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Motivated by the magnetic properties of the spin-chain compounds LiCuSbO4 ≡ LiSbCuO4 and
Rb2Cu2Mo3O12, we study the ground state of the Heisenberg chain with dimerized nearest-neighbor ferromagnetic
(FM) (J1,J

′
1 < 0) and next-nearest-neighbor antiferromagnetic (J2 > 0) couplings. Using the density-matrix

renormalization group technique and spin-wave theory, we find a first-order transition between a fully polarized
FM and an incommensurate spiral state at 2α = β/(1 + β), where α is the frustration ratio J2/|J1| and β the
degree of dimerization J ′

1/J1. In the singlet spiral state the spin-gap is vanishingly small in the vicinity of the FM
transition, corresponding to a situation of LiCuSbO4. For larger α, corresponding to Rb2Cu2Mo3O12, and smaller
β there is a crossover from this frustration induced incommensurate state to an Affleck-Lieb-Kennedy-Tasaki-type
valence-bond solid state with substantial spin gaps.

DOI: 10.1103/PhysRevB.95.220404

Introduction. The exotic phenomena emerged by magnetic
frustration have long been fascinating subjects of research
in condensed matter physics [1]. Nowadays, quasi-one-
dimensional (1D) frustrated systems, despite their simple
structure, are at the center of attention as a playground for
novel ground states that can emerge from frustration and strong
quantum fluctuations due to low dimensionality. So far, various
unconventional magnetic states such as quantum spin liquids
[2,3], spin-Peierls states [4], and Tomonaga-Luttinger (TL)
liquid phases [5] have been investigated. Currently, among
the hottest topics are magnetic multipolar and in particular
spin-nematic states [6–11] in which magnon bound states
are formed from a subtle competition between geometrical
balance of ferromagnetic (FM) and antiferromagnetic (AFM)
correlations among spins.

Very recently, a magnetic field-induced “hidden” spin-
nematic state was reported in the anisotropic frustrated
spin-chain cuprate LiCuSbO4 [12]. By the nuclear magnetic
resonance technique, a field-induced spin gap was observed
above a field ∼13 T in the measurements of the 7Li spin
relaxation rate T −1

1 , supported by static magnetization and
electron spin resonance data. This material has a unique crystal
structure. In the CuO2 chain, four nonequivalent O2− ions
within a CuO4 plaquette give rise to two kinds of nonequivalent
left and right Cu-Cu bonds along the chain direction. This
gives rise to alternating nearest-neighbor transfer integrals
(t1 �= t ′1). As a result, a sizable splitting of the two nearest-
neighbor FM exchange integrals was estimated: J1 ≈ −160 K
and J ′

1 ≈ −90 K, whereas the next-nearest-neighbor AFM
coupling is J2 ≈ 37.6 K [see Fig. 1(a)]. Another example of
a FM dimerized chain compound is Rb2Cu2Mo3O12, which
has CuO2 ribbon chains. Here, its ribbon chains are twisted,
so that the Cu-Cu distances and the Cu-O-Cu angles are
slightly alternating. Accordingly, a small dimerization of the
nearest-neighbor exchange integrals is expected. Assuming
no dimerization, the values of the FM nearest- and AFM
next-nearest-neighbor exchanges have been estimated as −138
and 51 K, respectively, by the fitting of susceptibility and
magnetization [13]. Besides, a nonmagnetic ground state with
energy gap Eg ∼ 1.6 K has been experimentally detected [14].

So far, the 1D dimerized AFM Heisenberg has been extensively
studied in connection to the celebrated spin-Peierls compound
CuGeO3 [15]. In contrast, the dimerized FM case has been
hardly ever discussed. Recently, only the weakly dimerized
case has been investigated [16], and theoretical studies are
definitely required.

Motivated by the above observations, we study a dimer-
ized FM Heisenberg chain with next-nearest-neighbor AFM
couplings by using the spin-wave theory (SWT) and the
density-matrix renormalization group (DMRG) method. The
ground-state phase diagram is obtained as a function of
dimerization and frustration strengths, based on the numerical
results of total spin, spin gap, spin-spin correlation function,
and Tomonaga-Luttinger (TL) liquid exponent. We establish
the presence of a frustration induced incommensurate singlet
state with a spin gap that is vanishingly small close to the
vicinity to a first-order FM transition, corresponding to the
situation of LiCuSbO4. Despite the vanishingly small gap,
correlation lengths are comparable to those in the large-gap
region in the phase diagram. For larger α and smaller β, there is
a crossover from this frustration induced incommensurate state
to an Affleck-Lieb-Kennedy-Tasaki (AKLT)-type valence-
bond solid (realized at β = 0) with substantial spin gaps. We
also confirm the presence of a finite spin gap in the uniform
J1-J2 limit.

Model and method. Our spin Hamiltonian is given by

H = J1

∑

i=even

Si · Si+1 + J ′
1

∑

i=odd

Si · Si+1 + J2

∑

i

Si · Si+2,

(1)

where Si is a spin-1/2 operator at site i. The nearest-neighbor
(J1,J

′
1 < 0) and next-nearest-neighbor (J2 > 0) interactions

are FM and AFM, respectively [see Fig. 1(a)], and we use the
notations of next-nearest-neighbor coupling ratio α = J2/|J1|
and nearest-neighbor coupling ratio β = J ′

1/J1 hereafter.
When the system is undimerized (β = 1), we are dealing

with the so-called J1-J2 model. Increasing α, a phase with
incommensurate spin-spin correlations follows a FM phase.
The transition occurs at α = 1/4, both in the quantum as
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FIG. 1. (a) Lattice structure of the J1- J ′
1-J2 model. (b) Topologi-

cally equivalent situation which allows for a schematic picture of the
valence-bond-solid gapped state. Red ellipses indicate spin-singlet
pairs that form in the AKLT (Haldane) state.

well as in the classical model [17,18]. The incommensurate
(“spiral”) correlations are short ranged in the quantum model
[19,20]. A vanishingly small gap was predicted by the field-
theory analysis [21] but no numerical evidence exists so far. In
the limit of β = 0, the system (1) is equivalent to spin ladder
with AFM legs and FM rung couplings. Since this system
can be effectively reduced to an S = 1 AFM Heisenberg
chain with regarding two S = 1/2 spins on each rung as a
S = 1 spin [23,24], the ground state is gapped as predicted
by the Haldane conjecture [22]. Therefore the ground state
can be well described by a valence-bond-solid (VBS) picture,
proposed in the AKLT model [25]. The schematic picture is
shown in Fig. 1(b).

The DMRG method [26] is employed to investigate the
ground-state properties of the system (1). We calculate the total
spin with periodic boundary conditions, and spin gap, spin-
spin correlation functions, and the Tomonaga-Luttinger (TL)
spin exponent with open boundary conditions. We keep up to
m = 6000 density-matrix eigenstates in the renormalization
procedure and extrapolate the calculated quantities to the limit
m → ∞ if necessary. Furthermore, several chains with lengths
up to L = 800 are studied to handle the finite-size effects. In
this way, we can obtain quite accurate ground states within the
error of �E/L = 10−9 − 10−10|J1|.

Ferromagnetic critical point. In the limit of β = 0 and
α = 0, the FM critical point no longer exists because the
system is solely composed of isolated spin-triplet dimers.
However, if β is finite, the FM order is expected for small
α. Let us then consider the β dependence of the critical point.
Since the quantum fluctuations vanish at the FM critical point,
the classical SWT may work perfectly for estimating the FM
critical point. According to SWT, the excitation energy for a
FM ground state is given as 2ωq = −

√
1 + β2 + 2β cos(2q) +

2α cos(2q). The system is in the FM ground state if ωq > 0
for all q; otherwise, it is in the spiral singlet state. Thus the
FM critical point is derived as

αc,1 = β

2(1 + β)
. (2)

As shown in Fig. 2, the FM region is simply shrunk with
decreasing β, and disappears in the limit of β = 0 as a
consequence of isolated FM dimers. It can be numerically
confirmed by calculating the ground-state expectation value

FIG. 2. Phase diagram of the J1-J ′
1-J2 model in the α-β plane.

Contour map for the spin gap �/|J1| is shown. The black line
represents the boundary of the fully polarized ferromagnetic and
gapped incommensurate spiral states, obtained by spin-wave theory.
The open circles mark the results from DMRG. The shaded area
indicates the region with a vanishingly small gap (�|J1| < 10−3).
Filled circle and square indicate the locations of Rb2Cu2Mo3O12 and
LiCuSbO4, respectively.

of the total-spin quantum number S of the whole system, S2

(see Ref. [27]).
Haldane gapped state. So far, the spin gapped state has been

verified in the limit of β = 0 [23,24]. This can be interpreted
as a realization of the AKLT VBS state. However, it is a
nontrivial question what happens to the spin gap for finite
β. In our DMRG calculations, the spin gap � is evaluated as
the energy difference between the lowest triplet state and the
singlet ground state,

�(L) = E0(L,Sz = 1) − E0(L,Sz = 0), � = lim
L→∞

�(L),

(3)

where E0(L) is the ground-state energy for a given number of
system length L and z component of total spin Sz.

First, we focus on the case of β = 0, namely, a ladder
consisting of two AFM leg chains and FM rungs. In Fig. 3(a),
the extrapolated values of �/|J1| are plotted as a function
of α. The gap opens at α = 0 and increases monotonously
with increasing α, and saturates at a certain value scaled by
|J1|. This means that � is finite for all α at β = 0, which is
consistent with the prediction by the bozonization method [24]
and the conformal field theory [28]. In the limit of α = 0 the
system is exactly reduced to a S = 1 AFM Heisenberg chain:

Heff = Jeff

∑

i

S̃i · S̃i+1 − J1L/4, (4)

where S̃i is a spin-1 operator as a resultant spin S̃i = S2i +
S2i+1 and Jeff = J2/2. In the inset of Fig. 3(a), � is replotted
in units of α. We obtain �/J2 = 0.2045 in the limit α = 0.
The Haldane gap of the system (4) has been calculated as
�/Jeff = 0.410479 [29]. Thus we can confirm Jeff = J2/2
numerically for the mapping from Eq. (1) to Eq. (4) at the
limit |J1|/J2(= 1/α) → 0 and β = 0.
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FIG. 3. (a) Extrapolated spin gap �/|J1| as a function of α for
β = 0, 0.5, and 0.9. Inset: similar plot of �/J2 at β = 0. (b) Log-log
plot of �/|J1| as a function of 1 − β for α = 0.6 and 0.9.

Next, we look at the effect of β on the spin gap. Figure 3(b)
shows a log-log plot of �/|J1| as a function of 1 − β for
α = 0.6 and 0.9. The behaviors are nontrivial but � decays
roughly as a power law with decreasing 1 − β. As a result,
the gap is vanishingly small near the uniform J1 − J2 limit
(β ∼ 1). Besides, it is interesting that � for α = 0.6 is larger
than that for α = 0.9 at larger β and opposite at smaller β,
which may suggest that the gapped state near β = 1 is no
longer the AKLT-type VBS state but the frustration induced
one (see below). This is consistent with a maximun gap around
α = 0.6 at weak dimerization (β = 0.9). On the other hand,
an adiabatic connection of the AKLT-type VBS state from
β = 0 to 1 was predicted by the field-theoretical analysis for
|J1| 	 J2 [30]. A contour plot of the magnitude of � is given
in Fig. 2. We can see a rapid decay of � with approaching
the FM phase. However, � is too small to figure out whether
it remains finite, e.g., � � 10−3, in the vicinity of the FM
critical boundary. Therefore, to verify the presence or absence
of the gap, we checked the asymptotic behavior of spin-spin
correlation function |〈Sz

i S
z
j 〉|. In Fig. 4(a), the semilogarithmic

plot of |〈Sz
i S

z
j 〉| as a function of distance |i − j | is shown for

some parameters near the FM critical boundary. The distances
|i − j | are taken about the midpoint of the systems to exclude
the Friedel oscillations from the system edges, i.e., (i + j )/2

FIG. 4. (a) Equal-time spin-spin correlation function |〈Sz
i S

z
j 〉| as

a function of distance |i − j | at α = 0.1,β = 0.12, α = 0.2,β =
0.3, and α = 0.3,β = 0.7 for the L = 400 cluster. (b) Tomonaga-
Luttinger liquid spin exponent as a function of α for systems with
several lengths L = 200–800. Inset: inverse correlation length 1/ξ

as a function of α. The solid line shows a fitting by by 1/ξ =
0.085 exp(−πα).

locates around the midpoint of the systems. All of them exhibit
exponential decay of |〈Sz

i S
z
j 〉| with distance, which clearly

indicates the presence of a finite spin gap. The curves are
well-fitted with the expression |〈Sz

i S
z
j 〉| ∝ cos[Q(i − j )]|i −

j |− 1
2 e

− |i−j |
ξ for long distances [31,32]; the correlation lengths ξ

are estimated as ξ = 11.6 (α = 0.1,β = 0.12), ξ = 8.6 (α =
0.2,β = 0.3), and ξ = 7.3 (α = 0.3,β = 0.7). In the AFM
J1 − J2 model [31], a region with ξ ≈ 10 still has a spin gap
of order of 10−1J1. This may imply the spin velocity of our
system is more than two digits smaller than that of the AFM
J1-J2 model since � = vs/ξ , where vs is the spin velocity.

Uniform J1-J2 model. In the uniform case (β = 1) the
existence of a tiny gap for α � 3.3 was predicted by the
field-theory analysis [21]. However, the investigation for
smaller α is lacking. Therefore, to verify the presence or
absence of a gap at smaller α, we investigated the TL liquid
spin exponent Kσ . For our system having four Fermi points
(±kF1, ± kF2), we here assume the asymptotic behavior of the
spin-spin correlation function to be a power-law decay, like

〈
Sz

0S
z
r

〉 ∼ − Kσ

2π2r2
+ A cos[2(kF1 − kF2)r]

r2Kσ
+ · · · , (5)
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in analogy with the case of two coupled chains [33], because
the low-energy excitation spectra are similar to those of our
model [34]. By summing up (5) over the distance, we obtain

Kσ = lim
L→∞

L

2

∑

kl

ei 2π
L

(k−l)〈Sz
kS

z
l

〉
. (6)

The value of Kσ = 0 indicates a spin-gapped state with an
exponential decay of the spin-spin correlation in real space,
whereas the convergence to a finite value of Kσ in the
thermodynamic limit suggests a spin-gapless state with the
power-law decay (Kσ = 1 within the TL liquid theory) [35].
In Fig. 4(b), Kσ is plotted as a function of α for several chain
lengths. We clearly find a region where Kσ approaches 0 with
increasing system size. This clearly indicates the existence of
a gapped state [36,37]. The fastest convergence to Kσ → 0
around α = 0.5–0.6 may imply the maximum gap there,
similarly to the case of AFM J1-J2 chain. For α > 1, Kσ

may seem to converge to Kσ = 1. Nevertheless, the validity of
the TL liquid theory is not straightforward around J2/|J1| ∼ 1,
and it is also difficult to exclude the logarithmic corrections
for the small-gap region. Therefore, to consider the connection
to the gapped state with tiny gap � � 10−40J2 at α > 3.3
predicted by the field theory [21], we estimated the correlation
length from the fitting of spin-spin correlation by a fitting
function 〈Sz

0S
z
r 〉 = A exp(−r/ξ ), where ξ is the correlation

length (see Supplemental material). In the inset of Fig. 4(b),
the inverse correlation length is plotted as a function of α.
We found that the inverse correlation length is well fitted by
1/ξ = 0.085 exp(−πα) for large α. Since � = vs/ξ , it may
be feasible to speculate that the gap has a maximum around
α = 0.5 − 0.6, decreases with increasing α, and smoothly
connects to the tiny gap region.

Finally, let us explicitly address the relevance of the
calculations above for the two spin-chain materials mentioned
in Introduction. For LiCuSbO4, α = 0.235 and β = 0.56
are estimated from the density-functional calculations: J1 ≈
−160 K, J ′

1 ≈ −90 K, and J2 ≈ 37.6 K [12,38]. The system
is in the gapped spiral state, but very close to the FM

phase where the spin-gap is vanishingly small. Thus the
spin gap may be too small to be detected experimentally.
The second compound is Rb2Cu2Mo3O12. If we use the
previously estimated parameters J1 = −138 K and J2 = 51 K
(α = 0.37), a substantial dimerization (β = 0.65) of J1 and
J ′

1 is necessary to reproduce the experimentally observed
gap Eg ∼ 1.6 K, namely, J1 = −138 K and J ′

1 = −90 K.
Furthermore, if it is more appropriate to consider the value
−138 K as an averaged FM coupling (J1 + J ′

1)/2, then an even
larger dimerization would be needed. In practice, the actual J1

should be somewhat smaller or J2 should be larger. A detailed
analysis of the experimental data that explicitly takes into
account the dimerization can clarify this point. In the context
of these two compounds and also in general, the influence of
an external magnetic field is of considerable interest and will
be addressed elsewhere.

Conclusion. We considered a frustrated J1-J2 spin chain
with/without dimerization of nearest-neighbor FM coupling
and determined its phase diagram. The FM critical point was
analytically determined to be αc = (β/2)/(1 + β) by applying
the linear spin-wave theory, which was confirmed by the
numerical calculation of the total spin. The transition between
the fully polarized FM and the singlet spiral states is of the first
order and no partially polarized FM state exists. The spin-gap
in the vicinity of the FM boundary was confirmed to be finite
by the exponential decay of the spin-spin correlation functions
but it is vanishingly small. In the uniform J1-J2 chain, the
gapped state appears at least around α ∼ 0.5–0.6 where the
TL liquid exponent Kσ goes to 0 in the thermodynamic limit.
Near β = 0, the spin-gap increases with increasing α; whereas,
near β = 1, it has a maximum value around the strongest
frustration region α = 0.5–0.6. Therefore the gap opening in
the entire incommensurate singlet phase may be interpreted as
a crossover from the AKLT-type valence-bond solid state near
β = 0 to the frustration-induced dimerized state near β = 1.
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