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An optimized interatomic potential has been constructed for silicon using a modified Tersoff model. The
potential reproduces a wide range of properties of Si and improves over existing potentials with respect to point
defect structures and energies, surface energies and reconstructions, thermal expansion, melting temperature,
and other properties. The proposed potential is compared with three other potentials from the literature. The
potentials demonstrate reasonable agreement with first-principles binding energies of small Si clusters as well as
single-layer and bilayer silicenes. The four potentials are used to evaluate the thermal stability of free-standing
silicenes in the form of nanoribbons, nanoflakes, and nanotubes. While single-layer silicene is found to be
mechanically stable at zero Kelvin, it is predicted to become unstable and collapse at room temperature. By
contrast, the bilayer silicene demonstrates a larger bending rigidity and remains stable at and even above room
temperature. The results suggest that bilayer silicene might exist in a free-standing form at ambient conditions.
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I. INTRODUCTION

Silicon is one of the most important functional materials
widely used in electronic, optical, energy conversion, and
many other applications. Not surprisingly, Si has been the
subject of many classical molecular dynamics (MD) and
other large-scale atomistic computer studies for almost three
decades. Although classical atomistic simulations cannot ac-
cess electronic or magnetic properties, they are indispensable
for gaining a better understanding of the atomic structures,
thermal and mechanical properties of the crystalline, liq-
uid, and amorphous Si and various nanoscale objects such
as nanowires and nanodots. Atomistic simulations rely on
semiempirical interatomic potentials. The accuracy of the
results delivered by atomistic simulations depends critically
on the reliability of interatomic potentials.

Several dozen semiempirical potentials have been devel-
oped for Si. Although none of them reproduces all properties
accurately, there is a trend towards a gradual improvement
in their reliability as more sophisticated potential generation
methods are developed and larger experimental and first-
principles datasets become available for the optimization
and testing. The most popular Si potentials were proposed
by Stillinger and Weber (SW) [1] and Tersoff [2–4]. The
original Tersoff potentials were modified by several authors
by slightly changing the analytical functions and improv-
ing the optimization [5–10]. Other Si potential formats
include the environment-dependent interatomic potential [11],
the modified embedded atom method (MEAM) potentials
[12–18], and bond-order potentials [19,20].

One of the most significant drawbacks of the existing Si
potentials is the overestimation of the melting temperature
Tm, in many cases by hundreds of degrees. Other typical
problems include underestimated vacancy and surface energies
and positive Cauchy pressure (c12 − c44), which in reality
is negative (cij being elastic constants). Kumagai et al. [7]
constructed a significantly improved Tersoff potential that
predicts Tm = 1681 K in close agreement with the experi-
mental value of 1687 K, gives the correct Cauchy pressure,
and is accurate with respect to many other properties. This
potential, usually referred to as MOD [7], is probably the
most advanced Tersoff-type potential for Si available today.

However, it still suffers from a low vacancy formation energy,
low surface energies, and overestimated thermal expansion at
high temperatures and the volume effect of melting.

The goal of this work was twofold. The first goal was
to further improve on the MOD potential [7] by addressing
its shortcomings with a minimal impact on other properties.
This was achieved by slightly modifying the potential format
and performing a deeper optimization. When testing the new
potential, we compare it not only with MOD but also with
the popular SW potential [1]. We further include the MEAM
potential developed by Ryu et al. [14] to represent a different
potential format. To our knowledge, this is the only MEAM
potential whose melting point is close to experimental.

The second goal was to test the four potentials for their
ability to predict the energies of low-dimensional structures,
such as small Si clusters and single- and double-layer forms
of silicene (2D allotrope of Si). Si potentials are traditionally
considered to be incapable of reproducing low-dimensional
structures. This view is largely based on testing the SW
potential. The MOD and MEAM potentials have not been
tested for the properties of clusters or silicenes in any
systematic manner. Such tests were conducted in this work
using all four potentials. The results suggest that the present
potential, MOD, and MEAM do capture the main trends and
in many cases agree with first-principles density functional
theory (DFT) calculations. As such, they can be suitable for
exploratory studies of thermal and mechanical stability of Si
clusters and 2D structural forms of Si. In this work, we apply
them to evaluate the stability of free-standing single-layer and
bilayer silicenes at room temperature.

II. POTENTIAL GENERATION PROCEDURES

The total energy of a collection of atoms is represented in
the form

E = 1

2

∑
i �=j

φij (rij ),

where rij is the distance between atoms i and j and the bond
energy φij is taken as

φij = fc(rij )[A exp(−λ1rij ) − bijB exp(−λ2rij ) + c0]. (1)
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Here, the bond order bij is given by

bij = (
1 + ξ

η

ij

)−δ
,

where

ξij =
∑
k �=i,j

fc(rij )g(θijk) exp[α(rij − rik)β].

The term (1 + ξij ) represent an effective coordination number of atom i and fc(rij ) is a cutoff function. The latter has the form

fc(r) =

⎧⎪⎨
⎪⎩

1, r � R1
1
2 + 9

16 cos
(
π r−R1

R2−R1

)
− 1

16 cos
(

3π r−R1
R2−R1

)
, R1 < r < R2

0, r � R2,

,

where R1 and R2 are cutoff radii. The outer cutoff R2 is
chosen between the first and second coordination shells of
the diamond cubic structure. The angular function g(θijk) has
the generalized form

g(θ ) = c1 + c2(h − cos θ )2

c3 + (h − cos θ )2

×{1 + c4 exp[−c5(h − cos θ )2]},
where θijk is the angle between the bonds ij and ik. These
functional forms are the same as for the MOD potential [7],
except for the new coefficient c0 that was added to better
control the attractive part of the potential.

The adjustable parameters of the potential are A, B, α, h,
η, λ1, λ2, R1, R2, δ, c0, c1, c2, c3, c4, and c5. The power β

is a fixed odd integer. In the original Tersoff potential [2–4]
β = 3, whereas Kumagai et al. [7] chose β = 1. We tried both
numbers and found that β = 3 gives a better potential.

The free parameters of the potential were trained to
reproduce basic physical properties of the diamond cubic
(A4) structure and the energies of several alternate structures.
Specifically, the fitting database included the experimental
lattice parameter a, cohesive energy Ec, elastic constants
cij , and the vacancy formation energy E

f
v . The alternate

structures were simple cubic (SC), β-Sn (A5), face-centered
cubic (FCC), hexagonal closed pack (HCP), body-centered
cubic (BCC), simple hexagonal (HEX), wurtzite (B4), BC8,
ST12, and clathrate (cP46). Their energies obtained by DFT
calculations are available from open-access databases such as
Materials Project [21], OQMD [22], and AFLOW [23,24].
Some of these structures were found experimentally as Si
polymorphs under high pressure, others were only generated in
the computer for testing purposes. The parameter optimization
process utilized a simulated annealing algorithm. The objective
function was the sum of weighted squares of deviations of
properties from their target values. Numerous optimization
runs were conducted using the weights as a tool to achieve
the most meaningful distribution of the errors over different
properties. Several versions of the potential were generated
and the version deemed to be most reasonable was selected
as final. This selection was somewhat subjective and was
based on our ideas about how the potential will probably
be used and which properties will matter most. Since it is
impossible for this (or any other) potential to reproduce all

properties with equal accuracy, priorities must be given to
some properties over others. The present potential focuses on
thermal and mechanical properties of bulk Si, especially at
high temperatures.

The optimized potential parameters are listed in Table I.
The potential has been incorporated in the molecular dynamics
package LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) [25] as the pair style tersoff/mod/c.

The transferability of the new potential was evaluated by
computing a number of physical properties that were not
included in the training database and comparing the results
with experimental data and/or DFT calculations available in
the literature. The same comparison was made for the MOD,
MEAM, and SW potentials to demonstrate their strengths and
weaknesses relative to the new potential. We utilized the MOD
and SW potential files from the LAMMPS potential library.
The MEAM potential file was obtained from the developers
[14]. The potential testing results are reported in the next
section.

TABLE I. Optimized parameters of the new Si potential. Param-
eters of the MOD potential [7] are listed for comparison.

Parameter Present MODa

A (eV) 3198.51383 3281.5905
B (eV) 117.780724 121.00047
λ1 (Å−1) 3.18011795 3.2300135
λ2 (Å−1) 1.39343356 1.3457970
η 2.16152496 1.0000000
η × δ 0.544097766 0.53298909
α 1.80536502 2.3890327
β 3 1
c0 (eV) −0.0059204 0.0
c1 0.201232428 0.20173476
c2 614230.043 730418.72
c3 996439.097 1000000.0
c4 3.33560562 1.0000000
c5 25.2096377 26.000000
h −0.381360867 –0.36500000
R1 (Å) 2.54388270 2.7
R2 (Å) 3.20569403 3.3

aReference [7].
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TABLE II. Properties of diamond cubic Si computed with four interatomic potentials in comparison with experimental data and DFT
calculations.

Property Experiment DFT Present MODd MEAMw SWu

Ec (eV/atom) 4.63c 4.84r 4.630 4.630 4.630 4.337
a (Å) 5.430a 5.451r 5.434 5.429 5.431 5.431
c11(GPa) 165a; 167.40b 172.6 166.4 163.8 151.4
c12 (GPa) 64a; 65.23b 64.6 65.3 64.5 76.4
c44 (GPa) 79.2a; 79.57b 81.3 77.1 76.5 56.4
νmax (THz) 15.7o 17.6 17.5 25.6 17.8
Vacancy:
Ev

f (Td ) (eV) 3.6j 3.17m; 3.69t 3.54 2.82 3.57 2.64
3.29–4.3h; 3.70 − 3.84s

Ev
f (D3d ) (eV) 3.97t; 4.29v; 4.37n 3.61 – 3.77 –

3.67 − 3.70s; 5.023i

Interstitials:
Ei

f (hex) (eV) 3.31–5h; 2.87 − 3.80s 3.51 4.13d – –
Ei

f (Td ) (eV) 3.43–6h; 3.43 − 5.10s 3.01 3.27d 4.12 4.93
Ei

f (B) (eV) 4–5h 4.34 5.03d 6.78 5.61
E

f

i 〈110〉(eV) 3.31–3.84h; 2.87 − 3.84s 3.26 3.57d 3.91 4.41
Surface energy γs (J m−2):
{111} 1.24q; 1.23p 1.57l; 1.74f 1.11 0.89 1.2 1.36
{100} 2.14l; 2.39f; 2.36k 2.19 1.77 1.74e 2.36
{100}2×1 1.36p 1.71g; 1.45f; 1.51k 1.21 1.07 1.24 1.45
{110} 1.43p 1.75k 1.36 1.08 1.41 1.67
Melting:
Tm(K) 1687 1687 1681d; 1682 1687w 1691v; 1677

Vm/Vsolid (%) −5.1a −3.8 −12.5 −2.7 −7.2
L (kJ/mol) 50.6a 24.0 34.7 43.2 31.1

aReference [26].
bReference [27].
cReference [103].
dReference [7].
eConstrained relaxation.
fReference [43].
gReference [104].
hReferences in Ref. [7].
iReference [36].
jReference [38].
kReference [105].
lReference [17].
mReference [34].
nReference [37].
oReference [29].
pReference [106].
qReference [107].
rReference [108].
sReference [109].
tReference [35].
uReference [1].
vReference [33].
wReference [14].

III. PROPERTIES OF SOLID Si

Table II summarizes some of the properties of crystalline
Si predicted by the four potentials. All properties have been
computed in this work unless otherwise is indicated by
citations. The defect energies are reported after full atomic
relaxation.

A. Lattice properties

The present potential, MOD, and MEAM accurately repro-
duce the elastic constants. The SW potential gives less accurate
elastic constants and a positive Cauchy pressure contrary to
experiment [26,27]. The phonon density of states (DOS) and
phonon dispersion relations were computed by the method
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FIG. 1. Phonon properties of diamond cubic Si. (a) Density of
states calculated with different interatomic potentials in comparison
with experimental data [31]. (b) Dispersion relations at room
temperature computed with the present potential in comparison with
experiment: diamond symbols [30], squares [29], and triangles [32],
respectively.

developed by Kong [28] and implemented in LAMMPS.
The MD simulation was performed at 300 K utilizing a
primitive 16 × 16 × 16 supercell with 8192 atoms. The DOS
plots are shown in Fig. 1(a) and the respective zone-center
optical frequencies νmax are indicated in Table II. The present
potential, MOD, and SW predict surprisingly similar νmax

values that overestimate the experimental frequency by about
2 THz. The MEAM potential overshoots νmax by about 10 THz
and the entire DOS is stretched by a factor of 1.63. Note that
none of the four potentials reproduces the sharp peak at about
5 THz arising from the acoustic zone-boundary phonons.

Figure 1(b) displays the phonon dispersion curves predicted
by the present potential. While general agreement with experi-
ment [29–32] is evident and the longitudinal acoustic branches
are reproduced accurately, the potential overestimates the
transverse acoustic zone-boundary frequencies and the optical
frequencies.

The cubic lattice parameter a was computed as a function
of temperature by zero-pressure MD simulations. The linear
thermal expansion coefficient (a − a0)/a0 relative to room
temperature (a0 at 295 K) is compared with experimental data
in Fig. 2. The SW potential demonstrates exceptionally good
agreement with experiment. The present potential slightly
overestimates the experiment at temperatures below 1300 K
and underestimates at higher temperatures. The negative slope
at high temperatures is unphysical, but the overall agreement
with experiment is reasonable. The slight negative slope is
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FIG. 2. Linear thermal expansion of Si lattice, (a − a0)/a0, rela-
tive to room temperature (a0 at 295 K) predicted by four interatomic
potentials in comparison with experimental measurements [122,123].

not a serious limitation to the use of this potential. Most
thermodynamic properties depend primarily on the magnitude
of the lattice constant at finite/high temperatures, not its tem-
perature derivative. The MOD potential gives a similar thermal
expansion at low temperatures but over-predicts it at high
temperatures. The MEAM potential grossly overestimates
the thermal expansion. Given also the poor agreement for
phonons, care should be exercised when using this potential for
thermodynamic calculations of crystalline Si. Note that neither
phonon properties nor thermal expansion were included in the
fitting databases of the potentials.

B. Lattice defects

According to DFT calculations [33–37], a Si vacancy can
exist in several metastable structures. In the lowest-energy
structure, the four neighbor atoms slightly move towards
the vacant site preserving the tetrahedral (Td ) symmetry and
leaving four dangling bonds. A slightly less favorable structure
is obtained when one of the four atoms moves towards the
other three and forms six identical bonds. This configuration
has a hexagonal (D3d ) symmetry and is referred to as the
“dimerized” or “split” vacancy. This vacancy reconstruction
eliminates the dangling bonds but increases the elastic strain
in the surrounding lattice. The present potential and MEAM
correctly predict the split vacancy to be less stable than the
Td vacancy. The latter has the formation energy within the
range of DFT calculations and consistent with the experimental
value of 3.6 eV [38]. (It should be noted, though, that the
experiments are performed at high temperatures at which the
vacancy structure is unknown.) The MOD and SW potentials
significantly under-predict the formation energy of the Td

vacancy. In addition, with the MOD potential the split vacancy
spontaneously transforms to a D2d structure with the energy
of 3.41 eV (the DFT value is 3.46 eV) [39], whereas the SW
potential predicts the split vacancy to be mechanically unstable
and spontaneously transform to the Td structure.

Self-interstitials can exist in four distinct configurations:
hexagonal (hex), tetrahedral (Td ), bond center (B), and 〈110〉
split (Table II). Given the large scatter of the DFT formation
energies, all four potentials perform almost equally well.
There is one exception: the MEAM and SW potentials predict
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FIG. 3. Selected cross-sections of the {111} and {100} gamma surfaces predicted by the present potential in comparison with other
potentials and DFT calculations [120,121].

the hexagonal interstitial to be mechanically unstable and
spontaneously transform to the tetrahedral configuration. Both
potentials overestimate the B-interstitial energy.

Surface energies were computed for the low-index orien-
tations {100}, {110}, and {111}. Experiments have shown
that these surfaces can undergo reconstructions to several
different structures [40–42]. Reconstructions of the {110}
and {111} surfaces are accompanied by a modest energy
reduction of about 0.3–0.4 J m−2. In this paper, these surfaces
were tested in unreconstructed states. By contrast, the dimer
reconstruction of the {100} surface to the more stable 2 × 1
structure reduces the surface energy by almost 1 J m−2. In
this case, both reconstructed and unreconstructed structures
were compared with DFT calculations. Table II shows that
the SW potential does an excellent job reproducing the DFT
surface energies. The MOD potential is the least accurate:
it systematically underestimates the surfaces energies for all
orientations. The present potential demonstrates a substantial
improvement over MOD: all energies are higher and closer
to the DFT data. The MEAM potential is equally good for
all surfaces except for the unreconstructed {100} structure.
The latter is mechanically unstable with this potential and
reconstructs to the 2 × 1 structure spontaneously during static
relaxation at 0 K. This instability was not observed in the DFT
calculations [43]. The surface energy of 1.74 J m−2 shown
in the table was obtained by constrained relaxation of this

surface, in which the atoms were only allowed to move in the
direction normal to the surface to prevent the dimerization.
With the potential proposed in this work, the unreconstructed
{100} surface is stable at 0 K and forms symmetrical rows of
dimers corresponding to the 2 × 1 reconstruction upon heating
to 1000 K and slowly cooling down to 0 K.

As another test of the potentials, unstable stacking fault
energies γus were calculated for the {111} and {100}
crystal planes. Such faults are important for the description
of dislocation core structures. In silicon, dislocations glide
predominantly on {111} planes. The spacing between {111}
planes alternates between wide and narrow. In the former case
the chemical bonds are normal to the planes while in the
latter they are at 19.47◦ angles. A generalized stacking fault is
obtained by translation of one half-crystal relative to the other
in a chosen direction parallel to a {111} plane. Depending
on whether the cutting plane passes between widely spaced
or narrowly spaced atomic layers, the stacking fault is called
shuffle type or glide type, respectively. After each increment
of crystal translation, the atoms are allowed to minimize the
total energy by local displacements normal (but no parallel)
to the fault plane. The excess energy per unit surface area
plotted as a function of the translation vector is called the
gamma-surface. If the dislocation Burgers vector is parallel
to a crystallographic direction 〈hkl〉, then its core structure
is dictated by the {111}〈hkl〉 cross-sections of the gamma
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FIG. 4. Rate of energy change as a function of temperature during
melting and crystallization of Si modeled with the present potential.
The line is the linear fit to determine the melting temperature.

surface. The unstable stacking fault energy γus is the maximum
energy in this cross-section.

Figure 3 displays three cross-sections of the {111} gamma
surface computed with the four potentials in comparison
with DFT calculations. The figure additionally includes the
{100}〈110〉 cross-section for which DFT data is available.
The respective γus values are summarized in Table V. While
none of the potentials reproduces the DFT curves well, the
SW potential tends to be the least accurate. For some of the
cross-sections, the Tersoff-type potentials “chop off” the tip
of the curve due to the short range of atomic interactions
and a relatively sharp cutoff. It should also be noted that the
potentials do not reproduce the stable stacking fault predicted
by DFT calculations [Fig. 3(c)]. This fault arises due to
long-range interactions and is not captured by these potentials.

IV. MELTING TEMPERATURE AND LIQUID PROPERTIES
OF SI

The melting temperature was computed by the interface
velocity method. A periodic simulation block containing a
(111) solid-liquid interface was subject to a series of isothermal
MD simulations in the NPT ensemble (zero pressures in all
directions) at several different temperatures. The interface
migrated towards one phase or the other, depending on whether
the temperature was above or below the melting point. The
total energy of the system was monitored in this process
and was found to be a nearly linear function of time. The
slope of this function gives the rate of the energy change due
to the phase transformation. A plot of this energy rate as a
function of temperature was used to find the melting point by
linear interpolation to the zero rate (Fig. 4). For the present
potential, the melting temperature obtained was found to be
Tm = 1687 ± 4 K (the error bar is the standard deviation of
the linear fit). This temperature is in excellent agreement with
the experimental melting point of 1687 K, even though it was
not included in the fitting procedure.

To verify our methodology, similar calculations were
performed for the MOD potential. The result was Tm =
1682 ± 4 K, which matches 1681 K reported by the potential
developers [7]. For the SW potential, the same method gives
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FIG. 5. Structure of liquid Si: (a) pair correlation function g(r)
and (b) bond-angle distribution g(θ,r) computed with the present
interatomic potential at the temperature of 1750 K in comparison
with the first-principles calculation at 1767 K [50], experimental data
at 1733 K [47], and the MOD, MEAM, and SW potentials at 1767 K.
The arrows indicate the angles of 60◦, 90◦, and 109.47◦.

Tm = 1677 ± 4 K. This number is consistent (within the error
bars) with Tm = 1691 ± 20 K obtained by thermodynamic
calculations [44]. The energy rate versus temperature plots for
the MOD and SW potentials can be found in the Supplemental
Material to this paper [45].

Table II summarizes the predictions of the four potentials
for the latent heat of melting L and the volume effect of
melting 
Vm relative to the volume of the solid Vsolid. None
of the potentials reproduces these properties well. The present
potential gives the most accurate volume effect 
Vm/Vsolid but
the least accurate latent heat L. The MOD potential predicts a
better value of L but overestimated the volume effect a factor
of two.

Prediction of structural properties of liquid Si presents
a significant challenge to interatomic potentials. The nature
of atomic bonding in Si changes from covalent to metallic
upon melting [46], causing an increase in density. In this
work, the structure of liquid Si was characterized by the
pair correlation function g(r) and the bond-angle distribution
function g(θ,r). These functions were averaged over 300
uncorrelated snapshots from NPT MD simulations under zero
pressure at 1750 K using a simulation block containing 6912
atoms. The angular distribution g(θ,r) was computed for
bonds within the radius rm of the first minimum of g(r) and
normalized by unit area under the curve. The coordination
number Nc was computed using the same radius rm.
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TABLE III. Energies (eV/atom) of alternate crystal structures of Si relative to the cubic diamond phase in comparison with first-principles
calculations.

Structure Ab initio Present MODi MEAMl SWa

FCC 0.449c; 0.57f; 0.537h,m 1.113 0.4473 0.8975 0.3963
0.6494n; 0.5536p

HCP 0.55f; 0.508m; 0.5946n; 0.5301p 1.1019 0.4426 0.8909 0.3963
BCC 0.43q; 0.435c; 0.46j; 0.6945 0.4377 0.5354 0.2810

0.53f; 0.523m; 0.6142p

HEX 0.293e 0.7322 0.3901 0.5591 0.3876
SC 0.276c; 0.35f; 0.38b 0.2849 0.3076 0.4688 0.2745
β-Sn 0.19d; 0.33d; 0.414d; 0.454d 0.3725 0.3343 0.3671 0.2012

0.3264n; 0.27f; 0.32b; 0.290h

0.2718p; 0.380r; 0.291m

BC8 0.13s; 0.159h; 0.126j 0.2008 0.2127 0.2502 0.1880
0.110k; 0.166n

Wurtzite 0.011h,m; 0.016f 0.0000 0.0000 0.00001 0.0000
ST12 0.136j; 0.1181k 0.3900 0.4470 0.6031 0.4857
cP46 0.063h; 0.0637n 0.0703 0.0581 0.0625 0.0502
h-Si6 0.35g 0.5021 0.5863 0.6464 0.8417
Si24 0.09t 0.1816 0.1864 0.2340 0.1949
RMS error 0.2883 0.1124 0.2138 0.1745

aReference [1].
bReference [104] and references therein.
cReference [7].
dReference [110] and references therein.
eReference [111] and references therein.
fReference [108].
gReference [51].
hReference [21].
iReference [7].
jReference [112].
kReference [113].
lReference [14].
mReference [22].
nReference [114].
pReferences [23,24].
qReference [115].
rReference [116].
sReference [117].
tReference [52].

The results are shown in Fig. 5. The present potential turns
out to be the least accurate for the liquid properties. The
first maximum of g(r) is too high and the first minimum too
deep in comparison with experiment [47]. The other potentials
perform better but still show significant departures from the
experiment. The MOD potential gives the coordination number
Nc ≈ 5.7 in closest agreement with the experimental value
Nc ≈ 6.4 [48], whereas the present potential and the MEAM
potential give Nc ≈ 4.3 and Nc ≈ 4.2, respectively. For the
bond-angle distribution, the results computed with the four
potentials are very different and none agrees with the DFT
simulations. The DFT simulations (ab initio MD)[49,50]
yield a broader distribution with two peaks of comparable
height centered at 60◦ and 90◦. The present potential strongly
underestimates the 60◦ peak, overestimates the peak at 90◦,
and creates another peak at the tetrahedral angle of 109.47◦.
Using the other potentials, the position of the large peak varies
between 90◦ and 109.47◦. Overall, our potential overestimates
the degree of structural order in the liquid phase.

V. ALTERNATE CRYSTAL STRUCTURES OF SI

Tables III and IV show the equilibrium energies of several
crystal structures of Si relative to the diamond cubic structure
and the respective equilibrium atomic volumes. All these
structures were included in the potential fitting procedure
except for two. The h-Si6 structure was recently found by
DFT calculations as a new mechanically stable polymorph of
Si attractive for optoelectric applications due to its direct band
gap of 0.61 eV and interesting transport and optical properties
[51]. The h-Si6 structure is composed of Si triangles forming
a hexagonal unit cell with the P 63/mmc space group. Si24

is another mechanically stable polymorph that has recently
been synthesized by removing Na from the Na4Si24 precursor
[52]. The orthorhombic Cmcm structure of Si24 contains
open channels composed of six and eight-member rings. This
polymorph has a quasidirect 1.3 eV band gap and demonstrates
unique electronic and optical properties making it a promising
candidate for photovoltaic and other applications. The h-
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TABLE IV. Equilibrium volume per atom (Å3) of alternate crystal structures of Si in comparison with experiment and first-principles
calculations.

Structure Experiment Ab initio Present MODe MEAMh SWa

Diamond 20.024f 20.264c; 20.444d; 20.439i; 20.33b,l; 20.052 20.002 20.024 20.023
19.59l; 20.46m; 19.03g; 16.686f; 20.385j

19.77b; 20.42b; 20.124b; 20.21b; 20.08b

FCC 14.678c; 14.484d; 14.504i; 14.810j; 14.448 14.262 17.312 17.824
14.337k

HCP 14.477c; 14.313i; 14.68j 14.439 14.257 17.279 17.824
BCC 14.738c; 14.2427k 14.483 14.045 15.592 17.082
HEX 15.21l; 14.56l; 13.15p 15.423 14.992 17.457 18.230
SC 16.179c; 15.7653k 15.639 15.581 18.194 17.822
β-Sn 14.0f; 14.2f 15.479c; 15.334d; 16.0f; 15.292i 15.016 15.085 16.560 17.275

14.92b; 15.45b; 15.25b; 15.34b

15.31b; 15.405j; 15.35m; 14.8859k

BC8 18.13f; 18.26f 17.724f; 17.48g; 18.44j; 18.427d 18.112 18.079 19.374 17.902
18.2619k; 18.082n

Wurtzite 20.324c; 20.440d; 20.380i; 19.7575k 20.052 20.002 20.024 20.023
ST12 17.65g; 17.57g 18.083 18.123 20.931 18.325
cP46 23.256d; 23.214i; 23.128j 22.746 22.663 23.042 22.663
h-Si6 27.188q 28.575 28.725 33.460 31.667
Si24 21.52r 21.934r 21.861 21.809 23.189 22.083
RMS error 0.6758 0.6609 1.9147 2.0452

aReference [1].
bReference [110] and references therein.
cReference [108].
dReference [21].
eReference [7].
fReference [112] and references therein.
gReference [113].
hReference [14].
iReference [22].
jReference [114].
kReference [20].
lReference [118].
mReference [116].
nReference [119].
pReference [111].
qReference [51].
rReference [52].

Si6 and Si24 structures were used for testing purposes to
evaluate the transferability of the potentials. All structures
were equilibrated by isotropic volume relaxation without local

TABLE V. Energies γus (in J m−2) of unstable stacking faults
computed with the present interatomic potential in comparison with
other potentials and first-principles calculations.

Property Ab initio Present MODa MEAMb SWc

(111)〈110〉 shuffle 1.81d,e 1.09 1.04 1.40 0.87
(111)〈110〉 glide 4.97f 5.25 5.00 4.58 6.37
(111)〈211〉 glide 2.02d,e 2.39 2.05 2.86 3.09
(100)〈110〉 2.15e 2.44 1.77 2.19 1.61

aReference [7].
bReference [14].
cReference [1].
dReference [120].
eReference [121].
fDigitized from Ref. [121].

displacements of atoms. For the HCP and wurtzite structures,
the c/a ratios were fixed at the ideal values. For the simple
hexagonal, β-Sn and h-Si6 structures, c/a was fixed at the
DFT values of 0.94, 0.552, and 0.562, respectively. It is worth
mentioning that the present potential and MOD predict the
wurtzite phase to be mechanically unstable at 0 K, which
appears to be a generic feature of Tersoff-type potentials.

In Tables III and IV, we compare the predictions of the four
potentials with DFT calculations available in the literature.
Since the tables are overloaded with numerical data, we found
it instructive to recast this information in a graphical format.
In Figs. 6 and 7, we plot the energies (volumes) predicted by
each potential against the respective DFT energies (volumes)
computed by different authors. The bisecting line is the line
of perfect correlation. The first thing to notice is the large
scatter of the DFT data reported by different sources, which
makes a comparison with potentials somewhat ambiguous.
For each potential, the agreement was quantified by the
root-mean-square (RMS) deviation of the data points from
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FIG. 6. DFT energies of crystal structures of Si vs the energies predicted by interatomic potentials: (a) present potential, (b) MOD potential
[7], (c) MEAM potential [14], and (d) SW potential [1]. The energies are counted per atom relative to the diamond cubic structure. The line of
perfect correlation is indicated.
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FIG. 7. DFT atomic volumes of crystal structures of Si vs the atomic volumes predicted by interatomic potentials: (a) present potential, (b)
MOD potential, [7], (c) MEAM potential [14], and (d) SW potential [1]. The line of perfect correlation is indicated.
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FIG. 8. Structures of dimer, trimer, tetramer, and pentamer Si
clusters tested in this work. The labels indicate the cluster notations.

the bisecting line. The RMS deviations obtained are shown
in the last row of Tables III and IV. It should emphasized
that these RMS deviations reflect not only the differences
between the potentials and the DFT calculations but also the
scatter of the DFT points themselves. Thus only comparison
of relative values of the RMS deviations makes sense. It
should also be noted that the energy deviations are strongly
dominated by high-energy structures, such as the close-packed
FCC and HCP phases. With this in mind, it is evident that
the present potential is the least successful in reproducing
the structural energies, whereas the MOD potential is the

FIG. 9. Structures of hexamer, heptamer, and octamer Si clusters
tested in this work. The labels indicate the cluster notations.

most successful. For the atomic volumes, however, the present
potential and MOD are equally accurate, while the SW and
MEAM potentials show significantly larger deviations.

It is interesting to note that the present potential gives
the most accurate predictions for the energy and volume of
the novel h-Si6 and Si24 structures that were not included in
the fitting database. The MOD potential comes close second,
whereas the MEAM and SW potentials are significantly
less accurate. The energy-volume plots for several selected
structures can be found in Ref. [45].

VI. SILICON CLUSTERS

Structure and properties of small Si clusters offer a stringent
test of interatomic potentials. Potentials are usually optimized
for bulk properties, whereas the clusters display very different
and much more open environments in which the coordina-
tion number and the type of bounding may change very
significantly from one structure to another. Si potentials are
traditionally considered to be incapable of reproducing cluster
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TABLE VI. Cohesive energies (eV/atom) of Si clusters relative to isolated atoms computed with four interatomic potentials in comparison
with first-principles calculations. The asterisk marks mechanically unstable structures whose energies were obtained by anisotropic volume
relaxation without local atomic displacements.

Cluster Experiment Ab initio Present MODa MEAMb SWc

Si2 1.62d 1.53d; 1.81e 1.327 1.788 2.473 1.084
Si3.1 2.03d; 2.41e 1.710 2.003 2.519 1.267
Si3.2 2.6d 2.39d; 2.58e 1.757 2.197 2.672 1.446
Si3.3 2.61e 2.259 2.147 2.815 1.480
Si4.1 1.82d; 2.48e 1.901 2.121 2.593 1.372
Si4.2 2.02d; 2.49e 2.457 2.325* 2.984 1.669*
Si4.3 2.21d; 2.73e 2.571 2.810 3.021 2.035
Si4.4 2.22d 2.219 2.232 2.759 1.525
Si4.5 2.68d; 3.09e 2.579 2.441* 2.995 1.746*
Si5.1 2.02d; 2.62e 2.613 3.013 3.075 2.168
Si5.2 2.69d; 3.04e 2.800 2.731 3.159 2.062
Si5.3 3.09e 2.678 2.549* 3.037 1.845*
Si5.4 2.78d; 3.30e 2.836 2.821 3.124 2.146
Si5.5 2.017 2.192 2.626 1.433
Si6.1 2.22d 2.618 3.023 3.075 2.168
Si6.2 3.33e 2.862 2.793 3.269 2.142
Si6.3 3.04d; 3.448e 2.664* 2.658* 3.225 1.970*
Si6.4 3.453e 2.706* 2.771* 3.260 2.139*
Si6.5 2.606 2.975 3.045 2.132
Si6.6 2.093 2.239 2.651 1.475
Si7.1 3.56e 2.938 2.960 3.344 2.321*
Si8.1 3.22e 2.919 3.006* 3.267 2.379*
Chain 2.260a 2.477 2.475 2.771 1.680

aReference [7].
bReference [14].
cReference [1].
dReference [55] and references therein.
eReference [54].

properties, unless such properties are specifically included in
the fitting process as in the case of the Boulding and Andersen
potential [53]. It was thus interesting to compare the predic-
tions of the four potentials with first-principles calculations.

Figures 8 and 9 show the structures of the Sin (n = 2 − 8)
clusters tested in this work. Several different structures are
included for each cluster size n whenever first-principles data
is available. Such structures are labeled by index m in the
Sin.m format in the order of increasing cohesive (binding)
energy according to the DFT calculations [54]. Thus the
structure labeled Sin.1 represents the DFT-predicted ground
state for each cluster size n (except for the dimer Si2 that has a
single structure). In addition to the DFT calculations [54], we
included the results of quantum-chemical (QC) calculations
on the Hartree-Fock level [55]. Such calculations are more
accurate but the energy scale is not fully compatible with that
of the DFT calculations. To enable comparison, we followed
the proposal [56,57] that the QC energies be scaled by a
factor of 1.2 to ensure agreement with experiment for the
dimer energy.

Table VI summarizes the predictions of the four potentials
in comparison with DFT calculations [54] and unscaled QC
energies [55]. In addition to the clusters, we included an
infinitely long linear chain for the sake of comparison. To
aid visual comparison, Fig. 10 shows the cluster energies

grouped by the cluster size (same-size clusters are connected
by straight lines). The QC energies are plotted in the scaled
format. Note that the scaling does indeed bring the QC and
DFT energies to general agreement with each other. Despite
the significant scatter of the individual energies on the level of
0.2–0.4 eV/atom, both calculation methods predict the same
ground state for trimers, tetramers, and pentamers. None of
the potentials predicts the correct ordering for all DFT/QC
energies. The present potential and MOD show about the same
level of accuracy, but the present potential makes less mistakes
in the ordering. Both potentials tend to slightly under-bind
the clusters. The MEAM potential is the most successful in
reproducing the cluster energies, except for the dimer energy
for which it is least accurate. There are mistakes in the ordering,
but overall the deviations from the first-principles calculations
are about the same as the difference between the two first-
principles methods. The SW potential performs poorly: for
some of the clusters, the binding energy is underestimated by
more than 1 eV per atom. For the infinite atomic chain, the
present potential and MOD are in closest agreement with the
DFT/QC energies (Table VI). This comparison leads to the
conclusion that, at least for the cluster structures tested here,
the present potential, MOD and MEAM are quite capable of
predicting the general trends of the cluster energies with a
reasonable accuracy without fitting.
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FIG. 10. Binding energies of Si clusters predicted by interatomic potentials: (a) present potential, (b) MOD potential [7], (c) MEAM
potential [14], and (d) SW potential [1]. First-principles energies computed by DFT and QC methods are shown for comparison. The clusters
are divided into groups corresponding to the same number of atoms and are ordered with increasing binding energy. The cluster structures are
shown in Figs. 8 and 9.

VII. 2D SILICON STRUCTURES

A. Single-layer silicenes

Silicenes are 2D allotropes of Si that have recently attracted
much attention due to their interesting physical properties and
potential device applications [58–62]. By contrast to carbon,
the sp3 hybridized Si would seem to be an unlikely candidate
for a 2D material. Nevertheless, epitaxial honeycomb Si layers
have been found experimentally on metallic substrates such as
(111)Ag [58–60,63–70]. DFT calculations also indicate that
silicene can be stabilized by bilayer graphene [71,72]. Unlike
in graphene, some of the 2D forms of Si can have a band
gap and could be incorporated in Si-based microelectronics.
In particular, electric field applied to the buckled honeycomb
structure of silicene, which is normally semimetallic, can
open a band gap whose magnitude increases with the field.
It was predicted [73], and recently demonstrated [74] that
single-layer silicene can work as a field-effect transistor [73].
Experimentally, it has not been possible so far to isolate free-
standing silicenes. They are presently considered hypothetic
2D materials and have only been studied by DFT calculations.
Such calculations predict that single-layer silicene can possess
remarkable electric, optical and magnetic properties [75–78],
in addition to ultra-low thermal conductivity [79].

The planar (graphenelike) silicene [Fig. 11(a)] is mechani-
cally unstable and spontaneously transforms to the more stable
buckled structure [Figs. 11(b) and 11(c)] [80–82]. The latter

has a split width 
 of about 0.45–0.49 Å and a first-neighbor
distance r1 slightly different from that in the planar structure
[73,80,82–85]. Furthermore, adsorption of Si ad-atoms on
the buckled silicene creates a series of periodic dumbbell
structures that are even more stable [79,81,84]. An adatom
pushes a nearby Si atom out of its regular position and the two
atoms form a dumbbell aligned perpendicular to the silicene
plane. The dumbbell atoms have a fourfold coordination
(counting the dumbbell bond itself) consistent with the sp3

bonding. One of the best studied dumbbell silicenes has the√
3 × √

3 structure shown in Figs. 11(d)–11(f) (the dumbbell
atoms are shown in blue and green). The dumbbells distort the
hexagonal structural units and create three slightly different
nearest-neighbor distances: rI,II, rII,III, and ΔIII,III [Fig. 11(f)].

The energies and geometric characteristics of the three
silicene structures predicted by the four potentials are listed
in Table VII. The results of DFT calculations reported in
the literature are included for comparison. The agreement
with the DFT data is reasonable, especially considering that
the 2D structures were not included in the fitting datasets
of the potentials. The present potential, MOD, and MEAM
demonstrate about the same agreement with the DFT cal-
culations. The SW potential tends to be less accurate. For
the planar structure, the MOD potential is the most accurate,
followed by the present potential, MEAM, and then SW. All
four potentials correctly predict that the planar structure is
mechanically unstable and transforms to the buckled structure.
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TABLE VII. Properties of single-layer silicenes computed with four interatomic potentials in comparison with DFT calculations.

Property Ab initio Present MODa MEAMb SWc

Honeycomb planar:
Ec (eV/atom) 3.96f 3.6955 3.8280 3.6234 3.1450
b (Å) 3.895f 4.042 4.019 4.306 4.104
r1 (Å) 2.249f 2.332 2.321 2.486 2.369
Honeycomb buckled:

Ebuckled-diamond

c (eV/atom) 0.76e 0.88 0.69 0.89 1.09

Ebuckled-

√
3×√

3
c (eV/atom) 0.048d 0.14 −0.08 0.08 0.07

b (Å) 3.88k; 3.87d,g; 3.83e 3.870 3.820 3.944 3.840
r1 (Å) 2.28d; 2.25e,l 2.328 2.312 2.449 2.352

 (Å) 0.44d,e; 0.45g,j 0.655 0.694 0.901 0.784

0.46i; 0.49l√
3 × √

3 dumbbell:
b (Å) 6.52d,h 6.475 6.471 6.312 6.604
rII,III (Å) 2.40d,h 2.393 2.425 2.526 2.513
rI,II (Å) 2.28d 2.333 2.425 2.456 2.359

III,III (Å) 2.76h 3.0564 3.111 3.160 3.261

aReference [7].
bReference [14].
cReference [1].
dReference [84].
eReference [80].
fReference [111].
gReference [85].
hReference [81].
iReference [73].
jReference [82].
kReference [59].
lReference [83].

The present potential, MEAM, and SW correctly predict that
the

√
3 × √

3 dumbbell structure has a lower energy than the
buckled structure. By contrast, the MOD potential predicts
that the

√
3 × √

3 dumbbell structure has a higher energy,
which is contrary to the DFT calculations. All four potentials
overestimate the split width 
 in the buckled structure and the
distance ΔIII,III between the dumbbell atoms in the

√
3 × √

3
structure, the present potential being closest to the DFT data.

Ab initio MD simulations have shown that buckled silicene
containing Stone-Wales defects remained stable (both free-
standing and supported by a Ag substrate) for a period of 2 ps
at 500 K [86]. Furthermore, according to MD simulations using
a ReaxFF potential, free-standing buckled silicene survives a
rapid temperature rise up to 2000 K in 500 ps [87]. We note
that in both cases, the silicene sheet was subject to periodic
boundary conditions in both directions parallel to its plane.
In this work, the thermal stability of single-layer silicenes
was evaluated by MD simulations on longer time scales.
The simulated systems were subject to periodic boundary
conditions at zero pressure. However, at least two dimensions
of the simulation block were larger than the system size. For
the nanoribbon and nanosheet, this simulation setup is less
restrictive than in Refs. [86,87] and captures the destabilizing
effect of the sheet edges.

Figure 12 demonstrates that a nanoribbon of buckled
silicene is unstable at finite temperatures and quickly collapses
to a cluster before temperature reaches 300 K. Likewise,
a free-standing sheet (flake) of buckled silicene (Fig. 13)

collapses into a cluster with the shape of a bowl when
temperature reaches 300 K. The nanoribbon and nanoflake
made of the

√
3 × √

3 dimerized silicene collapse as well.
A single-wall nanotube was also tested for thermal stability.

The latter was obtained by wrapping a layer planar silicene into
a tube 49 Å in diameter (Fig. 14). The period along the tube
axis was 122 Å. As soon as temperature began to increase
starting from 0 K, the wall of the tube transformed to the
buckled structure and then collapsed before the temperature
reached 300 K. Qualitatively, the same behavior of the single-
layer silicene structures was found with all four potentials.
In all cases, the single-layer silicene easily developed waves
due to thermal fluctuations until neighboring surface regions
came close enough to each other to form covalent bonds. Once
this happened, the bond-forming process quickly spread over
the entire surface and the structure collapsed. This chemical
reactivity and the lack of bending rigidity are the main factors
that cause the instability of free-standing single-layer silicenes
at room temperature.

B. Bilayer silicenes

Another interesting 2D form of silicon is the bilayer silicene
[69,76,88–92]. Like the single-layer silicene discussed above,
the bilayer silicene was found experimentally on top of metallic
surfaces such as Ag(111) [69,88,90,92]. By contrast to bilayer
graphene, the interlayer bonds in bilayer silicene are covalent
sp3 type. As a result, the formation of a bilayer is accompanied
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(a)

b

(b)

(c)

(d)

(e)

(f)

FIG. 11. Silicene structures: (a) graphitic (planar) structure, [(b)
and (c)] top and edge views of the buckled structure, and [(d)–(f)] top
and edge views of the

√
3 × √

3 dumbbell structure.

by a significant energy release. It can be expected, therefore,
that bilayer silicene should be more stable than two single
layers.

Several structural forms of the bilayer silicene have been
found in experiments and studied by DFT calculations,
depending on the type of stacking of the two layers and
whether they are planar or buckled [69,76,88–92]. Three of

FIG. 12. Snapshots of MD simulations of a nanoribbon of
buckled silicene modeled with the present interatomic potential. The
temperature increases with a constant rate from 0 to 300 K over a
1-ns time period. The images show one repeat unit of the ribbon
containing 1080 atoms. The time increases from (a) (initial state) to
(d) (final state).

the structures, referred to as AAp, AA′, and AB, are shown
in Fig. 15. The AAp structure is obtained by stacking two
planar silicene layers (A) on top of each other and connecting
them by vertical covalent bonds [Fig. 15(a)]. This structure
is characterized by the geometric parameters b (side of the
rhombic structural unit) and the interlayer spacing h. The bond
length between Si atoms is d1 = b/

√
3 within each layer and

h between the layers. In the AA′ structure, both layers are
buckled, and the buckling of one layer (A′) is inverted with
respect to the buckling of the other layer (A) [Fig. 15(b)]. As a
result, half of the interlayer distances are short, leading to the
formation of covalent bonds, and the other half of the distances
are longer and covalent bonds do not form. The geometric
parameters of the structure are b (defined above), the in-layer
bond length d1, the interlayer bond length d2, and the split
width of each layer 
. The distance between the layers is

FIG. 13. Snapshots of MD simulations of a 6120-atom free-
standing nanosheet (flake) of buckled silicene modeled with the
present interatomic potential. The temperature increases with a
constant rate from 0 to 300 K over a 0.6-ns time period [snapshots
(a), (b), and (c)] followed by an isothermal anneal at 300 K [snapshot
(d) taken 0.2 ns into the anneal].
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FIG. 14. Snapshots of MD simulations of a single-wall nanotube
of planar silicene modeled with the present interatomic potential. The
temperature increases with a constant rate from 0 to 300 K over a 2 ns
time period. The images show one period of the tube (diameter 49 Å,
length 122 Å, and 2160 atoms). The time increases from (a) (initial
state) to (d) (final state).

h = d2 + 
. Finally, in the AB structure, two buckled silicene
layers A and B are stacked together so that half of the atoms
of one layer project into the centers of the hexagonal units of
the other layer [Fig. 15(c)]. The remaining half of the atoms
project onto each other and form vertical covalent bonds. As
with the single-layer silicenes, it has not been possible so far
to isolate free-standing bilayer silicene experimentally.

The cohesive energies Ec and geometric parameters of three
bilayer silicenes computed with four interatomic potentials are
compared with DFT data in Table VIII. The Table also shows
the energies 
E of the buckled bilayers AA′ and AB relative
to the planar bilayer AAp. None of the potentials matches the
DFT calculations accurately. However, the present potential
displays the closest agreement. The MOD potential incorrectly
predicts that the buckled structures AA′ and AB are more stable
than AAp (negative 
E values), which is contrary to the DFT
calculations. It should be noted that all four potentials predict
virtually identical properties of the AA′ and AB silicenes.
This is not very surprising: considering only nearest-neighbor
bonds, the local atomic environments in the two structures are
identical. Their DFT lattice parameters b are indeed the same
(3.84 Å), [91] but the DFT energies are different (0.33 and
0.17 eV/atom, respectively [91]; our potential gives 
E =
0.12 eV/atom for both). This discrepancy apparently reflects
a common feature of all short-range Si potentials.

To assess thermal stability of bilayer silicenes, MD simula-
tions were conducted for the same nanoribbon, nanoflake, and
nanotube configurations as discussed above. The most stable
AAp silicene was chosen for the tests. The samples were heated
up to 300 K and annealed at this temperature for 10 ns. The
systems developed significant capillary waves, especially the
nanoribbon, but none of them collapsed (Fig. 16). Although
10 ns is a short time in comparison with experimental times,
these tests confirm that the bilayer silicene has a much greater

(a)

Top view

Side views

h

b d1

(b)

Top view

Side views

d2

d1b

h

(c)

Top view

Side views

b

d2

h

d1

FIG. 15. Structures of bilayer silicenes: (a) AAp , (b) AA′, and
(c) AB.

bending rigidity and smaller reactivity in comparison with its
single-layer counterpart. As such, it has a much better chance
of survival in a free-standing form at room temperature.
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TABLE VIII. Properties of three structures of bilayer silicenes computed with interatomic potentials and DFT calculations.

Property Ab initio Present MODa MEAMb SWc

Bilayer planar silicene AAp:
Ec (eV/atom) 4.16d; 4.27d 4.3067 4.2183 4.1739 3.8542
b (Å) 4.12e; 4.13d 4.3264; 3.9804 4.0913 4.2685 4.1497

4.14d

d1 (Å) 2.38d,e; 2.39d 2.3641,2.3737 2.3621 2.4644 2.3958
h (Å) 2.41d,e 2.3916 2.4393 2.4869 2.4428
Bilayer buckled silicene AA′:
Ec (eV/atom) 4.1866 4.2776 4.1626 3.7945

Ebuckled-planar (eV/atom) 0.33e 0.1201 −0.0593 0.0113 0.0597
b (Å) 3.84e 3.8430 3.8245 3.9155 3.8402
d1 (Å) 2.3405 2.3311 2.4081 2.3517
d2 (Å) 2.3543 2.3515 2.3801 2.3517
h (Å) 3.0994 3.0990 3.2101 3.1356

 (Å) 0.7451 0.7475 0.8300 0.7839
Bilayer buckled silicene AB:
Ec (eV/atom) 4.10d; 4.25d 4.1866 4.2776 4.1626 3.7945

Ebuckled-planar (eV/atom) 0.17e 0.1201 −0.0593 0.0113 0.0597
b (Å) 3.84d,e; 3.86d 3.8429 3.8245 3.9155 3.8402
d1 (Å) 2.32d 2.3405 2.3311 2.4082 2.3517
d2 (Å) 2.51d; 2.54d 2.3543 2.3515 2.3801 2.3517
h (Å) 3.19d; 3.20d 3.0994 3.0990 3.2101 3.1359

 (Å) 0.66d; 0.68d 0.7451 0.7475 0.8300 0.7839

aReference [7].
bReference [14].
cReference [1].
dReference [89].
eReference [91].

In additional tests, the nanoflake was heated from
300 to 1000 K in 6 ns followed by an isothermal anneal for
2 ns at 1000 K. The surface of the flake developed a set of
thermally activated point defects, such as adatoms and locally
buckled configurations, but the flake itself did not collapse.
This again confirms the significant thermal stability of the
bilayer silicene, possibly even at high temperatures. The same
tests were conducted with all four potentials and the results
were qualitatively similar. With the MOD potential, the initial
AAp silicene quickly transformed to the more stable buckled
structure, but the system still did not collapse.

VIII. DISCUSSION AND CONCLUSIONS

Silicon is one of the most challenging elements for
semiempirical interatomic potentials. It has over a dozen
polymorphs that are stable at different temperatures and
pressures and exhibit different coordination numbers and types
of bonding ranging from strongly covalent to metallic. The
diamond cubic phase displays a rather complex behavior
with several possible structures of point defects, a number
of surface reconstructions, and an increase in density upon
melting. It is not surprising that the existing Si potentials are
not nearly as successful in describing this material as some of
the embedded-atom potentials for metals [93–95]. In this work,
we developed a new Si potential with the goal of improving
some of the properties that were not captured accurately by
other potentials. For comparison, we selected three potentials

from the literature that we consider most reliable [7,14] or
most popular [1].

Extensive tests have shown that the present potential does
achieve the desired improvements, in particular with regard
to the vacancy formation energies, surface formation energies
and reconstructions, thermal expansion factors, and a few
other properties. The potential is more accurate, in comparison
with other potentials, in reproducing the DFT data for the
novel Si polymorphs h-Si6 and Si24 without including them in
the fitting database. However, the tests have also shown that
each of the four potentials has its successes and failures. The
present potential makes inaccurate predictions for the energies
of high-lying Si polymorphs (although their atomic volumes
are quite accurate), for the latent heat of melting, and for the
short-range order in the liquid phase. The MOD potential
[7] has its own drawbacks mentioned in Sec. I. The MEAM
potential [14] grossly overestimates the phonon frequencies
and thermal expansion factors, in addition to the incorrect
{100} surface reconstruction. The SW potential successfully
reproduces the surface energies and thermal expansion factors
but predicts a positive Cauchy pressure and systematically
overestimates the atomic volumes of Si polymorphs (as does
the MEAM potential).

The potentials were put through a very stringent test by
computing the binding energies of small Sin clusters. Such
clusters were not included in the potential fitting procedure and
are traditionally considered to be out of reach of potentials un-
less specifically included in the fitting database. Surprisingly,
the present potential, the MOD potential [7], and especially
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FIG. 16. Snapshots of MD simulations of the AA′ bilayer silicene
after a 10 ns anneal at 300 K: (a) nanoribbon, (b) free-standing
nanosheet (flake), and (c) nanotube (the two layers are shown in
different colors for clarity).

the MEAM potential [14] reproduce the general trends of
the cluster energies reasonably well (Fig. 10). In many cases,
the ranking of the energies of different geometries for the
same cluster size n agrees with first-principles calculations.
The SW potential is less accurate: it systematically underbinds
the clusters and makes more mistakes in the energy ordering.

Encouraged by the reasonable performance for the clusters,
we applied the potentials to model single-layer and bilayer
silicenes, which were not included in the potential fitting
either. While none of the potentials reproduces all DFT
calculations accurately, they generally perform reasonably
well. One notable exception is the MOD potential, which
underbinds the

√
3 × √

3 dumbbell structure of the single-
layer silicene and fails to reproduce the correct ground state
of the bilayer silicene. Furthermore, all four potentials predict

identical energies of the AA′ and AB bilayer silicenes, whereas
the DFT energies are different. Other than this, the trends are
captured quite well. The present potential demonstrates the
best performance for the bilayer silicenes.

Experimentally, silicenes have only been found on metallic
substrates. Whether they can exist in a free-standing form at
room temperature remains an open question. Evaluation of
their thermal stability requires MD simulations of relatively
large systems for relatively long times that are not currently
accessible by DFT methods. Although interatomic potentials
are less reliable, they can be suitable for a preliminary
assessment. The MD simulations performed in this work
indicate that single-layer silicenes are unlikely to exist in a free-
standing form. Their large bending compliance and chemical
reactivity lead to the development of large shape fluctuations
and eventually the formation of covalent bonds between
neighboring surface regions at or below room temperature.
By contrast, bilayer silicenes exhibit much greater bending
rigidity and lower surface reactivity. Nanostructures such as
nanoribbons, nanoflakes, and nanotubes remain intact at and
above room temperature, at least on a 10 ns timescale. The fact
that this behavior was observed with all four potentials points
to the generality of these observations and suggests that free-
standing bilayer silicenes might be stable at room temperature.
Of course, this tentative conclusion requires validation by more
detailed and more accurate studies in the future.

The four potentials discussed in this work are likely to
represent the limit of what can be achieved with short-range
semiempirical potentials. Further improvements can only be
made by developing more sophisticated, longer-range, and
thus significantly slower potentials. Analytical bond-order
potentials offer one option [19,20,96]. Recent years have
seen a rising interest in machine-learning potentials [97–
102]. While even slower, they allow one to achieve an
impressive accuracy of interpolation between DFT energies,
in some cases up to a few meV/atom. However, the lack of
transferability to configurations outside the training dataset
is a serious issue. Whether physics-based or mathematical
machine-learning type, future Si potentials will be based
on much larger DFT datasets for training and testing than
used in this work. This will also improve the quality by
directly sampling energy-volume relations for different phases
at different temperatures and pressures, deformation paths
between different crystal structures, point defects, surfaces
with different crystallographic orientations, as well as 2D
structures and clusters.
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