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The pair density wave (PDW) superconducting state has been proposed to explain the layer-decoupling
effect observed in the La2−xBaxCuO4 compound at x = 1/8 [E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson,
V. Oganesyan, J. M. Tranquada, and S. C. Zhang, Phys. Rev. Lett. 99, 127003 (2007)]. In this state the
superconducting order parameter is spatially modulated, in contrast with the usual superconducting (SC) state
where the order parameter is uniform. In this paper, we study the properties of the amplitude (Higgs) modes in a
unidirectional PDW state. To this end we consider a phenomenological model of PDW-type states coupled to a
Fermi surface of fermionic quasiparticles. In contrast to conventional superconductors that have a single Higgs
mode, unidirectional PDW superconductors have two Higgs modes. While in the PDW state the Fermi surface
largely remains gapless, we find that the damping of the PDW Higgs modes into fermionic quasiparticles requires
exceeding an energy threshold. We show that this suppression of damping in the PDW state is due to kinematics.
As a result, only one of the two Higgs modes is significantly damped. In addition, motivated by the experimental
phase diagram, we discuss the mixing of Higgs modes in the coexistence regime of the PDW and uniform SC
states. These results should be observable directly in a Raman spectroscopy, in momentum resolved electron
energy-loss spectroscopy, and in resonant inelastic x-ray scattering, thus providing evidence of the PDW states.

DOI: 10.1103/PhysRevB.95.214502

I. INTRODUCTION

In the conventional theory of superconductivity by BCS [1],
the Cooper pairs have a zero center-of-mass momentum and
the superconducting (SC) order parameter is uniform in space.
In this paper we will examine the physical properties of pair
density wave (PDW) SC states, SC states the order parameters
of which have finite momentum, which generically are
nonuniform. PDW states are phases in which superconducting
and charge-density wave (CDW) and/or spin-density wave
(SDW) orders are intertwined [2–4]. PDW SC states have
been proposed [2] to explain many experimental features of a
family of cuprate high-temperature superconductors (HTSCs),
notably La2−xBaxCuO4 near doping x = 1/8 and the observed
dynamical layer decoupling of transport properties [5,6] (both
at zero and with finite magnetic fields), and the La2−xSrxCuO4

materials in the underdoped regime at large enough magnetic
fields [7–10]. Evidence for PDW-type SC states has also
been found in the heavy-fermion material CeRhIn5 at high
magnetic fields [11]. Charge and spin stripe phases, both
static and “fluctuating,” have been observed experimentally
in HTSC materials for quite some time [12], including the
more recently observed CDWs in YBa2Cu3O6+x [13–22],
in Bi2Sr2CaCu2O8+δ [23–28], and in HgBa2CuO4+δ [29].
Whether PDW-type phases arise in HTSC other than the
lanthanum materials is presently not known. However, the
recent observation of a modulation of the superfluid density
deep in the d-wave SC phase of Bi2Sr2CaCu2O8+δ by scanned
Josephson tunneling microscopy [30] supports that possibility.
The purpose of this paper is to establish theoretically spectro-
scopic properties of PDW phases that (hopefully) will help to
identify these states.

Nonuniform SC states have a position-dependent complex
spin-singlet order-parameter field �(r) of the form

�(r) = �0(r) + �Q(r)ei Q·r + �− Q(r)e−i Q·r + . . . . (1.1)

For simplicity, here we consider only states with unidirectional
order with ordering wave vector Q. The generalization to
more complex types of ordered patterns is straightforward.
SC states with an order parameter of the form of Eq. (1.1)
were first considered long ago by Fulde and Ferrell [31]
(FF) and Larkin and Ovchinnikov [32] (LO). These authors
showed that in a BCS model with a Zeeman coupling to a
uniform external magnetic field it is possible to have a SC
state with Cooper pairs condensing with a finite center-of-mass
momentum.

Here we will focus on SC states with a finite ordering wave
vector Q of the form of Eq. (1.1), arising in the absence of an
external magnetic field. Thus, although the form of the order
parameters is the same as in the FF and LO states, the symmetry
of the system is different since time-reversal invariance is not
explicitly broken. In Eq. (1.1) we denoted by �0(r) the order
parameter for a uniform SC, and �± Q(r) are the components
close to the ordering wave vector ± Q. A multicomponent
order parameter of the form of Eq. (1.1) can describe the
following phases: (a) a uniform SC state if �0 �= 0 and
�± Q = 0, (b) an FF-type state if �0 = �− Q = 0 but �Q �= 0,
(c) a PDW SC state if �0 = 0 and |�Q| = |�− Q| �= 0, and
(d) a striped SC phase if �0 �= 0 and |�± Q| �= 0. The PDW
SC is a time-reversal invariant LO state (with wave vector
Q), and the FF state is a SC (with wave vector Q) with
a spontaneously broken time-reversal invariance. The PDW
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state has two complex order parameters, �± Q(r), whereas the
FF state has one complex order-parameter field �Q(r).

The recent interest in the PDW state was motivated as a
symmetry-based explanation [2] of the dramatic layer decou-
pling effect discovered first in La2−xBaxCuO4 [5,6] and shortly
thereafter in underdoped La-based cuprate SCs in magnetic
fields [9,33,34]. Since then there has been an extensive effort
on exploring the phenomenological consequences of this state
and of its possible microscopic origins. A Landau-Ginzburg
theory of the PDW state gives a compelling description of
the observed phenomenology of La2−xBaxCuO4 [2,3,5,35],
and of La2−xSrxCuO4 in magnetic fields as a consequence
of the symmetry of this SC state in a material with an
low temperature tetragonal crystal structure. One important
feature of the PDW state is that it is naturally intertwined
with a charge ordered state with wave vector K = 2 Q (the
same relation that is seen between the CDW order and the
SDW order in La2−xBaxCuO4 (LBCO)). Several important
predictions follow from the structure of the Landau-Ginzburg
theory [4,35,36]. One of them is the existence of three types
of topological excitations: (1) SC vortices, (2) half vortices
bound to single dislocations of the charge order, and (3) double
dislocations of the charge order. An extension of the Kosterlitz-
Thouless theory to a system with these topological excitations
leads to the prediction of a complex phase diagram which
embodies the notion of intertwined orders resulting from the
proliferation of the topological defects [36]. An interesting
result is the prediction of a possible charge 4e SC state in
the phase diagram and a hc/(4e) flux quantization in the
PDW state. An extension of the Landau-Ginzburg theory with
finite magnetic fields has shown that PDW states may arise in
the vortex cores of the mixed phase [37], as suggested by
the observation of the layer-decoupling effect [9] in the same
regime where earlier neutron-scattering experiments found a
magnetic-field induced SDW order [8].

On the other hand, in spite of some significant recent
progress, the microscopic origin of PDW-type states remains a
challenging problem. At the root of these problems is the fact
that SC states that condense at finite wave vector cannot arise
as weak-coupling instabilities of a Fermi liquid and, hence,
cannot be reliably described by mean-field BCS theory. Thus,
although mean-field theory does allow for PDW states to occur
[38–40], the required critical couplings are typically larger than
the bandwidth. Hence, these SC states can arise more naturally
in regimes of strong correlation. Indeed, an infinite projected
entangled paired states simulation of the two-dimensional
t − J model finds that the uniform d-wave SC is essentially
degenerate with a PDW state and with a striped SC over a wide
range of dopings and of the ratio t/J [41] (and in variational
Monte Carlo simulations [42,43]). This result suggests that
strongly correlated systems have a strong tendency to exhibit
intertwined orders and that the PDW state may occur more
broadly than was previously anticipated [4]. However, a more
recent density-matrix renormalization-group simulation of a
(frustrated) t − J model has not found evidence for such
ground-state degeneracy [44]. PDW states have been proposed
to be the ground states of models of strongly correlated
systems, based on the concept of Ampérean pairing [45], as an
explanation of the pseudogap features found in angle-resolved
photoemission experiments [46]; PDW states have been shown

to arise as instabilities of spin-triplet nematic Fermi fluids [47].
PDW SC states have been shown to be the ground states of
1D systems such as the Kondo-Heisenberg chain [48] and
extended Hubbard-Heisenberg models of two-leg ladders for
certain electronic densities [49], and in a quasi-1D model of
coupled two-leg ladders [50]. Using a different approach, in the
spin-fermion model Wang and collaborators [51–53] provided
evidence for the coexistence of CDW and PDW orders in
underdoped cuprates.

In this paper we return to the problem of finding
additional experimentally testable tell-tale predictions that
may unambiguously identify the PDW SC state. Although
the recent detection of a real-space modulation of the
superfluid density in Bi2Sr2CaCu2O8+δ deep in the d-wave
SC state by scanned Josephson tunneling microscopy [30]
is an encouraging development, there is so far no direct
experimental evidence of the PDW state. An observation of a
half vortex (or of the predicted anomalous flux quantization)
would certainly give strong indication of the observation of this
state. Here we will propose a different way to detect the PDW
state. One possibility is to study the signatures of the PDW in
Raman spectroscopy, in momentum-resolved electron energy-
loss spectroscopy, or in resonant inelastic x-ray scattering.
For conventional superconductors, at low temperatures the SC
amplitude mode (also referred to as the Higgs mode in similar-
ity to the Higgs boson in high-energy physics) can be present
[54]. For conventional superconductors (such as NbSe2)
where the SC order parameter is uniform, the experimental
signatures agree with the theoretical results [55–59].

In this paper we study the amplitude (Higgs modes) fluctua-
tions of the PDW order parameter. Since the PDW state has two
complex order parameters we expect to see two Higgs modes.
In addition, in a phase in which the uniform d-wave state and
the PDW phase coexist (a “striped SC”) a new Higgs mode
should appear. Thus, the pattern of observed Higgs modes is
a signature of these SC states. In addition, in contrast to the
usual uniform SC state, the Fermi surface (FS) in a PDW state
is not completely gapped and instead presents Fermi pockets of
Bogoliubov quasiparticles. On the other hand, since the FS in
the PDW state remains largely gapless, expecting more decay
channels for the Higgs modes one would naively expect that the
damping of the Higgs modes will be stronger than in the case
of the uniform SC state. However, we show below that this is
not the case. As will be discussed in the following sections, the
predicted damping is expected to have a comparable threshold
for the PDW SC as for a uniform SC state.

Since the PDW states cannot be studied within a weak-
coupling theory, here will use instead the following approach.
We will postulate the existence of a PDW SC state (the same
with the other states) described by a quantum order-parameter
field �± Q(r,t). We will assume that the quantum dynamics
of this order parameter has an effective Lagrangian (without
damping) with dynamic critical exponent z = 1. This quantum
fluctuating field will be coupled to fermion bilinears for
Cooper pairs with the requisite center-of-mass momentum. To
simplify matters we will assume that the Fermi surface of the
fermions is circular (although it is straightforward to generalize
to other more physically motivated cases). In particular, no
assumptions on nesting will be made. Theories of this type are
commonly used in studies of quantum criticality in metals
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(see, e.g., Ref. [60]). Theories of this type have several
parameters that describe the normal and the condensed phases,
as well as a stiffness and a Yukawa coupling between the
fermions and the order-parameter field. These details, and
others, will be specified in the subsequent sections.

Within this framework, we study the energies and damping
of the Higgs modes for a PDW state. To gain some intuition
on the problem, we first analyze the case of an FF state
(i.e., with only one ordering momentum Q), and extend our
approach to the PDW state. Our key findings are as follows.
The energies of the two Higgs modes are split from 2|�(0)

Q |,
i.e., twice the value of the mean-field gap. The magnitude
of the splitting is given by the biquadratic coupling of �± Q ,
and is generally comparable to �

(0)
Q . These two modes can

decay via scattering into bosonic collective Goldstone modes
or fermionic quasiparticles. However, by gauge invariance
the former process can only occur via a gradient coupling
interaction, and hence is weak. The major contribution to the
decay comes from scattering into fermionic quasiparticles.
We find that this process has a threshold at approximately
2|�(0)

Q |, and, as a result, only one of the two Higgs modes is
significantly damped, and the other remains sharp. Since in
cuprate systems a uniform (d-wave) SC component always
exists at sufficiently low temperatures, we also discuss the
properties of the PDW Higgs modes in the presence of a
uniform SC order. In particular, we computed their energies
and damping in two limiting cases when the mixing between
PDW Higgs modes and uniform SC Higgs mode is weak, and
we find that in both limits it remains true that only one of the
two PDW Higgs modes is significantly damped.

Collective modes of FFLO-type phases have been studied
theoretically in imbalanced Fermi gases (of interest in ultracold
atomic gases) in isotropic backgrounds [61,62]. In such
systems there is a delicate interplay between rotational and
translational collective modes which was studied in detail in
these references. Here, instead, we are interested in PDW-type
phases which are strongly coupled to the underlying (square)
lattice and orientational collective modes are strongly gapped.
Thus, unlike similar problems in cold atomic gases, the
orientation of the ordering wave vector of the PDW (and FF)
states is fixed and does not fluctuate. This difference changes
significantly the physics of the collective modes, particularly
of the Goldstone modes. In addition, the PDW SC is charged
and couples to the electromagnetic field (through the Higgs
mechanism) and, as expected, the SC Goldstone mode is absent
(“Higgsed”). Also, the damping of the collective modes was
not considered in Refs. [61,62], while it plays a significant role
in the systems that we are interested in here.

This paper is organized as follows. In Sec. II as a warm-up
example we study first the simpler Fulde-Ferrell state. We
study in detail the amplitude fluctuations of the order parameter
(Higgs mode), computing its energy and damping. In Sec. III
we generalize the model of Sec. II to two superconducting
order parameters with Q and − Q momenta, i.e., the PDW
state. We show the appearance of two Higgs modes, one of
which is always damped. In Sec. IV we study the fate of
PDW Higgs modes in the phase where the PDW state coexists
with the usual uniform SC state. In Sec. V we present our
conclusions and final remarks. The details of some calculations
are presented in the Appendix.

FIG. 1. The spectral function for the FF state with Q = (0,π/2).

II. HIGGS MODE IN A FULDE-FERRELL STATE

As a warm-up, we first study the energy and damping of the
Higgs mode in a Fulde-Ferrell state, which was theoretically
proposed as a superconducting state stabilized in the presence
of a magnetic field. Such a state is characterized by a single SC
order parameter �Q that carries a finite momentum Q. An FF
state is very similar to the PDW state, and the only difference
for the PDW state is that it has SC order parameters with both
± Q, and hence time-reversal is preserved. The analysis of the
Higgs mode in an FF state serves as a good starting point for
that in a PDW state. To our knowledge, the Higgs mode for an
FF state has not be analyzed before.

The order parameter couples with fermions via a bilinear
term

H�Q = �∗
Qψk+ Q

2
ψ−k+ Q

2
+ c.c., (2.1)

where, for simplicity, we have kept an implicit spin structure
on the fermions (which forms a singlet). Unlike the usual
superconducting order parameter, an FF order parameter does
not gap the full FS, but rather renormalizes the original FS
into pockets. In Fig. 1, we show the simulation of the spectral
function A(k,ω = 0) = ImG(k,ω = 0) for a circular FS and
an FF order parameter with Q = (0,π/2). On a pocket, the
nature of the quasiparticle excitations continuously varies
from electronlike to holelike. In such a state, there are two
collective modes: one Goldstone mode corresponding to the
fluctuation of the phase of �Q (which gets “eaten” by the
electromagnetic field), and another Higgs mode corresponding
to the fluctuation of the magnitude of �Q . The two modes are
decoupled, as protected by gauge invariance, and we only focus
on the Higgs mode.

We begin with a generic form of the Lagrangian for the FF
state,

L = κ0|∂τ�Q|2 + κ1|∇�Q|2 + r|�Q|2 + u|�Q|4, (2.2)

where r < 0, τ is the imaginary time (for convenience with
signs), and the ∇ term captures the slow-varying component
of the FF order parameter. Minimizing Eq. (2.2), we have
�Q = √−r/2ueiφ ≡ �

(0)
Q eiφ , where φ is an arbitrary phase.

The Higgs mode corresponds to the longitudinal fluctuation
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FIG. 2. Feynman diagrams that are relevant to coefficients κ0 (a)
and u (b).

(i.e., with φ fixed) of �Q around this value. Expanding the
Lagrangian in terms of δ�Q ≡ �Q − �

(0)
Q , we have

δL = (
r − κ0ν

2 + κ1q2 + 6u
∣∣�(0)

Q

∣∣2)|δ�Q(q,ν)|2

= (
4u

∣∣�(0)
Q

∣∣2 − κ0ν
2 + κ1q2

)|δ�Q(q,ν)|2, (2.3)

where ν is the frequency and q is the momentum deviation
from the mean-field value Q. We find that the dispersion
relation of the Higgs mode is given by

ν(q) =
√

4u
∣∣�(0)

Q

∣∣2
/κ0 + κ1q2/κ0. (2.4)

For optical probes such as Raman scattering, we are primarily
concerned with q = 0, and in this case ν = 2|�(0)

Q |√u/κ0.
Furthermore, if we assume that the FF state comes from

a Fermi-surface instability, the coefficients κ0 and u can
be computed via diagrams (see Fig. 2) by integrating out
fermions. Note that this procedure is controlled only at weak
coupling as it neglects fluctuations in all other channels.
However, an FF state (and a PDW state we shall consider in
the next section) usually does not emerge as a weak-coupling
instability. With this important caveat in mind, we proceed to
at least get an estimate of the Higgs energy. From the diagrams
in Fig. 2, we obtain

κ0 = 1

4

∂2

∂�2
m

[∫
k,ωm

1

i(ωm + �m) − ξk+ Q

1

−iωm − ξ−k

]
�m=0

,

u = 1

4

∫
k,ωm

1

[iωm − ξk+ Q]2

1

[−iωm − ξ−k]2
, (2.5)

where ωm is the Matsubara frequency corresponding to
imaginary time, and we have used the shorthand notation

FIG. 3. Feynman diagrams for the damping of the Higgs mode.∫
k,ωm

= ∫
ddkdω/(2π )d+1. Note that, in the spirit of the

Ginzburg-Landau expansion, we use the normal state Green’s
functions and order parameters appear as vertices. After taking
the derivative and integrating by parts in the expression for κ0,
we find that κ0 ≡ u for any band structure ξk. The value of u

can be estimated by noticing that Eq. (2.5) does not contain
any IR divergence because of the double poles. As a result, by
dimensional analysis κ0 = u ∼ 1/(vF EF ) in two dimensions.

Thus, we find in this case that

ν = 2
∣∣�(0)

Q

∣∣. (2.6)

The same result can be obtained from solving the self-
consistent equations (which technically speaking is also only
controlled in weak coupling) for the Higgs and Goldstone
modes in the FF state, which we detail in the Appendix.

Next we discuss the damping (decay) of the Higgs mode.
For a neutral superfluid, the Higgs mode can weakly [via a
gradient coupling, required by gauge invariance (see, e.g.,
Refs. [63,64])] decay into two massless Goldstone modes,
and the scattering process is associated with the masses of
the Higgs mode and the Goldstone mode by a Ward identity.
However, in a superconductor, as we said, the Goldstone
mode is absent, since it gets absorbed (“eaten”) by the
electromagnetic field, making the latter gapped at the plasmon
frequency via the Anderson-Higgs mechanism. In this case,
we will only consider the damping of the Higgs mode via
decaying into two fermionic quasiparticles. Such a process can
be evaluated by computing the imaginary part of the particle-
particle bubble, shown in Fig. 3. Again, this calculation is
strictly speaking only well controlled at weak coupling. In
this diagram, the wavy lines represent the Higgs mode, i.e.,
the amplitude fluctuation around the mean-field value of �Q ,
while the fermion double lines are the ones renormalized by
the mean field of �Q . This is equivalent to summing up the full
series of diagrams like those in Fig. 2 while in each diagram
keeping two external legs to be the Higgs mode and the rest as
the mean field. The fermionic Green’s function in the presence
of the mean field �Q is given by

G(k,ωm) = �
(0)
Q τ1 + (ξ−k+ Q + ξk)τ3/2 + [iωm + (ξ−k+ Q − ξk)/2]

(ωm − iξ−k+ Q)(ωm + iξk) + ∣∣�(0)
Q

∣∣2 , (2.7)

where τ ’s are Pauli matrices in the Nambu space, and as before we have set both the mean-field order parameter �
(0)
Q and the

Higgs mode δ�Q as real (indicated by τ1). The polarization operator is thus given by

K(�m) = − 1

2

∫
k,ωm

tr [G(k,ωm + �m)τ1G(k,ωm)τ1] =
∫

k

1√
4
∣∣�(0)

Q

∣∣2 + (ξk + ξ−k+ Q)2

(ξk + ξ−k+ Q)2

�2
m + 4

∣∣�(0)
Q

∣∣2 + (ξk + ξ−k+ Q)2
.

(2.8)
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The k integral is done in the range satisfying ξkξ−k+ Q +
|�(0)

Q |2 > 0. This is a result of the frequency integral we
performed in the second line, which requires the poles in �m

to be located in opposite half complex planes.
To compute the damping of the modes, we need to

evaluate the imaginary part of Eq. (2.8). Doing the analytical
continuation to real frequencies i�m → ν + iη, the imaginary
part of Eq. (2.8) reads

π

∫
k

(ξk + ξ−k+ Q)2δ
[
ν2 − 4

∣∣�(0)
Q

∣∣2 − (ξk + ξ−k+ Q)2
]

√
4
∣∣�(0)

Q

∣∣2 + (ξk + ξ−k+ Q)2
(2.9)

Defining ξ± = ξk ± ξ−k+ Q we can write the previous integral
as ∫

dξ+dξ−
2

ξ 2
+√

4
∣∣�(0)

Q

∣∣2 + ξ 2+
δ
(
ν2 − 4

∣∣�(0)
Q

∣∣2 − ξ 2
+
)

(2.10)

where the integral over ξ− ranges from −|ν| to |ν| due to the
restriction ξkξ−k+ Q + |�(0)

Q |2 > 0. Finally we have

Im(K) =
∫

dξ+dξ−
2

ξ 2
+√

4
∣∣�(0)

Q

∣∣2 + ξ 2+
δ
(
ν2 − 4

∣∣�(0)
Q

∣∣2 − ξ 2
+
)

= 1

2

√
ν2 − 4

∣∣�(0)
Q

∣∣2

|ν|
∫ |ν|

−|ν|
dξ−

=
√

ν2 − 4
∣∣�(0)

Q

∣∣2
, (2.11)

given that ν � 2|�(0)
Q |, and for ν � 2|�(0)

Q |, Im(K) = 0.
We can see from Eqs. (2.6) and (2.11) that the Higgs

mode in the FF state is right at the threshold energy, and
therefore is not damped. This may sound trivial, since it is
the same as the damping of the Higgs mode for a uniform SC
state. However, the important difference is that in a uniform
SC state the FS is completely gapped, while in the FF state
there exist abundant gapless fermions which form pockets.
Surprisingly, we have found that the existence of the gapless
fermionic quasiparticles cannot act as a decay channel for the
Higgs mode. The main reason is kinematics. As seen from the
above calculations, the damping of the Higgs mode is tied to
fermions with momenta k and −k + Q. The total energy of
two quasiparticles made out of these two fermions is always
gapped, and, as the δ function in Eq. (2.11) suggests, is given by

E(k) =
√

4|�(0)
Q |2 + (ξk + ξ−k+ Q)2. The two-particle en-

ergy E can also be obtained by directly diagonalizing
a 2 × 2 Hamiltonian H (k) = �

(0)
Q τ1 + (ξ−k+ Q + ξk)τ3/2 +

(ξ−k+ Q − ξk)/2 and summing the absolute values of its two
eigenvalues. Since E has a minimum value of 2|�(0)

Q |, the

threshold frequency for damping is also 2|�(0)
Q |, as we found

in Eq. (2.11).

III. HIGGS MODES IN A PAIR DENSITY WAVE STATE

We now analyze the Higgs modes in a PDW state. As we
said, the main difference with the FF state is that, for a PDW
state, SC order parameters with both wave vectors ± Q are
present. Like in the FF state, in the PDW state the fermionic

FIG. 4. The spectral function for a pair density wave state with
wave vectors ± Q = ±(0,π/2). The pockets are clearly visible.

quasiparticles remain gapless and form pockets. We show in
Fig. 4 such pockets with the simulation of the spectral function
in a PDW state.

As we did for the FF state, we consider a generic form of
the Lagrangian for the PDW state. In this case we have two
complex order parameters (�Q,�− Q) and up to quartic order
the Lagrangian is given by

L = κ0(|∂τ�Q|2 + |∂τ�− Q|2) + κ1(|∇�Q|2 + |∇�− Q|2)

+ r(|�Q|2 + |�− Q|2) + u(|�Q|4 + |�− Q|4)

+ γ |�Q|2|�− Q|2. (3.1)

For r < 0, the system enters an ordered state. Whether both
�± Q have nonzero expectation values depends on the interplay
between u and γ . To see this, we neglect the spatial and
temporal dependence in Eq. (3.1):

U = r(|�Q|2 + |�− Q|2) + u(|�Q|2 + |�− Q|2)2

+ (γ − 2u)|�Q|2|�− Q|2. (3.2)

When minimizing this free energy, the first two terms fix the
mean-field value of |�Q |2 + |�− Q|2. For γ � 2u, the last term
fixes one of �± Q to be zero, and the resulting ground state is
an FF state. For γ < 2u, the last term favors that |�Q| =
|�− Q| �= 0, and the ground state is a PDW state. Furthermore,
when γ < −2u, the free energy Eq. (3.2) becomes unbounded
as the quartic terms can be made arbitrarily negative for a large
�Q = �− Q . In this case, to find the ground state, sixth-order
terms need to be included, and the transition into a PDW
state becomes first order. For the following we only focus
on the case where −2u < γ < 2u. In this case the saddle-
point solution for the Lagrangian defined above is �± Q =√−r/(2u + γ )eiφ± Q ≡ �

(0)
± Qeiφ± Q , where φ± Q is an arbitrary

phase and we have defined

�
(0)
Q = �

(0)
− Q =

√
−r

(2u + γ )
. (3.3)

The Higgs modes correspond to the longitudinal fluctuations
(i.e., with φ± Q fixed) of �± Q around the saddle point value
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ΔQ

Δ∗
Q

Δ∗
−Q

Δ−Q

FIG. 5. Feynman diagram for coefficient γ .

in Eq. (3.3). Expanding the Lagrangian in terms of δ�± Q ≡
�± Q − �

(0)
± Q we have

δL = (r − κ0ν
2 + κ1|q|2)

(
δ�2

Q + δ�2
− Q

)
+ 6u

[(
�

(0)
Q

)2
δ�2

Q + (
�

(0)
− Q

)2
δ�2

− Q

]
+ γ

[(
�

(0)
Q

)2
δ�2

− Q + (
�

(0)
− Q

)2
δ�2

Q

]
+ 2γ

(
�

(0)
Q �

(0)
− Qδ�− Qδ�Q + H.c.

)
, (3.4)

where we have switched to momentum/frequency space.
Substituting the results in Eq. (3.3) we obtain

δL =(δ�Q δ�− Q)M

(
δ�Q

δ�− Q

)
(3.5)

where the matrix M is given by

M =(−κ0ν
2 + κ1|q|2 + 4u|�(0)|2)σ0 + 2γ |�(0)|2σ1 (3.6)

and we have used �
(0)
Q = �

(0)
− Q =

√
−r

(2u+γ ) and σ0 and σ1 are

the identity and the first Pauli matrix. As a generalization of
that in the FF state, the dispersion of the Higgs modes in the
PDW state is given by the vanishing of the determinant of M ,
and

det(M) = 0 ⇒ ν1,2(q) =
√

(4u ± 2γ )

κ0
|�(0)

Q |2 + κ1q2. (3.7)

As in the FF state, we will focus on fluctuations with q = 0.
Using the condition −2u < γ < 2u, the energies ν1,2(q = 0)
are both real (since we have not yet considered the damping
via decaying into fermion pairs).

In the case of weak coupling, the coefficients κ0, u, and
γ can be computed via diagrams by integrating out fermions.
The coefficients κ0 and u are the same as those in Eq. (2.5), so
κ0 = u. The Higgs modes energies are thus given by

ν1 = 2
∣∣�(0)

Q

∣∣√1 + γ

2u
and ν2 = 2

∣∣�(0)
Q

∣∣√1 − γ

2u
(3.8)

where the coefficient γ is given by the diagram in Fig. 5 which
corresponds to the expression

γ =1

4

∫
k,ωm

1

[iωm − ξk+ Q]

1

[iωm − ξk− Q]

1

[−iωm − ξ−k]2
.

(3.9)

The evaluation of this integral requires a detailed knowledge
of the band structure. Since the integral does not contain any
IR divergence, from dimensional analysis we expect γ ∼ u ∼
1/(vF EF ) in two dimensions.

As usual, the energies of the Higgs modes acquire imag-
inary parts via decaying into bosonic collective modes or
fermionic quasiparticles. Unlike the FF state, in which the
Goldstone mode is absent, in a PDW state a gapless Goldstone
mode does exist due to its coupling to the electromagnetic
field. This is because the PDW state breaks a U (1) × U (1)
symmetry, corresponding to the phases of �± Q , and has
two Goldstone modes (before coupling to the electromagnetic
field). The two Goldstone modes are the common phase (which
carries charge 2e) and the relative phase (which is charge
neutral) of �± Q . Once coupled to the electromagnetic field,
the Goldstone mode corresponding to the common phase gets
absorbed (“Higgsed”) and gapped at the plasma frequency.
The other neutral mode, corresponding to the relative phase, is
coupled to the phase of the induced CDW order parameter with
K = 2 Q. This Goldstone mode remains gapless as long as K
is incommensurate and the CDW does not get locked to the
lattice. In this case, the PDW Higgs mode can decay into two
such gapless Goldstone modes with opposite momenta, but
only weakly so, as we discussed for the FF state [63,64]. As
a result, the Higgs modes have long, but finite, lifetimes, and
their spectral peaks get broadened but remain well defined. The
magnitude of this small width can in principle be computed
within our PDW Lagrangian, but receives an O(1) correction
if the dynamics of the (induced) CDW is included. For this
reason we will not pursue this further, but we emphasize that
this broadening from this process is small in the sense that this
decaying process is via a gradient term. On the other hand, a
more significant contribution to the damping of Higgs modes
comes from decaying into a pair of fermionic quasiparticles.

To this end, we couple the order parameters �± Q with
the fermions. The bilinear Hamiltonian for such a coupling is
given by

H�Q = �∗
Qψk+ Q

2
ψ−k+ Q

2
+ �∗

− Qψk− Q
2
ψ−k− Q

2
+ c.c.

(3.10)

The damping of the Higgs modes is then analyzed by
evaluating the imaginary part of the bubble diagram, shown
in Fig. 3, similar to that for the FF state. The only difference
is that the fermion double line is renormalized by both �± Q .
Its Hamiltonian H (k) and Green’s function G(ωm,k) have
a much more complex matrix structure since fermions with
momenta k, −k + Q, −k − Q, k + 2 Q, etc., are all coupled,
and the size of the matrix depends on when (and whether)
this series closes under k = k + 2π . The evaluation of such
a diagram is conceptually straightforward but technically
tedious. However, with what we learned for the FF state,
insights into the damping can be gained without carrying out
the integral. Just like Eq. (2.9), the damping of the PDW Higgs
mode (say with momentum Q) comes from an on-shell process
of the Higgs mode scattering into quasiparticles made out of
an electron and a hole with total momentum Q. As before,
the threshold frequency for the damping is the minimum of
the total energy of such quasiparticles. For the FF state, the
minimum is reached at ξk = ξ−k+ Q = 0, and is 2|�(0)

Q |. For
the PDW state the threshold is found by diagonalizing the full
matrix Hamiltonian H (k) (instead of the 2 × 2 one for the FF
state). However, the minimum of the two-particle energy is still
found close to when ξk = ξ−k+ Q = 0, and typical energies of
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all other fermions involved are of O(EF ). For �
(0)
Q /EF 
 1,

we can approximately reduce H (k) to the 2 × 2 block, and
E ≈ 2|�(0)

Q |. This result is corrected by high-energy fermions

via �
(0)
Q , and by perturbation theory, the corrections are of

O[(�(0)
Q /EF )2]. Thus, without doing any calculation, we find

the damping condition for the PDW Higgs mode to be

ν � 2
∣∣�(0)

Q

∣∣ [
1 + O

(
�

(0)
Q /EF

)]
. (3.11)

Compared with the FF state, we see that the damping threshold
gets shifted from 2|�(0)

Q |. In the regime �Q 
 T where
the Ginzburg-Landau Lagrangian is valid, the splitting of
the Higgs modes energies is larger than the shift of the
damping threshold. Therefore, only one of the Higgs modes
gets significantly damped. This is the key result of the present
paper.

Upon further lowering T , the quartic form of the La-
grangian, Eq. (3.1), becomes invalid, and the relation between
the Higgs energies and the damping threshold has to be
obtained from evaluating bubble diagrams with fully dressed
Green’s functions at finite temperatures, which is beyond the
scope of our paper.

IV. PDW HIGGS MODES IN COEXISTENCE
WITH A UNIFORM SC ORDER

Experimentally, the putative PDW phase coexists with a
uniform d-wave superconducting phase at low temperature in
LBCO. It is thus interesting to consider the fate of the PDW
Higgs modes in the presence of a uniform SC order. In such a
coexistence phase, the PDW Higgs modes generally become
mixed with the SC Higgs modes, which makes the problem
in general complicated. It is helpful to consider the limiting
cases, where the uniform SC gap is either much smaller or
much larger than the PDW gap. In such situations, the mixing
of PDW Higgs modes with the SC one is negligible and we can
focus on the PDW sector. It is beyond the scope of this paper
to treat the SC and PDW Higgs modes together and consider
their mixings, which is again conceptually straightforward but
technically tedious.

The generic Lagrangian for the coexistence of the uniform
SC and the PDW has been given in Ref. [4]. For our purposes,
we focus on the PDW sector and simply replace the SC order
parameter with its mean-field value �0. For the SC sector, there
exists the usual Higgs mode [57] with frequency νSC = 2|�0|.
The Lagrangian for the PDW sector is given by

L = κ0(|∂τ�Q|2 + |∂τ�− Q|2) + r(|�Q|2 + |�− Q|2)

+ u(|�Q|4 + |�− Q|4) + γ |�Q|2|�− Q|2

+ γ0|�0|2(|�Q|2 + |�− Q|2)

+ γ̃ [(�∗
0)2�Q�− Q + c.c.], (4.1)

where we have taken q = 0 as we did in the FF and PDW
states. In the coexistence phase, where �0 �= 0 and �± Q �= 0
we can expand around the saddle-point solution. We see from
the last term of Eq. (4.1) that the presence of a uniform SC
�0 further mixes and splits the two Higgs modes. Indeed,
following a similar procedure to minimize the free energy and

Δ0

Δ∗
Q

Δ∗
−Q

Δ0

FIG. 6. Feynman diagram corresponding to the coefficient γ̃ .

solve for the Higgs frequencies we find

ν1 = 2
∣∣�(0)

Q

∣∣√1 + γ

2u
,

ν2 = 2
∣∣�(0)

Q

∣∣
√√√√1 − γ

2u
+ γ̃ |�0|2

2u
∣∣�(0)

Q

∣∣2 . (4.2)

The coefficient γ̃ is given by the diagram in Fig. 6, and is
expressed as

γ̃ =1

2

∫
k,ωm

1

ω2
m + ξ 2

k

1

ω2
m + ξ 2

−k+ Q

. (4.3)

Unlike Eqs. (2.5) and (3.9), the above integral is divergent in
the IR which is cut by temperature, and thus γ̃ ∼ 1/(vF T ) in
two dimensions. For T 
 EF , we have γ̃ � γ,u.

Comparing with Eqs. (3.8) and (4.2) we see that the
existence of a uniform SC order parameter shifts the lower
Higgs frequency up while keeping the other one unchanged.
However, as we said, the above approach treating the
PDW Higgs modes separately from the SC Higgs mode is only
valid when their energies are not close, i.e., either �0 
 �

(0)
Q

or �0 � �
(0)
Q .

As for the damping of the Higgs modes, when �0 
 �
(0)
Q ,

the quasiparticle spectrum is dominated by the PDW order
parameter, and the damping threshold remains approximately
2|�(0)

Q |. As long as the shift in Higgs energy caused by �0 is
small, only one Higgs mode of the two is damped, just like
in the pure PDW state. In the opposite limit �0 � �

(0)
Q , the

relevant regions that may cause the damping of the PDW Higgs
modes are gapped by uniform SC and the damping threshold
becomes 2�0. The Higgs energies in this limit are ν1 ∼ �

(0)
Q

and ν2 ∼ √
γ̃ /u�0 ∼ �0

√
EF /T � �0. In this limit only ν2

is damped. Therefore, in both limits of the coexistence phase,
it still holds true that one of the two PDW Higgs modes is
damped. We close this section by noting that even though
the d-wave SC order parameter does not fully gap out the
Fermi surface but rather leaves Dirac nodal points with gapless
Bogoliubov quasiparticles, they, however, generically cannot
damp the PDW Higgs modes due to kinematics, just as in the
case of the gapless quasiparticles of a pure PDW state.

V. CONCLUDING REMARKS

In this paper, we analyzed the properties of the Higgs modes
of a pair density wave state, a spatially modulated supercon-
ducting state. We discussed the energy and damping of the
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Higgs modes, both from a phenomenological Lagrangian for
the order parameters and from a self-interacting fermionic
theory. We found that, even though the FS remains largely
gapless (and reorganizes as pockets), the damping of the Higgs
mode requires exceeding a threshold frequency, which is twice
the gap (2|�(0)

Q |) due to kinematics. For the PDW state, we
found that there exist two Higgs modes, and due to their
mixing the energies are split from 2|�(0)

± Q|. As a result, only
one of the two Higgs modes is damped by the coupling to the
fermionic excitations. Motivated by the putative PDW order
in the cuprate superconductors, we also discussed the fate of
the PDW Higgs modes in the presence of a uniform SC order.
We focused on two limiting cases where the mixing between
the PDW Higgs and the uniform SC Higgs can be neglected,
and analyzed the properties of the PDW Higgs modes. We
found that in the coexistence phase with uniform SC, it remains
that only one of the two Higgs modes is significantly damped,
at least in the limit where the mixing between the PDW Higgs
modes and SC Higgs mode can be neglected.

The PDW order parameters, being in the particle-particle
channel, do not directly couple to the fermion density. Just
like the Higgs mode for the uniform superconductor NbSe2,
the PDW Higgs modes can be detected via coupling to a
CDW collective mode. Since the PDW orders with momentum
Q and hence breaks translational symmetry, a CDW order
(with ordering wave vector 2 Q) is naturally induced in the
PDW state [3,4]. We propose that these Higgs modes can
be observed in Raman spectroscopy, in momentum resolved
electron energy-loss spectroscopy, and in resonant inelastic
x-ray scattering, which would provide evidence for the PDW
order in the cuprates.

We close with a few remarks on the role of disorder.
In this paper we have only worked in the clean (disorder-
free) limit. By including weak disorder, momentum conser-
vation is relaxed. Without the constraints that momentum
conservation implies for the kinematics, we expect that the
gapless quasiparticle excitations in the pure PDW state or
its coexistence state of the d-wave SC give rise to damping
for both of the PDW Higgs modes. In particular, in the
coexistence state, the density of states at the d-wave Dirac
point becomes nonzero [65–67] with disorder, which further
enhances damping. On the other hand, disorder has much more
serious effects on a translation symmetry-breaking state such
as the PDW superconductor. Indeed, in a layered material,
such as the cuprate superconductors, the expected PDW state
should be incommensurate. It is well known that in this
case any amount of disorder destroys true long-range order
[68]. Leaving behind a state with short-range order and a
vestigial (Ising) nematic orientational order [69]. The role of
disorder in PDW superconductors and its consequences has
so far been studied at a qualitative level (see Refs. [3,70]).
An interesting possibility is that the surviving vestigial order
might be either nematic or a charge 4e superconductor [36] (or
both). The behavior of Higgs modes in conventional disordered
superconductors has been studied in recent work [71]. An
in-depth analysis of the disorder effects on PDW Higgs modes
remains an interesting and important open question that we
leave for future studies.

Note added. After this paper was completed we became
aware of the recent paper by Boyack, Wu, Anderson, and
Levin [72], who studied the collective mode contributions
to the superfluid density in FF superconductors with a finite
pairing momentum Q. They found that, unlike in uniform
superconductors, the contribution from the Higgs mode in FF
superconductors is important, and that it destroys superfluidity
well before the mean-field order parameter vanishes.
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APPENDIX: ALTERNATIVE DERIVATION FOR THE
HIGGS MODE ENERGY IN THE FF STATE

In this appendix we give the details for an alternative
derivation of the Higgs mode energy in the FF state. We start
from the polarization operator defined in Eq. (2.8),

K(�m) = − 1

2

∫
k,ωm

tr [G(k,ωm + �m)τ1G(k,ωm)τ1]

=
∫

k

1√
4
∣∣�(0)

Q

∣∣2 + (ξk + ξ−k+ Q)2

× (ξk + ξ−k+ Q)2[
�2

m + 4
∣∣�(0)

Q

∣∣2 + (ξk + ξ−k+ Q)2
] , (A1)

and also define the polarization operator for the Goldstone
mode (the phase mode):

K̄(�m) = − 1

2

∫
k,ωm

tr [G(k,ωm + �m)τ2G(k,ωm)τ2]

=
∫

k

1√
4
∣∣�(0)

Q

∣∣2 + (ξk + ξ−k+ Q)2

× (ξk + ξ−k+ Q)2 + 4
∣∣�(0)

Q

∣∣2

[
�2

m + 4
∣∣�(0)

Q

∣∣2 + (ξk + ξ−k+ Q)2
] . (A2)

Note that the difference lies in the Nambu pseudospin structure
inside the trace.

Inside the FF state, the Lagrangian for the Goldstone
mode can be obtained by performing a Hubbard-Stratonovich
transformation on the four-fermion attractive interaction V

and integrating out fermions. Particularly, the mass for
the Goldstone mode is given by 1/V − K̄(�m = 0), which
should vanish by definition. Therefore 1/V = K̄(�m = 0).
On the other hand, the quadratic kernel for the Higgs mode
Lagrangian, by the same procedure, is given by 1/V − K(�m),
and setting 1/V − K(�m) = 0 gives the dispersion of the
Higgs mode.
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After the analytical continuation to real frequencies (i�m → ν + iη), we see from Eqs. (A1) and (A2) that the Higgs mode
energy is given by

0 = 1

V
− K(ν) = K(ν) − K̄(ν = 0) =

∫
k

1√
4�2 + (ξ1 + ξ2)2

[
(ξ1 + ξ2)2

−ν2 + 4�2 + (ξ1 + ξ2)2
− 1

]
(A3)

where we used the shorthand ξ1 = ξk, ξ2 = ξ−k+ Q , and � = |�(0)
Q |. From Eq. (A3) we can read off that ν = 2�, which is the

same result in Eq. (2.6).
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