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Quantum critical point in the Sc-doped itinerant antiferromagnet TiAu
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We present an experimental realization of a quantum critical point in an itinerant antiferromagnet composed
of nonmagnetic constituents, TiAu. By partially substituting Ti with Sc in Ti;_,Sc,Au, a doping amount of
x. = 0.13 £ 0.01 induces a quantum critical point with minimal disorder effects. The accompanying non-Fermi
liquid behavior is observed in both the resistivity p oc T and specific heat C,,/T o« —InT, characteristic of a
two-dimensional antiferromagnet. The quantum critical point is accompanied by an enhancement of the spin
fluctuations, as indicated by the diverging Sommerfeld coefficient y atx = x,.
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Quantum criticality is one of the central tenants of con-
densed matter physics. Intense research on quantum critical
systems has brought several questions to the forefront: What
are the differences between ferromagnetic (FM) and antiferro-
magnetic (AFM) quantum critical fluctuations? Is the quantum
critical behavior analogous in local and itinerant moment
systems? The former question is motivated by the many known
AFM systems with quantum critical points (QCPs), with
correspondingly fewer known FM analogs. The latter question
has numerous ramifications, considering the complexity of the
phenomena accompanying QCPs in both d- and f-electron
systems: unconventional superconductivity [1—4], non-Fermi
liquid (NFL) [5-8] and heavy fermion (HF) behavior [7,9—-12].
In this Rapid Communication we report a QCP in the first
itinerant antiferomagnetic metal (IAFM) without magnetic
constituents, TiAu [13]. By comparison with the only two
other itinerant magnets with no magnetic elements, ZrZn;
[14] and ScsIn [15], both ferromagnets, we will articulate
the differences and similarities stemming from the two kinds
of magnetic order.

The d-electron (transition metal) systems showing quantum
criticality are noticeably fewer than the f-electron (rare
earth) ones, with remarkably few (only three) transition
metal itinerant magnets (IMs) with no magnetic elements: the
itinerant ferromagnets (IFMs) ZrZn, [14], ScsIn [15], and
the TAFM TiAu [13]. Surprising similarities and substantive
differences exist between the FM and AFM ordered states, in
both local and itinerant moment systems: (i) pressure [16] and
doping [17] both suppress the FM order in ZrZn,, but have
opposite effects in the IFM Scj 1In [18,19]; (ii) NFL behavior
accompanies the QCP in the doped FMs, the d-electron Sc; 1 In
[19], and f-electron HF URu,Si, [20], with non-mean-field
scaling in both compounds contrasting the mean-field and
Fermi liquid (FL) behavior in the IFM ZrZn; [17]; (iii) modest
pressure increases the magnetic ordering temperature in both
the IAFM TiAu [21] and the IFM Scs ;In [18]. Here we present
experimental data compatible with a two-dimensional (2D)
AFM QCP in the d-electron system Ti;_, Sc, Au, with a critical
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composition x, = 0.13 & 0.01. The evidence for 2D quantum
fluctuations stems from the continuous suppression of Ty
with x in Ti;_, Sc, Au, accompanied by both a logarithmically
divergent Sommerfeld coefficient y(T) and a linear electrical
resistivity p(T') close to the QCP. Minimal disorder effects
can be deduced from the electrical transport behavior, and the
relative elastic and inelastic contributions to po(7') at and away
from the QCP.

Recently, we reported orthorhombic TiAu as the first JAFM
metal with no magnetic constituents [13]. The AFM order
in TiAu develops below 36 K, and Ty is slightly enhanced
by the application of pressure [21], in a manner reminiscent
of the IFM Scs (In [18]. Since Ti bands contribute the most
to the density of states (DOS) at the Fermi energy Er
[13], doping on the Ti sublattice is a promising avenue for
experimentally suppressing Ty toward zero. In this Rapid
Communication, Sc was chosen as a dopant in Ti;_,Sc,Au
because of its similarity in ionic radius to Ti (#[Sc**] = 0.75 A
and r[Ti*t] = 0.61 A) [22]. Magnetization, specific heat, and
electrical resistivity data reveal a continuous suppression of
the AFM order in Ti;_,Sc,Au as a function of x. Quantum
criticality is accompanied by linear electrical resistivity p and
diverging Sommerfeld coefficient y, both consistent with a 2D
NFL. This is an observation of a 2D AFM QCP in a transition
metal system.

Crystallographically, orthorhombic TiAu can be viewed as a
three-dimensional (3D) structure [Fig. 1(b) in Ref. [13]], even
though the interplanar bond lengths are only slightly larger
than the intraplanar Ti-Au distances. Even though doping TiAu
with the slightly larger Sc ion results in a modest unit-cell
volume V increase of about 4% between the x = 0 and 0.25
samples [diamonds, Fig. S1(a) [23]], this is due mostly to an
increase in the intraplanar lattice parameter b (circles), with
the interplanar spacing c (triangles) virtually independent of
x. It would appear that, crystallographically, TiAu remains
nearly 3D, even though it will be shown below that the
quantum critical behavior induced by Sc doping points toward
quasi-2D spin fluctuations. Such dimensional discrepancy has
been observed in the HF compound CeCug_, Au, [24], with a
possible explanation attributed to a dimensional crossover in
the vicinity of an AFM QCP [25].
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FIG. 1. The Néel temperature 7y (indicated by arrows) for
Ti;_Sc,Au, determined from the peak in d(MT)/dT. Bottom
inset: Inverse susceptibility H/(M — M,) (symbols) along with the
Curie-Weiss-like fit (line) for x = 0.13 (1 emu = 10 A cm~2). Top
inset: The density of states calculated for x = 0, 0.2, and 0.4.

In Ti;_,Scy Au, the suppression of the magnetic order with
increasing x is first signaled by the magnetic susceptibility.
In Fig. 1, a cusp in d(MT)/dT, reminiscent of the Néel
temperature 7y signature in local moment antiferromagnets
[26], moves down in T with increasing x and is suppressed
to below 0.4 K for x > 0.13. The band structure calculations
reinforce this point, as a peak in the DOS (top inset, Fig. 1)
occurs at the Fermi energy for x =0, and moves away
from Ep with doping. The continuous decrease of Ty with
doping x, similar to what has been seen in the AFM Cr;_, V,
[27], is consistent with a second order AFM QCP. At high
temperatures (7 > Ty), the H = 0.01 T magnetic suscep-
tibility M/H exhibits Curie-Weiss-like behavior, rendering
the inverse susceptibility H/(M — M) linear (bottom inset,
Fig. 1), where M is a temperature-independent susceptibility
contribution. The linear fits in the paramagnetic (PM) state
(with an example shown as a solid line for x = 0.13) indicate
that the PM moment upy ~ 0.8up fu.”' remains nearly
unaffected by the increasing x even beyond the AFM state.
This was also the case in the IFM (Sci_,Lu,)s In [19]. The
Curie-Weiss-like behavior has been observed in the doped
IFMs ZrZn; and Scs 1In [17,19], but not in the archetypical 3D
IAFM Cr, in which the magnetization increased on warming
[28]. The magnetic susceptibility of Cr is in disagreement
with the self-consistent renormalization (SCR) theory, which
predicts Curie-Weiss-like behavior for both the 2D [29] and
3D [30] antiferromagnets.

The differences between doped TiAu and Cr deepen in
the electrical transport properties. The resistivity of TiAu
[13] decreases below Ty, a likely indication that the loss of
spin-disorder scattering overcomes the expected enhancement
of the resistivity due to the partial gapping of the Fermi
surface with the AFM order. By contrast, the partial gapping
of the Fermi surface upon magnetic ordering [31] is dominant
in Cr, resulting in a resistivity increase below Ty. A more
significant distinction between TiAu and Cr occurs in their
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FIG. 2. Resistivity p(T) = po + A,T" as a function of tempera-
ture 7" for Ti;_,Sc, Au for the AFM state (top row) (a),(b) x < x.,
T < Ty; and the PM state (middle row) (¢),(d) x < x., T > Ty;
(bottom row) (e),(f) x > x.. (a)=(d) The ordering temperature Ty is
marked by vertical arrows.

respective quantum critical regimes: while magnon scattering
results in p = pg+ A, T", n = 3 [32] for both TiAu and Cr,
doping affects the resistivity exponent n(x; T') differently. In
Cr, n(x; T) remains constant even across the QCP [27], but
in Ti;_,Sc,Au n =~ 1 close to the QCP at x. ~ 0.13. These
n(x; T) values are best reflected in the p vs T" plots, shown
in Fig. 2: the top row panels (a) and (b) depict the p ~ T"
behavior in the AFM state (T < Ty; x < x.). The two bottom
rows correspond to the PM state: for panels (c) and (d) x < x,
and T > Ty, while for panels (e) and (f) x > x..

In the AFM state, n decreases from 3 to 1, while in the PM
state, n has a nonmonotonic dependence on x. A drastic change
in the resistivity slope at Ty for x = 0 [Fig. 2(c)] marks the
crossover from the magnon-dominated transport with n ~ 3,
to the FL behavior in the PM state n ~ 2 for T > Ty. With
increasing x up to 0.08 [Figs. S3(g)-S3(i) [23]], n remains
close to the FL value in the PM state.

Upon approaching the QCP from both below (x < 0.13)
and above (x > 0.13) [Figs. S3(j) and S3(k)-S3(0) [23]], n de-
creases toward 1 in the quantum critical region, corroborating
the NFL scenario close to the QCP, which is also evident from
the specific heat data shown in Fig. 3. In the quantum critical
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FIG. 3. (a) Specific heat C,/T vs InT for Ti;_Sc,Au with
0.09 < x < 0.12. (b) Specific heat C,/T T? for x = 0.08 and
x =0.25.

region 0.09 < x < 0.20, C,/T increases on cooling, and it
has a logarithmic divergence y = C,/T o InT, a signature of
NFL behavior close to a QCP. The logarithmic C,,/ T persists
over a decade in temperature for x ~ x,. [Fig. 3(a)]. Away from
the QCP [Fig. 3(b)], linear C,,/T vs T 2 indicates FL behavior.
The resulting y values increase from 16 mJ mol~! K~2 for
x =0 to 30 mJ mol ' K~2 upon approaching x.. The x
dependence of the Sommerfeld coefficient y is summarized
in Fig. S2(c) [23]: the full symbols are determined from the
T = 0 intercepts of C,/T vs T? in Fig. S2(a) [23]; the open
symbols correspond to the T = 0.4 K C,,/T values (Fig. S2
[23]), which represent underestimates of the y (T = 0) values
due to the divergent specific heat in the NFL regime. With
this in mind, the strong enhancement of y (x) at x. [Fig. S2(c)
[23]] actually signals the divergence of y(x) on one or both
sides of the QCP (gray line), akin to the behavior noted
for Cr;_,V, [33]. This strongly suggests a spin fluctuation
contribution to the ysg [34]. According to the SCR theory
for antiferromagnets [30], Ty o (21x, — 1)*? and ysg o
(21 x; — 1)/2, where I is the exchange interaction and ; is the
staggered susceptibility. This yields that the spin fluctuation
o . 3/4 .
contribution to ysg increases as T,/ . Indeed, assuming ysr
is proportional to the amount of dopant x, this power-law
dependence is reflected in the T} vs x plot in Fig. 4 (triangles),
where § ~ (3 £ 0.3)/4. Such power-law dependence attests
both to the presence of strong spin fluctuations and the validity
of the SCR theory in Ti;_,Sc, Au [35]. Remarkably, the lower
limit for this exponent, § ~ (3 — 0.3)/4 = 2/3, coincides with
that predicted for the quantum critical suppression of the
ordering temperature with pressure [36]. This prediction is in
disagreement with several doping- or pressure-induced AFM
QCPs, for which § = 1[27,37,38] or 6 = 1/2 [39]. The origin
of this disagreement is an important open problem [36], with
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FIG. 4. Ty — x phase diagram (symbols) with the contour plot
rendering the resistivity exponent n(x; T'). Inset: Ti;_,Sc,Au crystal
structure.

the Ti;_,Sc,Au system providing an experimental realization
of the predicted § > 1 value.

The continuous suppression of the Néel temperature with
x is shown in Fig. 4 for Ti;_,Sc,Au (circles), together with a
contour plot of n in p(T) = pg+ A,T". The experimental
data for Ti;_,Sc,Au point to a QCP at x, = 0.13 £ 0.01,
with associated 2D quantum fluctuations. The evidence for
a QCP comes from (i) the second order transition as Ty —
0, suggested by the continuous decrease of Ty with x,
(i) a power-law temperature dependence of the resistivity
p=po+ A, T" (Fig. 2) with n =~ 1, and (iii) a diverging
Sommerfeld coefficient y [Fig. S2(c) [23]] when Ty — O.
Away from the QCP, the specific heat becomes FL-like
C,=yT+ BT3 [Fig. 3(b)]. The resistivity exponent n(x; T')
(contour plot in Fig. 4) has a minimum around n =1 at
the critical composition. Below the QCP n(x; T) increases
with increasing |x —x.|, up to n =3 and n =2 in the
AFM and PM states, respectively, while above x. n(x;T)
increases from 1 to 1.5 for the composition range under study.
Resistivity exponent values n < 1.5 close to a QCP have
been attributed to reduced dimensionality [3], with n = 1.5
and 1 expected, respectively, for 3D and 2D AFM QCPs
[40]. This suggests that the quantum critical fluctuations in
Ti;_Sc,Au are more 2D than 3D [24,41]. In TAFMs, the
deviations from FL behavior have also been discussed in terms
of resistivity contributions due to quantum critical AFM spin
fluctuations and disorder scattering [42—44]. However, the role
of disorder in quantum critical systems is not easily resolved,
with the difficulty inherent in the convoluted effects of doping
(charge doping together with some atomic disorder, chemical
pressure, etc.). For example, in the case of V-doped Cr,
small pg (pg & 5 12 cm) indicated likely negligible disorder
effects [27], as was the case in the IFMs (Sci_,Lu,)s;In
(20 u2 cm) [19] and ZrZny (5 u2 cm) [45]. In the IAFM
Tij_ScyAu, pp ~ 30 u2 cm at x., which is to be expected
for good metals in polycrystalline form. The residual resistivity
ratios (RRR) = p(300 K)/pp ~ 2 for Ti;_,Sc,Au are also
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comparable with those of other polycrystalline IM systems,
e.g.,(Sci_,Luy);.1In (RRR < 4[19]). These are all indications
that disorder scattering represents a small contribution to the
resistivity in Tij_,Sc,Au. A further argument that discredits
dominant disorder effects in Tij_,Sc,Au is the resistivity
change Ap in the linear range compared to the residual (defect)
resistivity contribution py. Strong disorder effects are typically
signaled by Ap < po. For all of the Ti;_,Sc,Au samples, Ap
and pg are of the same order of magnitude (Fig. 2). The issue
of clean versus dirty limit in doped TiAu still remains, with
the added complications that these samples are polycrystalline.
Single crystals will allow us to perform a detailed study of the
electrical transport in this system, and this is an ongoing effort
in our laboratory.

Given the small disorder effects in Ti;_,Sc, Au, a compari-
son with the SCR theory of spin fluctuations is justified: While
HF QCPs are strongly affected by disorder [42], incorporating
these effects into the SCR theory of spin fluctuations for IMs
has not yet been accomplished [46]. The description of the
behavior close to a QCP for d-electron systems was established
for both FM [35] and AFM materials [40]. However, while
these predictions were validated experimentally in a number
of FM QCPs [17,19,32,37,44,47-50], the limited number of
d-electron antiferromagnets hinders an analogous analysis
in AFM systems [6]. Among d-electron magnets, an AFM
QCP has so far only been reached in V,_,03 [31,51] and Cr
[27,33,39,52-55]. In vanadium oxide, the QCP is accompanied
by an insulator-to-metal transition [51] and the AFM order
arises from local rather than itinerant moments. Cr, on the other
hand, is the archetypical 3D IAFM metal for which charge
carriers are lost as they become localized upon cooling through
the Néel temperature Ty . Interestingly enough, no signatures
of quantum criticality in resistivity data were observed in
Cr with either doping or pressure, making it impossible to
compare the resistivity exponents with those expected from
the SCR theory [46]. While it was suggested that a 2D AFM
metal should exhibit a continuous second order QPT [56],
experimentally this has not yet been realized until the current
doped TiAu, perhaps explaining why the characteristics of
metallic 2D AFM QPTs remained one of the pressing questions
from both theoretical and experimental viewpoints [6]. The
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results in Ti;_, Sc, Au ought to be compared with the behavior
of 4 f QCPs. Doped CeCug provides the closest HF analog, in
light of its potential 2D AFM QCP and dimensional crossover:
In CeCug_,Au,, NFL close to, and FL behavior away from the
QCP, were evident from both specific heat and resistivity data
[5]. Even though the compound has a 3D orthorhombic crystal
structure, the quantum critical regime of CeCug_,Au, was
consistent with a 2D AFM QCP [46], suggesting the possibility
of a dimensional crossover close to the QCP [25]. A similar
dimensional crossover likely occurs in TiAu upon doping.

In this work, the suppression of the AFM order in the
IAFM TiAu to a QCP was possible via partial substitution
of Ti with Sc in Ti;_,Sc,Au, with a critical composition
x. = 0.13 £ 0.01. Moreover, the suppression of the AFM
transition with Sc doping was also confirmed by band structure
calculations, in which a gradual shift of the peak in the DOS at
Er was observed. This is consistent with a decreasing number
of d electrons upon substituting Ti with Sc. Neutron diffraction
measurements also indicate the absence of magnetic order
close to x. [57]. Although 2D AFM QCPs have been reported
for 4 f -electron systems such as YbRh,Si, [7], Celn; [10], and
CeRhlns [11], this behavior in Ti;_,Sc,Au is an observation
in d-electron materials. Ongoing pressure experiments are
expected to reveal the quantum critical scaling in the absence
of doping-induced disorder, while the study of V-doped TiAu
[58] will allow for a comparison between electron (V) and hole
(Sc) doping effects in TiAu.
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