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First-principles investigation of strain effects on the stacking fault energies, dislocation
core structure, and Peierls stress of magnesium and its alloys
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Taking pure Mg, Mg-Al, and Mg-Zn as prototypes, the effects of strain on the stacking fault energies (SFEs),
dislocation core structure, and Peierls stress were systematically investigated by means of density functional
theory and the semidiscrete variational Peierls-Nabarro model. Our results suggest that volumetric strain may
significantly influence the values of SFEs of both pure Mg and its alloys, which will eventually modify the
dislocation core structure, Peierls stress, and preferred slip system, in agreement with recent experimental results.
The so-called “strain factor” that was previously proposed for the solute strengthening could be justified as a
major contribution to the strain effect on SFEs. Based on multivariate regression analysis, we proposed universal
exponential relationships between the dislocation core structure, the Peierls stress, and the stable or unstable
SFEs. Electronic structure calculations suggest that the variations of these critical parameters controlling strength
and ductility under strain can be attributed to the strain-induced electronic polarization and redistribution of
valence charge density at hollow sites. These findings provide a fundamental basis for tuning the strain effect to
design novel Mg alloys with both high strength and ductility.
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I. INTRODUCTION

Magnesium (Mg-based) alloys are attractive for extensive
automobile [1], aerospace [2,3], and biomedical applications
[4] due to their high strength-to-weight ratio, low density, and
biodegradability [4]. However, the trade-off dilemma between
strength and ductility and the poor workability and formability
are two longstanding bottlenecks for the development of
novel Mg alloys. It is generally believed that the strong
crystallographic anisotropy and the lack of slip systems of
hexagonal close packed (hcp) Mg alloys [5] are the main
reasons for the poor plasticity and ductility, which identify
the workability and formability, while the low slip resistance
to dislocation movement leads to the low strength.

Solution strengthening of Mg alloys is generally used in
practice and has been well investigated by many research
groups [6–11]. Its ability to enhance the energy barrier of
dislocation movement without profound loss of ductility can
be explained by the fact that the number of slip systems is not
changed by alloying particular elements [12]. By introducing
solutes, the slip resistance in the basal (0001) plane can be
effectively increased, while simultaneously, the critical stress
for cross-slip from the basal plane to the secondary prismatic
(101̄0) planes is decreased. For example, Al and Zn are two
typical solute elements which are experimentally found to
lower the critical stress for cross-slip [13].

In ductilizing Mg alloys, slip in both basal and nonbasal
planes must be active (as governed by the von Mises criterion

*Corresponding author: zrf@buaa.edu.cn

[14]) to achieve appreciable ductility. However, the stress
required to plastically deform Mg alloys along its (easy) basal
slip plane is 2 orders of magnitude lower than that of the
(hard) nonbasal plane. To solve this problem, recent theoretical
investigations suggest that the addition of effective solutes
(e.g., the rare earth elements may play a role to randomize the
texture [15]) may distinctly modify the energy of the I1-type
stacking fault, and thus promote the heterogeneous nucleation
of pyramidal 〈c + a〉 dislocations, which will in turn benefit
the ductility of Mg alloys [16]. Usually, the major role of the
added different solutes is to activate more than five independent
slip systems for an appreciable ductilization. The solute effect
on the dislocation core structure and Peierls stress has been
recently systematically studied by Pei et al. [17] and Yasi et al.
[18] in order to underline the slip mechanism controlling the
ductility. These studies have shown that different elements may
indeed influence the slip behavior, cross-slip, and dislocation
reaction.

Although the introduction of an appropriate solute provides
an effective pathway for strengthening and ductilizing Mg
alloys [12,13,19–22], the strain effects must also be included
to account for the strength and ductility of Mg alloys. At
equilibrium, a pure geometrical analysis indicates that the
plasticity should be accommodated by the slip along five
independent slip systems activated in ascending order (i.e., the
easiest slip system in Mg is basal slip along {0001}〈1210〉,
followed by prismatic slip along {1010}〈1210〉, and the
next easy slip systems are pyramidal plane type I along
{1011}〈1210〉 and {1011}〈1123〉, as well as type II along
{1122}〈1123〉 [23]) due to their different critical resolved shear
stresses for slip. Under sufficient strain, however, the plastic
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deformation of Mg alloys cannot be simply quantified by this
geometrical analysis at equilibrium because the strain will not
only change the c/a ratio but also modify the stacking fault
energies (SFEs), and eventually induce different dislocation
core structures, dislocation mobilities, and the preferred slip
systems. Because all these intrinsic parameters are critical in
governing the plastic deformation, their variations by strains
will eventually modify the mechanical strength and ductility
of Mg alloys. For example, a higher value of SFE will hinder
the formation of a wider dislocation core, and as a result
decrease the mobility of dislocation during the loading. Recent
experiments have confirmed that (a) the nonbasal slip systems
of Mg alloys can be activated by hydrostatic pressure [24–26];
(b) under c-axis compression the operative modes for pure
Mg are 〈c + a〉 slip on pyramidal II and significant ductilizing
and hardening occur [27]; and (c) compressive predeformation
changes the deformation behavior and yield strength of a
Mg-Al-Zn alloy under tensile loadings [28]. These results
suggest a necessity to investigate the effect of strain on the
SFEs, dislocation core structure, and associated Peierls stress,
which are critical in strengthening and ductilizing Mg alloys.

In the present study, we take the volumetric strain as a
representative case to present the strain effect with a wide
range of strain (i.e., −0.12 < �V/V < 0.13, corresponding
to the pressure value with −5.7 ∼ 3.4 GPa) to meet not only
the normal loading conditions with low strain or stress, such
as less than the tensile yield strength of pure Mg, but also
those special cases under which Mg alloys can support a
larger strain or stress (e.g., several GPa), such as shock
loading with high strain rate, high hydrostatic pressure within
confined volume, and in a nanocrystalline state with restricted
dislocation mobilities. For example, under one-dimensional
shock loading with a velocity of about 500 m/s, some Mg
alloys can be longitudinally stressed to about 3GPa [29,30],
and the effects of high pressure on the mechanical properties of
Mg alloys have been studied experimentally, with a maximum
pressure of 6 GPa [31,32]. In Sec. II, we first describe the
method of first-principles calculation, the approach to calculate
the SFEs, the semidiscrete variational PN model used for the
determination of dislocation core structure and the calculation
details of Peierls stress. Afterwards, the calculated results are
presented in Sec. III: the effect of volumetric strain on the
SFEs is given in Sec. III A, and the dislocation core structure
and Peierls stress in Sec. III B. To underline the physical
origin of the strain effect, an in-depth analysis of electronic
structure is given in Sec. III C. Afterwards, a discussion on
the strengthening and ductilizing mechanism in Mg alloys is
given in Sec. IV. We conclude in Sec. V with a recap of the
major conclusions drawn in this study.

II. COMPUTATIONAL APPROACH

A. First-principles calculation

Our first-principles density functional theory (DFT) calcu-
lations were performed using the Vienna ab initio simulation
package (VASP) code [33] by the projector augmented wave
(PAW) method [34] with the Perdew-Burke-Ernzerhof (PBE)
version [35] of the generalized gradient approximation (GGA)
as the exchange-correlation functional. An energy cutoff of

TABLE I. The calculated lattice constants a and c (in Angstroms)
and cohesive energy Ec(eV/atom) of pure Mg together with other
theoretical values [38–40].

Lattice constants

Refs. a c Ec

This work 3.195 5.172 −1.50
Expt. [38] 3.21a 5.21a

Pure Mg
Calc. [40] 3.221 5.178 −1.44
Calc. [39] 3.19 5.17

aThese experimental values are acquired at 298 K.

500 eV and 15×15×3 k-mesh γ -centered grids were used. The
SFE was tested carefully for the convergence as a function of
the k-mesh grid (see Fig. S1 in Supplemental Material [36]).
The energy convergence criterion of the electronic self-
consistency is chosen as 10−6 eV/cell, while the force
convergence criterion of ionic relaxation is used, with all
forces acting on the atoms being lower than 0.01 eV/Å.
The Methfessel-Paxton (MP) method [37] was used for the
electronic self-consistency of both ionic relaxation and energy
calculation with a smearing width of 0.01 eV.

Table I lists the optimized lattice constants of pure Mg,
which are in very good agreement with previously published
experimental [38] and theoretical [39] data. The calculated
cohesive energy of pure Mg also agrees well with the results
of previous theory [40], providing a further validation of the
PAW pseudopotentials used for Mg alloys.

B. Stacking fault energy

The SFE describes the energy variation when two parts of
a crystal are rigidly shifted with different fault vectors lying in
a given crystallographic plane [41]; it is defined as

γ = ESF − E0

A
, (1)

where ESF and E0 are the energies of the structure with a
stacking fault and the perfect structure, respectively, and A is
the area of the stacking fault plane. To calculate the SFEs, we
built a periodic supercell containing 48 atoms (four atoms per
layer). The lattice vectors of the supercell are parallel to the
[112̄0], [101̄0], and [0001] directions, respectively. For Mg
alloys, a Mg atom at one faulted plane (0001) was replaced
by one solute atom X (X = Zn or Al). Therefore, the global
solute concentration is about 2.08%, which corresponds to an
areal concentration of 25% at the faulted plane for an Mg47X

alloy. In general, there are two approaches to calculate the
SFEs by means of DFT, namely, alias shear [42] and slab
shear [43]. The former one can be complemented by an alias
shear deformation of a periodic supercell via the Cartesian
coordinate representations of atomic position, while the latter
one requires only the movement of atomic positions within
two slabs but requires a supercell surrounded by a sufficiently
thick vacuum to eliminate any surface effects. In our study,
the alias shear approach was employed for the following
considerations: (1) the number of supercell atoms is only one-
half of that using the slab shear technique; and (2) the stress
can be directly derived from the stress-strain relationship of the
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FIG. 1. (a) Schematic illustration of the perfect lattice, basal stacking fault I2, and twin stacking fault T2 configurations generated via
the alias shear. The letters A, B, and C represent different stacking sequences of (0001) planes, which are identified by blue, pink, and olive
symbols, respectively, with the stacking fault being highlighted in red. The solid and open circles represent the atomic coordinates at 0 and ½
along [112̄0] direction, respectively, and the dotted line indicates the stacking fault position. (b) The full γ surface of pure Mg for the basal
(0001) plane. (c) The calculated SFE profiles of pure Mg, Mg-Al, and Mg-Zn along the [112̄0] direction to indicate the stable SFEs (γI2 and
γT2 ) and unstable SFEs (γUI2 and γUT2 ).

simulated supercell. Figure 1(a) illustrates the configuration of
an I2 stacking fault ( . . . ABABCACA . . . ) that was generated
from the perfect hcp structure by displacing the upper half of
the supercell by 1/3[101̄0] while holding the bottom half fixed.
The twin fault T2 ( . . . ABABCBABA . . . ) can be obtained by
displacing another layer of I2 as indicated by the dotted line in
Fig. 1(a). In order to get the entire γ surface, including unstable
SFEs, only vertical movement normal to the slip plane was
permitted during atomic relaxation.

In the present work, we first applied a series of volumetric
strains on the supercell to study the variations of SFEs under
strain. It should be noted that the volumetric strain is imposed
by changing the lattice constants of a and c. During this
procedure only the atomic positions were allowed to relax,
with the constraint of crystallographic symmetry, and the SFEs
were calculated by employing the alias shear approach based
on the relaxed strained supercell.

C. Dislocation core structure and Peierls stress

Three approaches are generally used to determine the
dislocation core structure based on first-principles calculation:
a solution based on flexible boundary conditions [44–46], an
analytical solution based on dislocation dipole array [41,47],

and the semidiscrete variational PN model evolved from the
classic one by Bulatov and Kaxiras [48] and Lu [49]. With
the last one as our basis, the model assumption is that one
dislocation line is parallel to the z axis ([101̄0]) with Burgers

vector
⇀

b = 1/3[112̄0] (x axis), with slip on the x-z plane.
The trial displacements for the edge and screw components of
the partial dislocations are expressed by Eq. (2) and used to
determine the equilibrium configuration of the dislocation in
pure Mg and Mg alloys [50]:

ux(x) = b

2π

(
arctan

x − dx/2

wx

+ arctan
x + dx/2

wx

)
+ b

2

uz(x) =
√

3b

6π

(
arctan

x − dz/2

wz

− arctan
x + dz/2

wz

)
, (2)

where dx (or dz) is the separation between edge (or screw)
components of the two partial dislocations, and wx (or wz)
gives the half-width of edge (or screw) components of the two
partial dislocations. An illustration of the meaning of these
qualities is shown in Fig. 2. Equivalently, the dislocation core
structure is described by the misfit density ρ(x) ≡ du(x)/dx,
and the typical profiles of ux(x),uz(x),ρx(x), and ρz(x) are
shown in Fig. 2. The γ surface was expanded in a 2D Fourier
series as suggested in Ref. [51]:

γ (ux,uz) = c0 + c1[cos(2quz) + cos(pux + quz) + cos(−pux + quz)] + c2[cos(2pux) + cos(pux + 3quz)

+ cos(−pux + 3quz)] + c3[cos(4quz) + cos(2pux + 2quz) + cos(pux − 2quz)]

+ c4

[
cos(3pux + quz) + cos(3pux − quz) + cos(2pux + 4quz)

+ cos(2pux − 4quz) + cos(pux + 5quz) + cos(−pux + 5quz)

]

+ a1[sin(pux − quz) − sin(pux + quz) + sin(2quz)] + a2[sin(2pux − 2quz) − sin(2pux + 2quz) + sin(4quz)],

(3)
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FIG. 2. (a) A schematic to illustrate the dissociation of a perfect dislocation into two partials. The b1, b2, and b3 are the Burgers vectors of
perfect dislocation, and the bp1, bp2, and bp3 are the Burgers vectors of partial dislocation. The bp3,x , bp3,z, b-p1,x , and b-p1,z are the components
of bp3 and b-p1 along x and z axes, respectively. (b–e) The dislocation core structure of pure Mg (black curve) and Mg alloys (pink curve for the
Mg-Al alloy and blue curve for the Mg-Zn alloy) at equilibrium. The separation dx (or dz) between the edge (or screw) components of the two
partials is defined as the distance between the two peaks, and the width wx (or wz) of the edge (or screw) components of a partial dislocation
is the FWHM, approximately, as shown in this figure.

where p = 2π/b, q = 2π/(
√

3b), and c0 = −3(c1 + c2 +
c3 + 2c4), which could be determined by applying the con-
dition γ (0,0) = 0. The unknown coefficients c1,c2,c3,c4,a1,
and a2 were determined by fitting the γ surface [as illustrated
in Fig. 1(b)] with Eq. (3) and nonlinear least-squares method
based on the trust-region algorithm.

The total energy of a dislocation Etot is expressed as the
sum of the misfit energy Emis and the elastic energy Eel [48]:

Etot =
∑

i

γ [ux(xi),uz(xi)]�x + Ke

∑
ij

χijρx,iρx,j

+Ks

∑
ij

χijρz,iρz,j , (4)

ρx,i = (ux,i − ux,i−1)/(xi − xi−1),
(4a)

ρz,i = (uz,i − uz,i−1)/(xi − xi−1),

χij = (3/2)ϕi,i−1ϕj,j−1 + ψi−1,j−1

+ψi,j − ψi−1,j − ψi,j−1, (4b)

ψi,j = (1/2)ϕ2
i,j ln |ϕi,j |, ϕi,j = xi − xj , (4c)

Ke = G/[4π (1 − ν)], Ks = G/(4π ), (4d)

where xi are the reference positions, �x is the average spacing
of the atomic rows in the lattice, G is the shear modulus,
and ν is the Poisson ratio. In our calculations, a same set of
elastic constants (i.e., Ke = 2.238 and Ks = 1.647 (see
Table II together with the experimental data [52] and other
predictions from the literature [40]) was used to determine
the dislocation core structure and Peierls stress of Mg and
Mg alloys. Then, the equilibrium core structure of dislocation,

defined by the parameters dx, dz, wx , and wz in Eq. (2), was
obtained by minimizing the total energy Etot [53], and accord-
ingly, the particle swarm optimization (PSO) algorithm [54,55]
was employed for the energy minimization in the present
study.

The Peierls stress is defined as the critical resolved shear
stress required to move a dislocation across a crystal lattice
[56,57]. To determine the Peierls stress, the method proposed
in Ref. [56] was employed in the present study and the misfit
energy in Eq. (4) is rewritten as

Emis(μ) =
∑
m

γ [ux(m�x − μ),uz(m�x − μ)]�x. (5)

Accordingly, the Peierls stress τP is determined by

τP = max{τ } = max

{
1

b

dEmis(μ)

μ

}
. (6)

III. RESULTS

We first determined the SFEs of the unstrained Mg and its
alloys, both to serve as a baseline for validation of present
studies and to understand the origin of the large scatter of
the SFEs reported in previous publications. Table III shows
our calculated values of stable SFEs (γI2 , γT2 ) and unstable
SFEs (γUI2 , γUT2 ) of pure Mg and its alloys compared with
previous calculated literature values [6–12,17,40,58–61]. For
the stable SFE γI2 of pure Mg, the experimental values
vary from 50 mJ/m2 to 280 mJ/m2 [8], mostly owing to the
uncertainty in experiments, such as the conditions, methods,
sample purity, and assumptions in the analysis. Although most

224106-4



FIRST-PRINCIPLES INVESTIGATION OF STRAIN . . . PHYSICAL REVIEW B 95, 224106 (2017)

TABLE II. The calculated elastic constants cij , the derived Hill average bulk moduli BH , shear moduli GH , and Young’s moduli EH (all
in GPa), and the Poisson ratio νH of pure Mg, which are the input parameters for the semidiscrete variational PN model, together with the
experimental data and other theoretical values [40,52].

Material c11 c12 c13 c33 c44 BH GH EH νH Ke Ks

hcp Mga 69.12 21.84 20.01 70.84 16.37 36.98 20.70 52.34 0.264 2.238 1.647
hcp Mgb 59.5 26.12 21.8 61.55 16.35 35.55 17.21 44.45 0.292 1.934 1.370
hcp Mgc 63.1 22.2 22.7 66.3 22.6 36.4 21.5 53.8 0.254 2.293 1.711

aThis work.
bExpt. [52], and these experimental values are acquired at 298 K.
cCalc. [40].

theoretical SFEs lie between 20.1 and 48.2 mJ/m2 for pure
Mg (see Table III), a large scatter still exists relative to the
precision of DFT total energies, which are generally within
±1 meV/atom. Therefore, we have checked the convergence
in the calculation of SFEs with respect to the variations of
the density of the k-point mesh grids and different choices
of cutoff energy, both of which are critical for high-precision
energy calculations. By a careful comparison, we found that
the difference of the calculated SFEs in past studies was
mostly due to their different k-mesh grid points, as a lower
k-mesh grid will generate a larger scatter in the calculated
SFEs (see Fig. S1 in Supplemental Material [36]). Given these
considerations, we used a relatively high density of k-mesh
grids (15×15×3) and a high cutoff energy of 500 eV in our
following calculations; our calculated stable SFE γI2 of pure

Mg is about 33.85 mJ/m2, which is very close to the reported
value by high-precision calculation methods.

A. Effect of strain on the SFEs and twinnability

We now study the effect of volumetric strain on the stable
SFEs (γI2 , γT2 ) and unstable SFEs (γUI2, γUT2 ). Figure 3
presents the variations of the stable and unstable SFEs of
pure Mg and Mg − Zn under volumetric strain, ranging
from �V/V = −0.12–0.13. It is shown that for all four
types of SFEs, the variations of SFEs with respect to the
volumetric strain show strong similarity, i.e., the SFEs mono-
tonically decrease with increasing �V/V , but they remain
positive. By multivariate regression analysis, the dependence
of the stable and unstable SFEs on the volumetric stain

TABLE III. The calculated stable SFEs (γI2 , γT2 ) and unstable SFEs (γUI2 , γUT2 ) of pure Mg and Mg alloys together with previous
theoretical values (in mJ/m2). xg (%) and xSF (%) are the global solute concentration and the areal concentration within the stacking fault
plane, respectively.

Mg-X xg xSF γI2 γUI2 γT2 γUT2 NOTE

Mg 33.85 93.57 41.36 114.46 This work, alias shear, GGA-PBE
20.1 95.8 38.2 120.3 CASTEP, slab shear, GGA-PW91 [40]
26.1 94.9 37.1 111.2 VASP, alias shear, GGA-PBE [8]
36 92 39 111 VASP, slab shear, GGA-PBE [7]

30.0 40.0 VASP, alias shear, GGA-PBE [10]
29.1 ANNNI framework [12]
33 42 VASP, CINEB [6]

33.8 87.6 VASP, slab shear, GGA-PW91 [11]
21.4 VASP, slab shear, GGA-PBE [59]
21 88 VASP, slab shear, GGA-PW91 [60]

33.8 87.6 40.2 154.3 VASP, slab shear, GGA-PW91 [58]
48.2 VASP, slab shear [9]
35.4 VASP, slab shear [61]

Al 2.08 25 22.50 87.62 38.01 108.26 This work, alias shear, GGA-PBE
1.04 8.33 24.8 36.0 VASP, alias shear, GGA-PBE [8]
2.08 25 21 32 VASP, slab shear, GGA-PBE [7]
0.69 8.33 29.7 37.1 VASP, alias shear, GGA-PBE [10]
1.67 50 23 42 VASP, CINEB [6]
0.78 6.25 33.6 VASP, slab shear [9]

Zn 2.08 25 31.64 85.43 39.77 106.43 This work, alias shear, GGA-PBE
1.04 8.33 25.5 37.2 VASP, alias shear, GGA-PBE [8]
2.08 25 37 43 VASP, slab shear, GGA-PBE [7]
0.69 8.33 26.2 37.6 VASP, alias shear, GGA-PBE [10]
0.93 11.11 35.1 94.2 VASP, slab shear, GGA-PW91[11]
0.78 6.25 30.8 VASP, slab shear [9]
2.08 25 35 VASP, alias shear [17]
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FIG. 3. The calculated stable and unstable SFEs, the pressure, and the twinnability for (a, b) pure Mg and (c, d) Mg-Zn as a function of
volumetric strain. It is found that the dependence of the stable and unstable SFEs on the volumetric stain can be well described by a polynomial
fit.

can be well described by a polynomial fit γ (mJ/m2) =
a + b(�V/V ) + c(�V/V )2 + d(�V/V )3 with the second
derivative d2γ /d(�V/V )2 > 0. (The fitting coefficients are
provided in Table S1 in Supplemental Material [36].) These
observations indicate that volumetric compression has a
greater influence on the SFE values than volumetric tension. It
should be noted that a similar effect (i.e., cubic polynomial fit
between the SFEs and volumetric strain) has also been reported
for fcc copper [43], suggesting that this could be a general
volumetric strain effect, independent of crystal structure. In
order to quantitatively account for the correlation between
the applied strain and the resultant pressure, the hydrostatic
pressure is calculated and shown in Figs. 3(a) and 3(c). A
continuous increase from −5.7 GPa to 3.4 GPa is observed for
pure Mg, and from −5.3 GPa to 3.6 GPa for the Mg-Zn alloy,
as �V/V increases from −0.12 to 0.13.

Using the calculated stable SFEs (γI2, γT2 ) and unstable
SFEs (γUI2 , γUT2 ), the twinnability of pure Mg and its alloys
is characterized by the following ratio [6,8]:

�ratio = γUI2 − γI2

γUT2 − γI2

. (7)

A larger value of �ratio indicates a greater tendency towards
the formation of twins. Figures 3(b) and 3(d) present the
change of �ratio under volumetric strain. At equilibrium
(�V/V = 0.00), it is seen that the �ratio value of pure Mg
(0.741) is larger than that of Mg-Zn alloy (0.678), but they

are both much smaller than that of the Mg-Al alloy (0.800),
indicating that the solute atom Al can promote twin formation,
while the Zn atom decreases the potency to form a twin
in Mg-based alloy. As shown in the microstructures of the
as-rolled Mg-1.5Zn and Mg-3Al at room temperature, Mg-3Al
exhibits more extensive twinning as compared with Mg-1.5Zn
[62], which indicates a greater tendency towards the formation
of twins in Mg-Al alloys as compared with Mg-Zn alloy. This
agrees well with our calculated result.

Under volumetric strain, the �ratio increases rapidly from
0.708 to 0.788 for pure Mg, while for Mg-Zn, the �ratio

increases gradually from 0.678 to 0.686, as the strain �V/V

changes from −0.12 to 0.13. These results indicate that a
volumetric expansion promotes twin formation in pure Mg and
Mg alloys. A similar trend of the effect of volumetric strain
on SFEs and twinnability has also been observed in Mg-Al
alloy; we refer to Fig. S2b in Supplemental Material [36] for
details.

B. Dislocation core structure and Peierls stress under strain

The dislocation core structure governs the dislocation
mobility and ultimately the mechanical strength and ductility
of materials. For instance, the planar core of dislocations in
hcp and fcc metals determines their plastic flow propagation
following the Schmid law, while the compact nonplanar core
of bcc metals is known to be responsible for their violation of
the Schmid law, exhibiting a tendency to three-way nonplanar
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TABLE IV. The geometrical parameters of dislocation core
structure and the calculated Peierls stress (τP) in MPa of pure Mg
and Mg alloys together with other predictions from the literatures at
equilibrium (with �V/V = 0.00).

Solute dx/b wx/b dz/b wz/b τP NOTE

Mg 7.50 0.54 7.56 0.58 8.40 This work, DFT
7.00 0.68 7.18 0.60 1.15 Ref. [17], DFT

6.73a Expt., [68]
3.06 0.45 2.90 0.38 22.9 Ref. [17], EAM

Al 9.74 0.54 9.79 0.58 3.94 This work, DFT
Zn 7.60 0.56 7.65 0.62 2.61 This work, DFT

6.94 0.64 7.11 0.52 2.53 Ref. [17], DFT

aThis experimental value is based on yield stress data at 0 K.

dissociation or polarization, implying a large Peierls stress
that makes the screw dislocations difficult to move [63,64].
In addition, the core structure of misfit dislocations at het-
erostructure interfaces has also been found by MD simulations
to play a critical role in determining dislocation nucleation
and dissociation, transmission of lattice dislocations across
the bimetal interface, and the interfacial sliding [65–67]. In
terms of tuning the dislocation core structure, both experiments
and theoretical investigations [63] have shown that not only
the impurities or alloying elements but also an application of

external stresses can significantly alter the dislocation core
structure and consequently, its properties. However, although
there have been some DFT studies of the Peierls barrier for
various metals, they have been limited to zero-stress situations
and do not provide information about the stress dependence of
the Peierls potential. Therefore, in this section, we shall take
Mg and Mg alloys as illustrations to show the significant strain
effect on dislocation core structures and Peierls stresses.

We begin with the calculations of the dislocation core
structure at equilibrium (�V/V = 0.00) by means of the
semidiscrete variational PN model as described in Sec. II.
Figure 2 presents the calculated dislocation core structures at
equilibrium of pure Mg and Mg alloys with both edge and
screw components; the calculated dislocation core structure
parameters (dx, dz, wx , and wz) at equilibrium are provided in
Table IV, showing good agreement with previously reported
experimental and theoretical values [17,68]. It is seen that the
derived values of dx/b are almost equal for pure Mg (7.50) and
the Mg-Zn alloy (7.60), but they are much smaller than that
of the Mg-Al alloy (9.74). Such a difference can be attributed
to the lower value of the stable SFE γI2 for the Mg-Al alloy
(22.50 mJ/m2) as compared to those for pure Mg
(33.85 mJ/m2) and Mg-Zn alloy (31.64 mJ/m2) (see Table III).

We next study the effect of strain on the dislocation core
structure, and the calculated results for pure Mg are presented
in Fig. 4. The relevant key points are summarized below:

FIG. 4. The (a) distance (dx/b) and (b) width (wx/b) of the edge components of a dislocation under different volumetric strains. (c) The
misfit density and (d) the pressure field (in GPa) produced by the dislocation under different volumetric strains. It is seen that under volumetric
strain in dilatation or compression, the variation of dx/b with respect to the strain follows the exponential function, while the calculated value
of wx/b is linearly dependent on the applied volumetric strain.
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(a) Under volumetric strain in dilatation or compression,
the variation of dx/b with respect to the strain follows an
exponential function as dx/b = A exp(α�V/V ), where A =
7.729 and α = 4.49 [see Fig. 4(a)].

(b) There are linear relationships between the calculated
value of wx/b and the applied volumetric strain with a propor-
tional slope of d(wx/b)/d(�V/V ) = 1.32 [see Fig. 4(b)].

In an illustrative atomic-scale representation, Figs. 4(c)
and 4(d) present the misfit densities and the pressure fields
around dislocation cores [69] under various volumetric strains,
respectively. As defined in Ref. [69], the pressure field around
dislocation cores is expressed that

p(x,y) = − G(1 + ν)

3π (1 − ν)

2∑
i=1

b

2

y + sgn(y)we

(x − dei)2 + [y + sgn(y)we]2 ,

(8)

where de1 = dx/2, de2 = −dx/2, we = wx , G is the shear
modulus, and ν is the Poisson ratio. The atoms shown in
Fig. 4(d) are color coded to distinguish the localized stress
around the dislocation core. It is clearly seen that two partial
dislocations (denoted by “⊥”) are separated by a planar
stacking fault in between. A large strain dependence is found
for the dislocation core parameters, ranging from 4.82 to 16.67
for the stacking fault width dx/b and from 0.41 to 0.77 for the
partial core width wx/b; these ranges are almost equal to those
reported for 20 different Mg alloys at equilibrium (3.03–19.18
for dx/b, and 0.55–0.72 for wx/b [17]), indicating that strain
has an even equally profound effect on the dislocation core
structure with the chemical effect of solutes. Such results
suggest potential foundations for the modification of strength
and ductility of Mg and Mg-based alloys by strain engineering,
i.e., preparing Mg alloys at different strain states. For instance,
Yamashita et al. [70] verified experimentally that severe plastic
deformation can improve the mechanical properties (e.g.,
strength and ductility) of Mg alloys. Therefore, it is expected
that severe plastic deformation with specific constraint may
provide an effective solution of strain engineering to improve
the mechanical properties of Mg alloys.

As described in Sec. II C and illustrated in Fig. 5(a), the
Peierls stress is defined as the critical resolved shear stress for
a dislocation moving through the lattice from one symmetrical
configuration to another equivalent symmetrical configuration
[56,57,71]. Figure 5(b) presents our calculated dependence of
the Peierls stresses of pure Mg and Mg alloys under volumetric
strain. The logarithm of the Peierls stress ln(τP ) of pure
Mg and Mg alloys shows a linearly decreasing trend with
increasing strain, following a slope of d[ln(τP )]/d(�V/V ) =
−18.74 for pure Mg. Therefore, the Peierls stress τP can
be approximated as an exponential relationship with the
volumetric strain, and a general conclusion can be drawn for
the strain effect on Peierls stress such that a compressive strain
leads to a strain strengthening effect, while a tensile strain
causes strain softening.

Under volumetric compression, the Peierls stress of the
dislocation lying in the basal plane increases, which may
eventually promote the activation of nonbasal slip systems
and consequently ductilize Mg and Mg alloys. These conclu-
sions agree well with the experimental observations that the

FIG. 5. (a) A schematic to represent the dislocation movement
from one symmetrical configuration to another equivalent symmetri-
cal configuration. (b) The logarithm of Peierls stress under different
volumetric strains for pure Mg and Mg alloys, which shows a linearly
decreasing trend with increasing strain.

nonbasal slip systems can be activated by hydrostatic pressure
[24–26]. Although the strain effect on the Peierls stress is
found to be far more profound than the chemical effect of
solutes by the analysis of data published in Ref. [17], we would
like to emphasize that both the strain strengthening and solute
strengthening play important and potentially complementary
roles in strengthening and ductilizing Mg alloys, since the
solute atoms may provide an additional “pinning” effect due
to the solute/dislocation interactions [18].

C. Electronic origin of the strain effects

Based on previous studies [8–12], it is believed that
the charge density distributions could provide a physical
explanation for the SFEs of pure Mg and Mg alloys. To clarify
the strain effect on the polarization and charge transfer, we
have calculated the valence charge density difference (VCDD),
which is defined as

�ρ(Mg47X) = ρsc(Mg47X) − ρnsc(Mg47X), (9)

where ρsc(Mg47X) is the charge density after reaching elec-
tronic self-consistency, and ρnsc(Mg47X) is the charge density
prior to electronic self-consistent calculation, i.e., representing
a summation of atomic charge densities (or the noninteracting
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FIG. 6. Contour plots of the valence charge density difference
(VCDD) of pure Mg and Mg-Zn alloy under the volumetric strains: (a,
d) �V/V = −0.12, (b, e) �V/V = 0.00, and (c, f) �V/V = 0.13,
respectively. The unit of VCDD is electrons/Bohr3, and the thin
black line corresponds to the isosurface of 0.001 8 electrons/Bohr3.
It is illustrated that the charge density decreases with the increasing
volumetric strain at hollow sites (indicated by the red dashed circles).

charge density). Figures 6(a)–6(c) illustrate the VCDDs of
pure Mg under different volumetric strains. It is seen that the
charge density decreases with the increasing volumetric strain
at hollow sites (indicated by the red dashed circle in Fig. 6),
which may provide a basis for the effect of strain on SFEs, as
the denser VCDD produces a stronger bonding of Mg-Mg [8].

To underline the strain effect of Mg alloys, Fig. 6 also
presents the calculated VCDDs of Mg-Zn (Fig. S3 for Mg-Al
in Supplemental Material [36]) under different volumetric
strains. It can be seen that under the volumetric strain, the
VCDD decreases with increasing strain for both Mg-Zn
and Mg-Al alloys at hollow sites, producing a same effect
on the Mg alloys as on pure Mg. By comparing the VCDDs of
pure Mg and Mg alloys at the unstrained state (�V/V = 0.00),
it is found that Zn and Al solute atoms decrease the VCDD
at the circled region in red, being responsible for the lower
value of SFEs for the Mg-Zn and Mg-Al alloys as compared
to those of pure Mg (see Table III). By comparing the chemical
effect of solute and the strain effect on the VCDD, it can be
concluded that the chemical effect may effectively change the
shapes of the VCDD isosurface, while the strain effect will
enhance the magnitude of the isosurface, indicating a general
rule that a higher SFE corresponds to more profound electronic
polarization induced by compressive strain.

IV. DISCUSSION

In general, the solute strengthening provides an effective
strengthening pathway for the development of novel Mg alloys

which can potentially resolve the trade-off dilemma between
strength and ductility and the poor workability and formability.
In Mg alloys, solute atoms can disturb the charge density
(“chemical factor”) and produce a local strain field (“strain
factor”) due to the different atomic radii between Mg and solute
atoms, which are two supposed reasons for the solute effect on
the SFEs. The local strain caused by solute atoms is equivalent
to the external strain by changing the lattice geometry. For
example, Liu and Li [12] found that the activation of slip
systems is closely related to the change of the local ratio of
c/a by different solute elements, being responsible for the
solute strengthening and/or ductilizing. Shang et al. [8] has
recently found an approximate linear relationship between the
SFEs and the equilibrium volumes of Mg alloys by different
alloying elements, which raises an interesting question as to
whether the change of SFEs can be partially attributed to the
strain effect. Our results, that a local compressive strain will
promote larger SFEs whereas lattice dilatation will generate
smaller SFEs, provide a view on the contribution to SFEs by
solute introduction.

Although the study of the strain effect on the SFEs could
offer insights into the “strain factor” of the solute effect on
the SFEs and the mechanism of solute strengthening as the
size misfit in the model of solute strengthening [18,69,72],
thus far, however, the effect of an external strain has been
absolutely ignored. As seen in the preceding sections, an
external strain plays an important role with regard to the SFEs
and dislocation core structures. The strain effect cannot be
ignored in experimentally achievable strains such as under
high pressure, in high strain rate deformation, shock loading
[73], and severe plastic deformation processing. For example,
the effect of superhigh pressure on the mechanical properties
of Mg alloys has been studied experimentally, with a maximum
pressure of 6 GPa [31,32]. At such high strain, the SFEs
can change by ∼40% relative to those at zero strain, which
consequently produces an ∼340% increase of Peierls stress
from 8.4 MPa to 36.7 MPa, and an ∼30% variation of the
dislocation core structure.

As shown in Fig. 7(a), a strong inverse relationship between
dx/b and the stable SFE γI2 is found for Mg and Mg alloys.
However, it is not a simple linear relationship, as proposed
for fcc metals in Refs. [74] and [75] using a DFT-informed
phase field dislocation dynamics model. The correlation fits
well with the exponential function as

dx/b = A · exp
(−αγI2

) + B · exp
(−βγI2

)
, (10)

where A = 23.92,B = 0.090 51, α = −0.038 41, and β =
0.055 22. Meanwhile an inverse linear relationship between
the logarithm of the Peierls stress ln(τP ) and the dislocation
width (wx/b) [Fig. 7(b)] is obtained by fitting the formula

ln(τP ) = Awx/b + B, (11)

where A = −13.73 and B = 9.031. This provides a variant
of the well-known formula τP = A exp(−αξ/b) [56], where
A and α are constants and ξ is the dislocation half-width and
approximately equal to the wx in Eq. (11). Furthermore, the
value of wx/b is found to have a strong correlation with the
unstable SFE γUI2 [Fig. 7(c)], and the fitting function for Mg
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FIG. 7. The relationship between the dislocation core structure, the Peierls stress, and the SFEs. The black, pink, and blue points correspond
to pure Mg, Mg-Al alloy, and Mg-Zn alloy, respectively, and the red solid lines are calculated by the relationships Eqs. (10)–(13), indicating
that there are general exponential relationships between the dislocation core structure, the Peierls stress, and the stable or unstable SFEs.

and Mg alloys is generally expressed as

wx/b = A · exp
(−αγUI2

)
, (12)

where A = 1.24 and α = −0.009 21. This logarithm of the
Peierls stress ln(τP ) can also show an exponential correlation
with the unstable SFE γUI2 [Fig. 7(d)], and the formula is
obtained as

ln(τP ) = A · exp
(−αγUI2

) + B, (13)

where A = −17.03, B = 9.031, and α = −0.009 21. With
these relationships, one may simply predict the Peierls stress
of Mg alloys even under strain. It is generally accepted that Mg
alloys with high basal and low nonbasal unstable SFEs will
have higher both strength and ductility than those of pure Mg,
because the high and low Peierls stresses on the basal plane
and on nonbasal planes, respectively, will benefit the activation
of the nonbasal slip system, aiding both strengthening and
ductilizing of Mg alloys.

In summary, the effect of strain on the SFEs, dislocation
core structure, and Peierls stress can be particularly important
for understanding the mechanical behavior of metals in high-
pressure experiments, severe plastic deformation, and shock-
loading conditions [73]. Therefore, our results may provide
an additional contribution and pathway to solve the tradeoff
between strength and ductility based on the dependence of
SFEs on external parameters such as strain.

V. CONCLUSIONS

We have performed comprehensive investigations of the
effect of volumetric strain on the SFEs, dislocation core
structure, and Peierls stress of Mg and Mg alloys based on
DFT calculations and the semidiscrete variational PN model.
The results are summarized as follows:

(1) Strain can affect the values of SFEs, making them either
larger or smaller, and thus changing the twinnabilities of pure
Mg and Mg alloys. The SFEs and twinnability of Mg-Zn and
Mg-Al alloys will be changed by volumetric strain in a similar
manner to pure Mg.

(2) In general, a narrow (wide) dislocation core will
decrease (increase) the mobility of dislocation. The dislocation
core structure and Peierls stress may be significantly modified
by strains as the SFEs vary, which could promote the activation
or operation of a nonbasal slip system, in agreement with
experimental results.

(3) Besides external strain, the strain may also be imposed
by the introduction of solute atoms in experiments; therefore
the strain effect on the SFEs found in the present study may
provide a view of the “strain factor” of the solute effect by the
introduction of local strain fields that was assumed based on
experimental observations.

(4) General exponential relationships are proposed be-
tween the dislocation core structure, the Peierls stress, and
the stable or unstable SFEs, which provides a foundation
for further experiments. For instance, the separation distance
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between two partials shows a universal exponential rela-
tionship with the stable SFE γI2 , while the Peierls stress is
exponentially dependent on the unstable SFE γUI2 .
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