives are different from zero. Consequently we also
propose some modified models that behave as exponentials
for long times but whose odd-order initial time derivatives
vanish.

B. Models

The hydrodynamic model for F (q,t) and CT (q,t) can be
cast as models for N (q,t) and MT (q,t) respectively [26]. On
one hand N (q,t) is modeled by the sum of a Dirac-δ function
due to an instantaneous viscous relaxation and an exponential
function due to a slower thermal relaxation. This leads to an
M(q,t) with two exponentials and finally an F (q,t) with three
exponential functions. On the other hand MT (q,t) is modeled
by a Dirac-δ function due to instantaneous shear relaxation,
leading to an exponential CT (q,t).
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Since all the coefficients in the LT of the memory functions
are real numbers, the roots of the denominator must appear
either as real numbers or as complex conjugate (c.c.) pairs, and
the same happens to the corresponding amplitudes in the partial
fraction decomposition. A pair of c.c. exponentials is in fact
a damped oscillatory function of time. The three exponentials
in F (q,t) in the hydrodynamic model turn out to be a real one
and a pair of c.c. ones, which represent respectively relaxing
and propagating contributions to the longitudinal dynamics, as
mentioned in the Introduction. In S(q,ω) the real root leads to
the central line of the Rayleigh-Brillouin triplet, while the pair
of c.c. roots leads to the positive and negative frequency side
peaks.

The immediate generalization of the hydrodynamic model
consists of substituting the instantaneous relaxations by expo-
nential ones, so that N (q,t) is then the sum of two exponentials
[three for M(q,t) and four for F (q,t), respectively], whereas
MT (q,t) is modeled by one exponential, and consequently
CT (q,t) by the sum of two exponential functions. Out of the
four exponentials in F (q,t) two turn out to be a c.c. pair, and
the other two real ones. Consequently, there are two central
Lorentzian lines and the positive and negative frequency side
peaks in S(q,ω). Such a model is usually named as either
a generalized hydrodynamic model or a viscoelastic model,
depending on the physical interpretation for the fast and slow
components of N (q,t). Regarding the transverse dynamics it
turns out that for small q the two roots are real, while for
wave vectors larger than some critical q they become a c.c.
pair, so that propagation of shear waves sets in. This model for
the transverse dynamics is again usually named as viscoelastic
model.

Further models can be easily constructed by including
more exponentials. For instance, if one wants to describe two
different propagating modes and a relaxation mode in F (q,t),
as suggested by the appearance of fingerprints of transverse
modes in the measured or computed S(q,ω) near q ≈ qp/2,
then at least five exponentials are needed in F (q,t) (a real one
and two pairs of c.c. roots), which means that N (q,t) must be
represented by at least three exponentials. These three could
either be all real or be one real and one c.c. pair. Note that in
the second case N (q,t) should show an oscillatory behavior.
Similarly, if one wants to have two propagating modes in
CT (q,t) as observed around q ≈ qp for several systems, then
at least two c.c. pairs are needed, leading to an MT (q,t) with
at least three exponential functions, which again may be all
real or else a real one and an oscillatory term due to a c.c.
pair. Therefore we may say that the presence of an oscillatory
component in the memory functions N (q,t) or MT (q,t) hints
towards the possible existence of two propagating modes in
the longitudinal or transverse dynamics respectively.

The particular properties of the LT of exponential functions
justifies their use in models, but it is important not to forget
that these functions do not behave analytically as correlation
functions or memory function should, namely they do not have
null odd order derivatives at t = 0. Obviously a combination of
such functions can be forced to fulfill these (or at least some of
these) requirements. One particular case of such a combination
is the so-called damped harmonic oscillator (DHO) model,
widely used in the interpretation of experimentally measured
IXS and INS spectra to represent propagating excitations.

This amounts to a pair of c.c. exponentials with particular
coefficients that nullify the first derivative at t = 0, namely,

fDHO(t) = a exp[−γ t]

(
cos(ωot) + γ

ωo

sin(ωot)

)
. (6)

While the first derivative behaves correctly, one runs
into problems for higher-order derivatives. For instance, the
CL(q,t) function corresponding to such a mode in F (q,t)
would contain a term of the form −f̈DHO(t), and it is easy to
verify that such a function violates the condition of initial null
derivative [the third derivative of fDHO(t) at t = 0 is nonzero].

While forcing the correct derivatives is possible when
including a sufficient number of exponentials [27], using
such an approach it may be complicated to disentangle if
the presence of a particular exponential function is due to
a physical process that decays/oscillates with that particular
rate/frequency, or is just due to the mathematical requirement
of nullifying the odd derivatives at short times. It therefore
seems useful to introduce some modifications into these model
functions so as to guarantee the correct time behavior, while
still maintaining the long-time behavior of the exponential
functions. We propose here the following models to replace
the exponential and DHO ones:

fmEx(t) = a

cosh(bt)
, (7)

fmDHO(t) = c

(
cos(ωot)

cosh(γ t)
+ γ

ωo

sin(ωot)

sinh(γ t)

)
. (8)

These types of models will be used later in order to check
the q range where two propagating modes can be found and to
analyze the structure of the memory functions obtained from
our simulations.

C. Mode-coupling theories

When studying the behavior of the correlation function
or the memory functions of a given dynamic variable, it is
often found that they exhibit several rates of decay. Only
the slowest one survives for long times, and the main idea
behind mode-coupling (MC) theories, is that this long-lasting
term comes from the coupling of the variable studied with
other slowly decaying ones (modes). The development of MC
theories started in the 1970s and they have been derived to
study the correlation function of several magnitudes, such as
a particle velocity (velocity autocorrelation function) [28], the
single-particle density (self-intermediate scattering function)
[29], the particle density (intermediate scattering function)
[30], and the transverse current (transverse current correlation
function) [28]. The slowly decaying modes included in
the different theories include the single-particle density, the
particle density, its time derivative, the longitudinal current,
and the transverse current.

A very successful application of MC ideas has been
the study of structural arrest in undercooled liquids, which
signals a variant of glass formation (see, for a review, Ref.
[13]). Basically one seeks for the possibility that F (qp,t)
develops a solution that does not decay to zero for long
times. MC theories have also been applied to dense gases,
high-temperature liquids or hard-sphere models, where, for
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instance, they explain the appearance of an algebraic decay in
the velocity autocorrelation function.

Their application to liquids near their melting temperature
is however somewhat more scarce; for a recent review see
Ref. [31]. In order to study this type of system, the original
MC theories were modified during the 1980s so as to consider
not only the long-time behavior but also the short-time one
[2,21,22,32]. This part is mostly caused by binary atomic
collisions, but it can also include couplings with fast decaying
modes. Basically a heuristic treatment of this part is performed,
rewriting the MC part in a way that it vanishes rapidly (as t4)
for short times, and modeling the fast part by a Gaussian-like
function that incorporates the full value and initial decay of the
memory function being considered. Such modifications were
spurred by the observations of Levesque and Verlet about the
memory function of Z(t) obtained by MD simulations for
LJ systems [33]. These modified theories have been applied
at different levels of approximation and self-consistency
by several groups to study the dynamic properties of LJ
systems, liquid alkalis, liquid Pb, and liquid Sn and liquid Ge
[21,22,34–40].

We have applied the MC formalism to study the longitudinal
dynamics, where the fast/slow decomposition is performed at
the level of N (q,t), and the transverse dynamics, where the
decomposition is performed at the level of MT (q,t), namely,

N (q,t) = Nf (q,t) + NMC(q,t), (9)

MT (q,t) = M
f

T (q,t) + MMC
T (q,t). (10)

In the mode-coupling components we include only the
particle density as a slow mode, so that these terms appear
as integrals over wave vectors of functions that involve the
intermediate scattering functions. The full expressions for
the fast and MC components are given in the Appendix, and
more details can be found in Ref. [2].

D. Velocity autocorrelation function

The VACF is defined as the normalized autocorrelation
function of a particle’s velocity, i.e.,

Z(t) = 〈�v(t + t0) · �v(t0)〉/〈�v(t0) · �v(t0)〉, (11)

where the average is over particles and time origins. It
describes how, on average, a particle loses memory of its initial
value and direction, due to collisions with other particles.
The typical shape of Z(t) in a dense liquid shows a negative
minimum, due to velocity reversal after a collision with a
particle that belongs to the “cage” of nearest neighbors that
surrounds it. Then a damped oscillatory behavior follows
towards zero for long times. Its time integral is related to the
diffusion coefficient, and its initial second derivative is related
to the so-called Einstein frequency that describes an average
oscillation frequency within the neighboring cage [2].

There are several theories that try to quantify the influence
of slowly decaying collective variables on the behavior of Z(t).
For instance, Wahnström and Sjögren [22] put forward a MC
theory in the same spirit as that mentioned above for collective
currents, namely, the memory function of Z(t) is split into a fast
term and a MC term given in terms of an integral over wave
vectors. A different approach was followed by Gaskell and

Miller [23], who considered a “velocity field” of the fluid, and
analyzed how this is influenced by longitudinal and transverse
currents using mode-coupling ideas. This led to an integral
formula for Z(t) (not its memory function), that incorporates
longitudinal and transverse current correlation functions:

ZGM(t) = 1

24π3

∫
d �q f (q)Fs(q,t)[CL(q,t) + 2CT (q,t)].

(12)

Here f (q) is the FT of a normalized function that
describes a particle’s localization, usually taken as the
Wigner-Seitz sphere. In this case the expression is f (q) =
(3/ρ)j1(aq)/(aq), where (4/3)πa3 = 1/ρ, and j1(x) is the
spherical Bessel function of the first order.

Separating the sum in the integral into its two parts,
each defines naturally the longitudinal ZL

GM(t) and transverse
ZT

GM(t) contributions to the VACF, coming from the couplings
of the single-particle velocity with each of the polarizations of
the collective current.

IV. COLLECTIVE DYNAMICS

A. AIMD simulation results

As a previous validation of the input parameters of the
simulation, we have compared the static structure factor
obtained from the simulations with the available experimental
ones [17–19] (which agree well among themselves) as shown
in Fig. 1. We find an excellent description of S(q), including the
asymmetric shape of the main peak, located at qp ≈ 3.0 Å−1,
and the amplitude and phase of the subsequent oscillations.
The pair-correlation function g(r) also compares favorably
with the corresponding experimental data [17,19].

2 3 4 5 6
r  (Å)

0

1

2

3

g(
r)

0 2 4 6 8 10
q  (Å-1)

0

1

2

3

S(
q)

FIG. 1. S(q) for l-Zn near melting. Full lines: simulation results.
The symbols denote experimental measurements. Triangles: x-ray
data from Ref. [17]; circles: x-ray data from Ref. [19]; squares:
neutron data from Ref. [18]. The inset shows g(r) with the same
meaning for lines and symbols.
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FIG. 2. Detail of CT (q,t) for q = 1.84 (full line) and 3.71 Å−1

(dashed line). The latter has been shifted up by one unit.

1. Transverse dynamics

Traditionally, the behavior of transverse dynamics in liquids
has been studied in the small-q region, where a transition
between relaxation and propagation has been observed for
many liquids. Only in recent years has some attention been
paid to the behavior of transverse dynamics at higher q values,
but still not as high as required to reach the free-particle regime.
Surprisingly double peak structures in CT (q,ω) have been
found for liquid metals under pressure for wave vectors around
qp [9,10,12]. Liquid Ni at room pressure has been also found
to exhibit a similar picture [11]. Based on these premises,
we have undergone a detailed study of the transverse current
correlation functions and corresponding spectra for l-Zn in an
extended q range.

The lowest q value allowed by the simulation setup
is already outside the hydrodynamic region, since CT (q,t)
already displays a negative minimum (and the spectrum shows
a peak) indicating that propagation of shear waves already
takes place at this q. An interesting phenomenon that we have
observed is the presence of a negative tail in the CT (q,t)
functions. An example is shown for q = 1.84 and 3.71 Å−1

in Fig. 2 where it is clearly visible due to the small amplitude
of the oscillations, but we have found it in the whole q range
studied.

In Fig. 3 we display a general view of the behavior of
CT (q,ω) for qmin � q � 5 Å−1. Here, and in the rest of the
paper, the “simulation” frequency-dependent functions shown
in the figures have been obtained by numerical FT of the
time-dependent functions which were obtained directly from
the simulations, and not through the FT of a fit to such
functions. In some figures we will indeed compare both routes,
which have always led to very similar results. The numerical
FT only required the use of a window function to alleviate
the statistical noise present for long times. Figure 3 shows a
transition between a single mode and two modes that occurs
around 1.7 Å−1, somewhat above qp/2. Around qp the shape
is very flat, but for higher q the two-mode structure is clearly
visible again. The results for several q below and above qp are
displayed in Fig. 4 for increased clarity. We have made a fit of

FIG. 3. Transverse current spectra, CT (q,ω), in a wide q range.

CT (q,t) using one mDHO for the high-frequency component,
and the sum of a mDHO and a negative mEx (due to the
negative tail) for the rest. The results of this decomposition are
also shown in Fig. 4 for q = 2.54 and 3.37 Å−1. The results of
the fit reveal also the appearance of the second, high-frequency,
mode around 1.7 Å−1 (for smaller q the amplitude of the
high-frequency term found in the fit is negligible).

We can therefore conclude that l-Zn, as well as Ni, presents
this double mode structure in the transverse dynamics in a
wide range of wave vectors starting somewhat above qp/2,
even at normal pressures.

2. Longitudinal dynamics

The double mode structure of CT (q,ω) was also observed in
CL(q,ω) in the case of liquid Fe and Na under pressure [9,10].
We therefore analyze here the properties of this magnitude
for l-Zn also in the same extended q range considered for
the transverse counterpart. It is however important to perform
this study taking into account at the same time the dynamic
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FIG. 4. CT (q,ω) for wave vectors shown in the graphs. (a) Below
qp . (b) Above qp . (c) Results for q = 2.54 Å−1; circles: simulation
data; lines: fit results and its two components. (d) Same as (c), but for
q = 3.37 Å−1.
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qp . (b) Above qp . (c) Results for q = 2.07 Å−1; circles: simulation
data; lines: fit results and its three components. (d) Same as (c), but
for q = 3.95 Å−1.

structure factor S(q,ω), first because being directly related they
should be described by the same terms if any decomposition
into different contributions is performed: if a mEx or mDHO
term is present in F (q,t), its second derivative must be present
in CL(q,t), and second because of the possible presence of
peaks in CL(q,ω) unrelated to propagating excitations. This is
due to the fact that for small ω the function increases (starting
at least as ω2 according to its definition) and for large ω it
decays to zero [as dictated by the null initial time derivative of
CL(q,t)], so that somewhere in between a maximum must
exist, irrespective the presence or absence of propagating
excitations. This property is however specific to CL(q,ω) and,
consequently, the comparison with S(q,ω) can be useful to
discriminate the origin of the peak. For instance, in the free
particle regime, for large q, S(q,ω) has a monotonic Gaussian
form of width related to the thermal velocity, but CL(q,ω) has
a peak at a frequency related to this thermal velocity, totally
unrelated to propagating collective excitations.

The separation into different contributions common to both
F (q,t) and CL(q,t) can be complicated for some wave vectors
because of the different amplitudes of the corresponding terms
in the two functions. For instance in the region around qp a
relaxing term is overwhelmingly dominant in F (q,t) because
of the structural correlations that lead to the de Gennes
narrowing of S(q,ω). However such a term alone describes
poorly the longitudinal current correlation function, and
propagating terms are indeed needed, even if their contribution
to F (q,t) is insignificant. So when we consider below the
components coming from a separation into contributions it
must be understood that we have fitted jointly F (q,t) and
CL(q,t) to a given common model and using obviously the
same parameters. We note in this respect the convenience of
using models that fulfill directly the zero initial derivative of
both F (q,t) and CL(q,t) (as the mEx and mDHO ones) so as
to obtain the correct short-time behavior of both functions.

In Fig. 5 we plot the AIMD calculated CL(q,ω) for several
wave vectors below and above qp. The behavior observed
is rather similar to the one found in the transverse case. A
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FIG. 6. S(q,ω) for some q values in the 1psBZ.

two-mode character of the functions is clearly observed. When
approaching qp from below the high-frequency component
hardly changes its position, but its amplitude decreases
strongly. On the contrary, the amplitude of the low-frequency
component increases, while its position decreases. The switch
from the high- to the low-frequency dominance in amplitudes
produces a sharp decrease in the frequency corresponding to
the maximum of CL(q,ω) for q between 1.84 and 2.07 Å−1.
For wave vectors above qp the opposite trend is found, with
the amplitude of the low-frequency mode decreasing with q

in favor of the high-frequency component, and a steep change
in the position of the maximum from low to high frequencies.
The decomposition of CL(q,ω) into contributions is shown for
two q values in the right panels of Fig. 5. Two mDHOs and
one mEx were used in the common fits of F (q,t) and CL(q,t)
and it is interesting to observe the contribution of the relaxing
mEx mode at small ω, which introduces a kind of bump in CL

at low frequencies.
Note that the analysis performed above includes the

region of wave vectors larger that qp/2, where the two-
mode structure of the transverse and longitudinal currents is
more visible. However, experimental measurements of S(q,ω)
were performed in the q range below qp/2, usually called
first pseudo-Brillouin zone (1psBZ), and it is in this region
where the measurements have suggested the existence of two
propagating modes, with a low-frequency one that produces
a small signal in the measured intensity at an energy located
roughly between the quasielastic line and the usual intense
inelastic one.

Figure 6 shows the results obtained from our simulations,
for a few q values in this range. We clearly observe an unusual
shape of S(q,ω) between the quasielastic and inelastic lines,
which is qualitatively consistent with the IXS and INS results
[6,7]. A more detailed comparison with experiments requires
the conversion from the calculated S(q,ω) to the equivalent
measured I (q,E), which comprises the application of the
detailed balance correction, convolution with experimental
resolution function, and scaling (to arbitrary units as given in
experiments). We show such comparison in Fig. 7, where we
see a general overall agreement between the IXS experiment
[6] and simulation, except for the height of the quasielastic
line. However, the specific interline region shows indeed
a similar shape, which was attributed in the experimental
study to fingerprints of the influence of transverse excitations
into the longitudinal dynamics. This was due to the good
fitting of the experimental data obtained using a central
Lorentzian line and two DHOs, suggesting the existence of
two propagating excitations [6]. The INS experiments led to
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FIG. 7. Comparison of IXS measurements at q = 1.06 Å−1 and
AIMD I (q,E) obtained from the properly modified S(q,ω) (see text)
for q = 0.96 and 1.11 Å−1.

a similar conclusion, although the model used in fitting the
I (q,E) was different [7].

We show in Fig. 8 the AIMD results for the three functions
S(q,ω), CL(q,ω), and CT (q,ω), scaled so as to fit in the same
graph, in order to attest (i) the coincidence of the “features” in
S(q,ω) with those of the longitudinal current spectra, which
also display an “odd” shape in the corresponding frequency
region, and (ii) the proximity between the frequencies of these
features and the single maximum of CT . Both q values shown
are within the 1psBZ.

The global situation is summarized in Fig. 9, where we
plot in several ways the results of the fits of the AIMD
data to sums of one mEx and two mDHO models to all the
functions considered, as discussed previously. For each mDHO
we obtain an oscillation frequency ωo and a damping rate γ .
We define the natural oscillator frequency (that is, the one if
there were no damping) as 	+ = √

ω2
o + γ 2. This value is very

close to the position of the maximum of the product of ω2 and
the FT of the mDHO. We also define the apparent frequency
as 	− = √

ω2
o − γ 2, which is very close to the position of the

maximum of the FT of the mDHO (assuming that γ < ωo,
otherwise the maximum occurs at ω = 0). Therefore, if the
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mDHO would be the only mode present one should see a
maximum in S(q,ω ≈ 	L

−) and in CL(q,ω ≈ 	L
+) for the 	L

±
obtained in the common fit to these functions. Similarly one
should find a maximum in CT (q,ω ≈ 	T

−) for the 	T
− found

in the fit. Note that no special feature would be seen at the
natural transverse frequency 	T

+. In fact, the existence of other
modes, with varying frequencies, damping coefficients, and
amplitudes, can result in changing somewhat the position of
the maxima, turning the individual peaks into shoulders or
even masking them completely if the amplitudes are small.

We have plotted in Fig. 9 the natural frequencies in the left
panel and the apparent frequencies in the right panel, for both
the longitudinal and the transverse dynamics. We see that up to
a wave vector around 1.2 Å−1 the transverse dynamics is well
described with just one mDHO, but for larger q a two-mode
model describes better the AIMD data. In the case of the
longitudinal dynamics the crossover from one to two modes
happens around 0.9 Å−1. Moreover, between 0.9 and 1.8 Å−1,
there is a coincidence between the low-energy longitudinal
natural frequency and either the unique or the low-energy
transverse natural frequency. On the other hand, the apparent
mode frequencies have similar, but not so much coincident,
values especially below 1.2 Å−1, due to the different dampings
of the longitudinal and transverse modes. It is remarkable
that the high-frequency transverse modes, after they appear,
disperse very little, and both their natural and their apparent
frequencies stay rather close to the largest frequency of the
high-energy longitudinal mode, which occurs around qp/2.

B. Mode-coupling analysis

From the AIMD calculated F (q,t) and CT (q,t) we have
evaluated the corresponding AIMD memory functions, N (q,t)
and MT (q,t), solving the integrodifferential equations that
define them [Eq. (4)].

We have also used the expressions provided in the Appendix
in order to compute the fast and MC components. The initial
values and curvatures of the fast terms are equal to those of the
full functions, which have been obtained from the simulation
N (q,t) and MT (q,t) by fitting the short time region with a form
a0 − a2t

2 + a4t
4. The integrals that define the MC component

involve the whole wave-vector range from zero to infinity.
Obviously we have evaluated them only in the range in which
we have computed the F (q,t) functions, which goes from
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qmin up to a maximum vector qmax ≈ 2qp. Moreover, since the
set of wave vectors is established by the periodic boundary
conditions, the functions are obtained in an uneven grid of
q values. The integrals have therefore been performed using
the trapezoidal rule, which is convenient for such a type of
grid. All these limitations have an influence on the accuracy
of the computed MC integrals [41], but we do not expect a
qualitative change in the form of the results as a consequence
of these limitations. We instead consider that the accuracy of
the whole theory has a much greater influence on the goodness
of the results. For instance, the inclusion of additional slow
modes or a more fundamental treatment of the fast components
that appear in the theory could lead to more marked, even
qualitative changes. We will consider this point below, after
the presentation of the results.

We finally point out that we have evaluated S(q,ω)
and CL(q,ω) from the sine and cosine Fourier transforms
of N (q,t), and CT (q,ω) from those of MT (q,t), through
the memory function equations in the Laplace domain and
the relation between Fourier and Laplace transformations.
The explicit formulas are detailed in the Appendix.

1. Transverse dynamics

The results obtained through the MC formalism for
CT (q,ω) are compared with the AIMD ones in Fig. 10, for q =
0.96, 2.35, and 3.28 Å−1. The first wave vector corresponds
to the region where only one mode appears, whereas the
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FIG. 10. Comparison between AIMD calculated CT (q,ω), shown
by symbols, and MC results, shown as lines. The q values shown are
0.96 Å−1 (displaced 0.03 units upwards), 2.35 Å−1 (displaced 0.015
units upwards), and 3.28 Å−1. The lines are repeated slightly displaced
above (dashed lines) in order to observe more clearly the double mode
structure where it exists.

other two lie below and above qp in the two-mode region.
We observe a qualitative agreement between MC and AIMD
results, in particular regarding the one- or two-mode feature.
This means that the present MC formalism captures the main
mechanisms responsible for the double mode structure, so
that indeed the coupling with density fluctuations gives rise
to such features. However, as mentioned above, the coupling
is indirect, with all possible wave vectors, and not just the
specific �q being considered, and occurs at the level of the
memory function through an integration over wave numbers k

and p. The weight for the coupling with different wave vectors
is dictated by the function γ (q,k,p) defined in the Appendix.
It is interesting to analyze how this function depends on its
parameters (k,p). The function γ factorizes into a product of a
structural term, [S(k) − S(p)]2/[S(k)S(p)] and a “geometric”
factor that depends only on the magnitude of the wave vectors.
The form of the structural term favors (k,p) regions where the
structure factor has a small magnitude, and values of k and p

that lead to large differences between S(k) and S(p). This term
therefore is largest for k → 0 and p around qp, with further,
but lower, maxima at the positions of the subsequent peaks
of the structure factor (and interchanging k and p since the
function is symmetric). Note that the structural term is zero for
k = p. The geometric term, on the other hand, is zero at the
limits of the integration region (a strip around the diagonal,
see the Appendix) and is maximum at k = p. The general
structure of the weighting function will therefore be dictated
by the compromise between the differing behavior of each
term, leading to maxima, in general, for “small” k and near
p ≈ qp, assuming such values of k are within the integration
region (which approximately means that q is between qp/2 and
the first minimum of S(q), located around 3.75 Å−1, which we
will refer to as the intermediate q region). We show a glimpse
of the weighting function γ (q,k,p) in Fig. 11 for q values
below qp/2, around qp/2, around qp, and for a q value beyond
the first minimum of S(q). It can be observed that the structure
of the weight function changes little in the intermediate q

region, but is qualitatively different outside. Remarkably, the
clipping due to the geometric factor leads to maxima of the
weight function that occur in the vicinity of k = qp/2,p = qp

for wave vectors in the intermediate q region. Therefore the
structure of MMC

T (q,t) is basically the same in such region
and consequently this can explain the lack of dispersion of the
modes in CT (q,ω) as observed in the AIMD simulations.

Although the presence of two modes is correctly described,
the amplitude of the main, low-energy, one seems to be
overestimated by the theory. In order to track down the origin
of this problem we have compared directly the AIMD and
MC memory functions, as shown in Fig. 12. The general
shape, including the positions of maxima and minima when
present, is reproduced. However, we find two weak points
in the theory. The first is that the tail amplitude is in some
cases overestimated, reflecting possibly the need to include
additional slow variables in the MC contribution. The second
problem is due to the fact that the mode-coupling component is
always found to be positive, and the fast term, by construction,
is also positive. Consequently the theory cannot reproduce the
AIMD data whenever they show a negative minimum, which
also coincides with the q region where the amplitude problem
in CT (q,ω) appears. A similar failure of the MC formalism to
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(a) (b)

(c)(d)

FIG. 11. Isolines for the weighting function γ (q,k,p) at q = 0.96 (a), 1.57 (b), 2.98 (c), and 4.63 (d) Å−1. The plotted contours correspond
to 35 (closest to the diagonal), 50, 100, 150, . . . , units.

represent negative values in molecular dynamics data has been
observed for the velocity autocorrelation function in liquid Pb
[36], and in liquid Sn and Ge near the melting point and liquid
Na at high temperatures [37].

We believe that the way towards the solution of these
problems lies in a better treatment of the fast part of the
memory function. As mentioned above, it includes not only
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FIG. 12. MT (q,t) for the wavevectors shown. Circles: AIMD
results. Dashed line: fast part. Thin red solid line: MC component.
Thick solid line: total theoretical function. The thin green line is the
fit of the AIMD results to the sum of a mEx slow term (up triangles)
and a fast oscillating mDHO term (down triangles).

the effects of binary collisions, but also the coupling with
fast-decaying modes not included in the MC integral. These
could indeed give rise to a negative minimum that would
be reflected in an improved agreement with AIMD data. We
therefore suggest the modification of the theory through the
use of Ansätze for the fast term, different from the one used
here, that incorporate a negative minimum in order to check
the impact these would have in the quantitative description
of the two-mode structure of CT (q,ω). In fact, already in the
seminal work of Levesque and Verlet on LJ systems [33] the
second-order memory function of the intermediate scattering
function was modeled using a fast term that has a negative
minimum. Moreover, the Ansatz propsed by Wahnström and
Sjögren for this same function [22] also becomes negative,
as shown explicitly by Canales and Padró in their studies of
liquid Li and LJ systems [39]. Even though we are considering
here a different correlation function it seems plausible that a
similar Ansatz may be useful.

In connection with this point, we have tried to fit MT (q,t)
with the models mentioned in the text above, and found that
indeed one mEx and one mDHO describe well the AIMD
data in the two-mode region. Curiously, as observed in Fig. 12
for q = 2.35 Å−1, the mDHO turns out to be the fast term
(which oscillates and takes negative values) while the mEx
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term decays slowly, but does not go to zero for small times.
We expect this information can also be useful in considering
possible modifications to the MC theory in order to improve
its accuracy.

In this context, as a final note, we also mention a
diagrammatic formulation of the kinetic theory of fluctuations
in equilibrium classical fluids, developed by Andersen and
collaborators, who studied in particular the short-time behavior
of the memory functions (akin to the fast term discussed here)
[42]. The calculation of this short-time part for a LJ liquid
within such an approach [43] indeed produced terms with a
fast decay, but they do not account for the total value of the
memory function at t = 0.

2. Longitudinal dynamics

We show in Fig. 13 CL(q,ω) as obtained through the MC
formalism, compared with the AIMD results in the q range
where the double mode feature is visible in the simulations.
Clearly, the theory describes correctly the mechanisms behind
the appearance of this two-mode structure, including their
frequencies and also the variation of the amplitudes with q,
as evinced by the shifts in the main peak position in small
intervals of q below (left panel) and above qp (right panel),
that was described previously.

The dynamic structure factor obtained from the AIMD
simulations also showed traits of two propagating modes for
some q values in the 1psBZ. The corresponding MC results
are compared with the AIMD ones in Fig. 14. Here the theory
basically misses the second propagating mode, and even the
usual sound mode appears at too low a frequency in the MC
data at the smallest q allowed by the simulation setup, although
this can be due to the absence of coupling with temperature
fluctuations in the theory, which is important for small q. Only
for q ≈ 0.96 Å−1 does the theory start showing some hints
of an additional mode in the expected frequency region, but
there is still much room for improvement in this important
wave vector region. Taking into account that only the density
has been considered as a slow mode to couple with, it seems
natural to conclude that further modes need to be included in
the MC formalism, out of which the most obvious one would
be the transverse current mode. Such a possibility will be
explored elsewhere and reported in due course.
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by symbols, and MC results, shown as lines. The q values are shown
in the graphs.

One could also consider the possible existence of a problem
with the fast component of N (q,t) similar to the one found in
MT (q,t), namely the presence of negative values in the AIMD
memory function, not reproducible using the Gaussian Ansatz.
In fact, this is not the case for q values in the 1psBZ. For much
larger q very shallow negative minima appear, but they cannot
be discarded to be due to numerical noise in the calculation
of the second-order memory functions. In any case, this does
not appear to be the main problem in the theory regarding the
longitudinal dynamics.

As a short note we mention that the weight function for
density-density coupling, α(q,k,p), displays a complicated
behavior [41] because it is not separable into structural and
geometric terms, and it is not straightforward to relate the q

variation of CL(q,ω) to the changes in α(q,k,p).

V. VELOCITY AUTOCORRELATION FUNCTION

The AIMD calculated Z(t) is shown in Fig. 15 together
with the one calculated through the MC approach of Gaskell
and Miller [23]. The longitudinal and transverse components
of ZGM(t) are also displayed in the figure. We observe that both
ZL

GM(t) and ZT
GM(t) show damped oscillations, with the former

dominating for larger times because of the smaller damping.
The theory is able to describe very well the simulation

results, except in the region near t = 0, where we observe some
problems related to the limited integration range available.

In the power spectrum Z(ω), we find two clear peaks,
well separated in frequency. The MC results show that the
low-frequency peak comes from the contribution of transverse
currents, while the high-frequency one corresponds to the
longitudinal contribution. Interestingly, the peak frequencies
for ZT

GM(ω) and ZL
GM(ω) (≈10 and 35 ps−1 respectively) are

near the values where CT (q,ω) and CL(q,ω) show maxima
for q ≈ qp/2. Note that the second maximum of Z(ω) occurs
at somewhat lower frequency that that of ZL

GM(ω), due to the
addition of the tail of the transverse part.

As a final note, the diffusion coefficient obtained from the
simulations, DAIMD = 0.23 ± 0.01 Å

2
/ps, is very close to the

experimental value [44], Dexp = 0.236 ± 0.006 Å
2
/ps.
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FIG. 15. Normalized velocity autocorrelation function for l-Zn.
Symbols denote the AIMD results. The full line is the theoretical
MC function, with the dashed and dash-dotted lines representing
its longitudinal and transverse components, respectively. The inset
shows the corresponding power spectra.

VI. CONCLUSIONS

The present AIMD simulations provide additional support
to the experimental suggestion of complex dynamics in liquid
Zn, as measured using IXS and INS in the q range within the
1psBZ. Moreover we have shown that this complex dynamics
extends to larger q values, above the main peak of S(q),
through the appearance of a double mode structure in both
the longitudinal and transverse dynamics, a feature previously
observed in liquid metals at high pressure and in liquid Ni at
room pressure.

Up to now, the origin of such behavior was attributed to
couplings between transverse and longitudinal propagation
modes, but no theoretical justification had been given. Through
the use of mode-coupling concepts we have been able to relate
the double mode structure in CT (q,ω) to the coupling of the
transverse current with density fluctuations at all wave vectors
�k, and not only at �q. The analysis of the weight of the different
wave vectors in the sum can explain the dispersionless feature
of the modes in the range from qp/2 to the first minimum
of S(q). Similarly, the double mode structure in CL(q,ω) has
been traced back to density-density couplings, again including
all wave vectors in the integral. However, the theory in its
present form is still not able to explain the experimental and
computational evidence of an additional mode in S(q,ω) in the
vicinity of qp/2.

We suggest that the inclusion of other coupling modes,
particularly the transverse current, will be needed in order to
explain the behavior of S(q,ω) in this region. Such an analysis
would help identify if the additional mode can be ascribed
a transverse character, or else a different type of character,
such as viscoelastic relaxation [45], or heat-wave propagation
[46]. It is important from a theoretical point of view to remark
again that the mode-coupling formulation takes into account
the coupling modes for all wave vectors and not just the one
corresponding to the magnitude being studied, so that even if
direct coupling is forbidden by symmetry requirements, the

mode coupling is still possible. Finally we also suggest that a
better treatment of the fast decaying term in the theory may be
necessary in order to reproduce quantitatively the structure of
the transverse current correlation functions for higher values
of q.

The single-particle dynamics, on the other hand, is well
described by the mode-coupling theory of Gaskell and Miller.
The power spectrum shows two well separated peaks, and this
may serve as a hint towards the possible appearance of a double
mode structure in the transverse and longitudinal currents, as
is indeed the case for l-Zn. Further studies for other systems
will be needed in order to support this conjecture.
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APPENDIX

We recall that the memory functions are decomposed as
the sum of a fast-decaying contribution and a slowly decaying
one associated to couplings with slow variables, as specified in
Eqs. (9) and (10). The MC theory applied in this work includes
couplings with the density mode, which decays slowly not only
for q → 0, because of its conserved character, but also in the
vicinity of qp, due to structural correlations. The MC integrals
are then written as

NMC(q,t) =
∫

d�k vρρ(�q,�k,�q − �k)

× [F (k,t)F (| �q − �k | ,t)

−Ff (k,t)Ff (| �q − �k | ,t)], (A1)

MMC
T (q,t) =

∫
d�k vTρ(�q,�k,�q − �k)

× [F (k,t)F (| �q − �k | ,t)

−Ff (k,t)Ff (| �q − �k | ,t)], (A2)

where Ff (k,t) denotes the fast component of F (k,t), and vρρ

and vTρ are the so-called vertex functions corresponding to the
density-density coupling and the transverse current-density
coupling respectively. Selecting the z direction as that of �q,
their expressions are given by [2]

vρρ(�k,�q − �k) = ρkBT

16π3m
[kzc(k) + (q − kz)c(| �q − �k |)]2,

(A3)

vTρ(�k,�q − �k) = ρkBT

16π3m
k2
x[c(k) − c(| �q − �k |)]2.

(A4)

The function c(q) is the direct correlation function, related
to the structure factor through the relation S(q) = [1 −
ρc(q)]−1. The substraction of the product of the fast compo-
nents in the integrals has the effect of nullifying the short-time
contribution of the integrals to the total function, so that
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FIG. 16. Two-center bipolar coordinates.

NMC(q,t → 0) → at4, and the same applies to MT (q,t → 0).
However these terms decay fast and have no influence on
the long-time behavior of the functions. In fact the original
formulation of MC theories, which focused on the long-time
tails, did not include such terms, as we discussed in the text.
In any case, the expressions used imply that the short-time
characteristics of the memory functions (initial value and

first three derivatives) are fully accounted for by the fast
contributions. This property is used in the reverse direction, so
that an Ansatz is formulated for the analytic form of the fast
contributions that incorporates the initial value and derivatives
of the full memory functions. In this work we use a Gaussian
Ansatz,

Nf (q,t) = N (q,0) exp

[
−| N̈ (q,0) | t2

2N (q,0)

]
, (A5)

with an equivalent expression for M
f

T (q,t).
For the fast part of F (q,t) we use a different type of

Ansatz, following Sjögren, given in terms of the single-particle
intermediate scattering function Fs(q,t), which we compute
from the AIMD simulations, and the free particle expression
F0(q,t) = exp[−kBT q2t2/(2m)],

Ff (q,t) = F (q,t)
F0(q,t)

Fs(q,t)
. (A6)

Introducing the normalized intermediate scattering func-
tion, FN (q,t) = F (q,t)/S(q), which has an initial value equal
to 1 for any q, and the same for its fast part, we finally arrive
at mode-coupling integrals in which the time dependence is
common to both memory functions, but whose weights for a
given �k vector are different, dictated by the vertex functions,
which depend on the structure factor of the liquid and on q, k,
and | �q − �k |.

Using two-center bipolar coordinates (Fig. 16), so that p =|
�q − �k |, and performing the φ-angular integration explicitly,
the final MC integrals read

NMC(q,t) = ρkBT

8π2m

1

q

∫ ∞

0
dk

∫ q+k

|q−k|
dp α(q,k,p)FN (k,t)FN (p,t)

[
1 − F0(k,t)F0(p,t)

Fs(k,t)Fs(p,t)

]
, (A7)

MMC
T (q,t) = ρkBT

16π2m

1

q

∫ ∞

0
dk

∫ q+k

|q−k|
dp γ (q,k,p)FN (k,t)FN (p,t)

[
1 − F0(k,t)F0(p,t)

Fs(k,t)Fs(p,t)

]
, (A8)

where

α(q,k,p) = kS(k)pS(p)

[
q2 + p2 − k2

2q

(
S(k) − 1

S(k)

)
+ q2 + k2 − p2

2q

(
S(p) − 1

S(p)

)]2

(A9)

and

γ (q,k,p) = −kp[S(k) − S(p)]2

S(k)S(p)

(q − k − p)(q − k + p)(q + k − p)(q + k + p)

4q2
. (A10)

Note that the integration region for a given q is a strip
in the (k,p) plane, symmetric with respect to its diagonal,
p = k, whose width depends on q. Moreover, both α(q,k,p)
and γ (q,k,p) are symmetric with respect to interchanging k

and p, i.e., both functions are symmetric with respect to the
diagonal.

These functions quantify the degree of coupling between
the functions at wave vector �q and at given values of k and p,
i.e., at wave vector �k, and both are non-negative (the product
of the latter four terms in γ (q,k,p) is always negative or zero
in the integration strip). The function γ (q,k,p) factorizes into
a structural term and a “geometric” term purely dependent on

the wave numbers. The geometric factor is zero at the borders
of the strip, and the structural term is zero at the diagonal, so
γ (q,k,p) takes null values in several parts of the integration
region, somehow reflecting the “difficulty” for transverse-
longitudinal coupling. On the contrary, α(q,k,p) only becomes
zero for particular (k,p) pairs that nullify the term inside
brackets, for instance in the diagonal p = k at k values where
S(k) = 1. This basically reflects that longitudinal-longitudinal
couplings are much easier than transverse-longitudinal ones.

Once the fast terms [Eq. (A5)] and MC terms [Eqs. (A7)
and (A8)] have been evaluated, the full memory functions are
obtained and, from these, using the memory function equation
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in Laplace space and the relation between FT and LT, we obtain

CT (q,ω) = kBT

πm
Re

[
1

iω + M̃T (q,iω)

]
, (A11)

where Re denotes the real part. Since the LT is a complex
magnitude we write M̃T (q,iω) = MT,c(q,ω) − iMT,s(q,ω),
where the labels c and s denote integration of the function

multiplied by cos(ωt) and sin(ωt) respectively. After taking
the real part we get

CT (q,ω) = kBT

πm

MT,c(q,ω)

M2
T ,c(q,ω) + [

ω − MT,s(q,ω)
]2 . (A12)

Following exactly the same approach for N (q,t), we can
directly obtain S(q,ω) and CL(q,ω) from Nc(q,ω) and
Ns(q,ω).
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