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Cascades of phase transitions in spiral magnets caused by dipolar forces
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We present a mean-field theory describing the influence of long-range dipolar forces on the temperature
transition from the paramagnetic to ordered phases in frustrated Heisenberg spiral magnets. It is shown that the
dipolar interaction produces a cascade of first- and second-order phase transitions between the paramagnetic
and the spiral states upon temperature decreasing. Depending on system parameters, the following intermediate
phases can arise: an incommensurate and a commensurate sinusoidally modulated state, spiral phases in which
perpendicular spin components have different amplitudes and are modulated with the same and with different
wave vectors. We distinguish six possible sequences of phase transitions upon temperature decreasing at least four
of which were observed before experimentally in specific compounds. It is found that the action of dipolar forces
cannot always be modeled even qualitatively by small one-ion anisotropic spin interactions. We demonstrate that
the dipolar interaction is responsible for successive phase transitions in the triangular-lattice multiferroic MnI2:
Almost all available experimental findings are described quantitatively within the mean-field theory by taking
into account the exchange, the dipolar and small symmetry-allowed anisotropic spin interactions.
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I. INTRODUCTION

Frustration can have a dramatic impact on properties
of magnetic systems leading to novel phenomena which
have being extensively studied in recent years: various
spin-liquid phases, novel phase transitions, and order-by-
disorder phenomena, to mention just a few [1]. In particular,
frustration changes the type of transitions to magnetically
ordered phases in Heisenberg antiferromagnets (HAFs) on a
(stacked) triangular lattice and in frustrated HAFs with a spiral
magnetic ordering. The order parameter acquires additional
symmetry elements that lead to changing the type of the phase
transition in three-dimensional (3D) systems (the continuous
transition in nonfrustrated magnets vs the first-order one in
frustrated systems), to a novel pseudouniversal behavior in 3D
XY systems, and to the stabilization of a chiral spin-liquid
phase upon cooling before the onset of Berezinskii-Kosterlitz-
Thouless transition in 2D systems [2,3].

Weak low-symmetry spin interactions, which are always
present in real materials, complicate further the behavior of
frustrated systems upon temperature decreasing. They can
lead, for example, to a crossover to another critical behavior
near the critical point, to a changing the type of the phase tran-
sition, and to a splitting of the phase transition into a sequence
of different phase transitions. In particular, it is well known that
dipolar forces, which are always present in real compounds,
lead to the splitting of the transition to the ordered state with
120◦ magnetic structure into three successive transitions in XY

HAFs on the stacked triangular lattice [4,5]. Three successive
transitions take place upon the temperature decreasing: the
second-order transition from the paramagnetic (PM) phase
to an incommensurate sinusoidally-modulated (ICS) state,
the second-order transition to an incommensurate phase in
which two components of magnetic moments are modulated
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with different wave vectors and have different amplitudes (an
elliptic phase), and, finally, the first-order transition occurs to
the commensurate phase with the conventional 120◦ magnetic
structure. The difference between temperatures of these three
transitions is governed by the ratio of the characteristic dipolar
energy ω0 and the exchange coupling constant J which is
usually small in real materials. However three successive
phase transitions with these two incommensurate intermediate
phases were really observed in particular triangular XY HAFs
(e.g., in RbFeCl3) with J ∼ ω0 ∼ 1 K (see Refs. [4,5]).

Frustrated Heisenberg magnets in which the spiral magnetic
ordering arises due to the competition between different
exchange interactions fall into the same universality classes as
triangular HAFs [2]. To the best of our knowledge, the impact
of the dipolar interaction on transitions to magnetically ordered
phases has not been discussed yet in such models. On the other
hand, such investigation would be of particular interest due to
the great attention devoted in recent years to multiferroics
with spiral magnetic orderings appearing due to frustrated
exchange interactions [6]. This attention is stimulated by a
possible application of such compounds in the spin-related
electronics. Multiferroics MnI2 (Refs. [6–11]) and MnWO4

(Refs. [6,12–14]) are promising candidates for such analysis
because their exchange coupling constants are small (�1 K).
Besides, the magnetocrystalline anisotropy is expected to be
very small because Mn2+ ions are in spherically symmetric
states with the orbital and the spin moments L = 0 and
S = 5/2, respectively. Then, the dominating low-symmetry
interaction in these compounds is the dipolar one. It was
found experimentally that these materials show the cascade
of phase transitions upon temperature decreasing with the ICS
and elliptical intermediate phases.

We develop a mean-field theory in Sec. II describing
frustrated spiral HAFs with one magnetic ion per unit cell
(including HAFs on the triangular lattice) with dipolar forces
near the transition from the PM phase. Phases which can arise
in this model are described: the ICS phase, the commensurate
and the incommensurate spiral states, elliptical phases in
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FIG. 1. Possible sequences of temperature phase transitions in
frustrated spiral Heisenberg antiferromagnets with dipolar forces.
PM, ICS, CS, and SP stand for the paramagnetic, incommensurate
sinusoidally modulated, commensurate sinusoidally modulated, and
spiral phases, correspondingly. EL1 and EL2 are elliptical phases in
which perpendicular spin components have different amplitudes and
are modulated with the same (EL1) and with different (EL2) wave
vectors. Transitions of the first and of the second order are shown by
solid and by dashed lines, respectively. The transition from the EL1
phase to the SP one can be either of the first or of the second order
depending on the model parameters (see the text).

which two components of the order parameter are modulated
with the same and with different vectors. Six possible
sequences of transitions to these phases are established
which are summarized in Fig. 1. Phase transitions in MnBr2,
MnWO4, and in XY HAFs on the stacked triangular lattice
follow one of these six scenarios. It is shown that the transition
from the PM state takes place to the ICS phase. Then, we
extend in Sec. II available theories devoted solely to the role
of the dipolar interaction in MnBr2 [15] and in triangular XY

HAFs [4].
It is always tempting to model the action of dipolar

forces by some short-range anisotropic spin interactions in
theoretical considerations due to slow convergence of dipolar
sums that requires using the inconvenient special resummation
technique. We consider in Sec. III the possibility to reproduce
all six scenarios obtained in Sec. II by replacing the dipolar
interaction (which is a source of a biaxial anisotropy in a
system) by a short-range biaxial spin anisotropy. We find
that only three scenarios can be reproduced by the single-ion
anisotropy whereas all six scenarios arise in the case of the
exchange biaxial anisotropy.

We describe quantitatively phase transitions in MnI2 in
Sec. IV within the mean-field approach. It is shown that
dipolar forces are indispensable for a proper description of
available experimental data [7,8], but small symmetry-allowed
easy axis and hexagonal anisotropies should be also taken
into account. Besides, our analysis shows that Dzyaloshinskii-
Moriya interaction (DMI) should arise in the spiral phase
which is responsible for ferroelectric properties in this phase.
The latter result is in accordance with recent experimental
findings [11]. MnI2 follows one of six scenarios described in
Sec. II which is somewhat complicated by the small anisotropic
interactions.

We present a summary of the results and our conclusion
in Sec. V. The mean-field expansion of the free energy and
DMI in the spiral ferroelectric phase of MnI2 are discussed in
Appendixes.

II. PHASE TRANSITIONS IN SPIRAL HEISENBERG
MAGNETS WITH DIPOLAR FORCES

In this section, we discuss how dipolar forces change the
transition from the PM to the ordered phase in frustrated HAFs
with plane spiral orderings at T = 0 and with one magnetic ion
per unit cell. We assume that the order parameter is small and
develop the mean-field (Landau) theory. The corresponding
mean-field energy reads as

E = 1

2

∑
i,j

(
Jij si · sj + D

αβ

ij sα
i s

β

j

)
, (1)

where the first and the second terms describe the exchange
and the dipolar interactions, respectively, si is a mean magnetic
moment which depends on T and which is always smaller than
the spin value S, and the summation is implied over repeated
Greek letters which denote Cartesian components x,y,z. The
dipolar tensor in Eq. (1) has the form

D
αβ

ij = ω0
v0

4π

(
1

R3
ij

− 3Rα
ijR

β

ij

R5
ij

)
, (2)

where v0 is the unit cell volume and

ω0 = 4π
(gμB)2

v0
(3)

is the characteristic dipolar energy.
Within the mean-field approach, we obtain by expanding

the free energy F up to the fourth order in s (see Appendix A)

F = E + AT
∑

i

s2
i + BT

∑
i

s4
i , (4)

where A and B are values depending on S only which are given
by Eqs. (A7) and (A8), respectively. Introducing the Fourier
transform si = 1√

N

∑
q sqe

iqRi , we rewrite energy (1) near the
transition from the PM phase as

E =
∑

q

(
Jqδαβ + 1

2
Dαβ

q

)
sα

q s
β
−q =

∑
q

Hαβ
q sα

q s
β
−q, (5)

where Jq = ∑
j �=0 J0j e

iqRj and D
αβ
q = ∑

j �=0 D
αβ

0j eiqRj .
Slowly convergent lattice sums in the latter expression are
calculated below numerically by rewriting the sums in fast
convergent forms (see Ref. [16]).

Tensor Hαβ
q has three generally different eigenvalues

λ1,2,3(q) which are functions of q. As it is seen from
Eqs. (4) and (5), the smallest eigenvalue λ1(q = qsin) and
the corresponding eigenvector determine the free energy and
the spin ordering in the ordered phase near the critical
temperature. We consider below a typical situation of different
minimum values of λ1,2,3(q) (assuming that the smallest
and the largest eigenvalues are λ1 and λ3, respectively) and
an incommensurate value of qsin. Notice that qsin ≈ Q at
small dipolar interaction, where q = Q minimizes Jq. The
second-order transition from the PM phase to the ordered one
takes place within the mean-field theory at a temperature TN1

at which the bilinear term in the free energy changes the sign.
Then, one obtains from Eqs. (4) and (5)

TN1 = −λ1(qsin)

A
. (6)
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The spin texture near T = TN1 is determined by the eigenvec-
tor corresponding to λ1(q = qsin) which gives an incommen-
surate sinusoidally-modulated structure

si = a1 sin qRi + a2 cos qRi (7)

with a1||a2, |a1,2| ∝ s, and q = qsin. Minimization of the free
energy gives for its value and for the order parameter in the
ICS phase

Fics = − (λ1(qsin) + AT )2

6BT
= −A2(TN1 − T )2

6BT
, (8)

s =
√

2A

3B

TN1 − T

T
, (9)

where Eq. (6) is taken into account.
The model behavior at T < TN1 depends strongly on values

of its parameters. Let us consider possible ordered phases
which can arise at T < TN1. The first-order transition can
happen from the ICS phase to that with the spiral order which
is described by Eq. (7) with |a1| = |a2|, a1 ⊥ a2, and q = qsp.
The free energy of this state (denoted below as SP phase) and
the transition temperature read as

Fsp = − ([λ1(qsp) + λ2(qsp)]/2 + AT )2

4BT
, (10)

Tsp = TN1 −
(

1 +
√

2

3

)
S(S + 1)(λ1(qsp)

+ λ2(qsp) − 2λ1(qsin)), (11)

where λ1(q) + λ2(q) reaches its minimum at q = qsp which

is smaller than the minimum of λ1(q) + λ3(q). Directions of
a1 and a2 are determined by eigenvectors corresponding to
λ1(qsp) and λ2(qsp).

It might happen that a commensurate vector qcs lies not far
from qsin such that 2qcs or 4qcs are equal to a reciprocal lattice
vector. Although λ1(q) does not reach a minimum at q = qcs ,
the free energy of the sinusoidally-modulated commensurate
structures (CS) with q = qcs can become lower at some
T < TN1 than that of the ICS state. It can happen because
summations over the lattice give different results at q = qcs

and at an incommensurate q after substitution of Eq. (7) to
Eqs. (1) and (4). Thus, one obtains for the free energy in this
case

Fcs = − (λ1(qcs) + AT )2

4BT
. (12)

Notice the smaller numerical factor in the denominator of
Eq. (12) as compared to that in Eq. (8) which makes possible
the considered first-order transition from the ICS structure at
the critical temperature

Tcs = TN1 − 2

(
1 +

√
2

3

)
S(S + 1)(λ1(qcs) − λ1(qsin)).

(13)
A second-order transition can take place from the ICS to an

elliptic structure described by Eq. (7) with |a1| �= |a2|, a1 ⊥ a2,
and q = qsin. Henceforth, it is called EL1 phase. One finds for
the free energy of this state and the transition temperature

Fel1 = −3(λ1(qsin) + AT )2 − 2(λ1(qsin) + AT )(λ2(qsin) + AT ) + 3(λ2(qsin) + AT )2

16BT
, (14)

Tel1 = TN1 − S(S + 1)(λ2(qsin) − λ1(qsin)). (15)

An elliptical structure in which two orthogonal spin components have different modulation vectors can arise also via a
second-order transition from the ICS phase:

si = a1 sin qsinRi + a2 cos q2Ri , (16)

where |a1| �= |a2|, a1 ⊥ a2, and q2 �= qsin. Vector q2 corresponds to the smallest eigenvalue of Hαβ
q among eigenvectors which

are perpendicular to the spin polarization in the ICS phase. Henceforth, this state is called EL2 phase. The free energy and the
transition temperature read in this case

Fel2 = −3(λ1(qsin) + AT )2 − 4(λ1(qsin) + AT )(λ1(q2) + AT ) + 3(λ1(q2) + AT )2

10BT
, (17)

Tel2 = TN1 − 2S(S + 1)(λ1(q2) − λ1(qsin)). (18)

At T 	 TN1, CS and SP phases are stable if λ1(qcs) <

(λ1(qsp) + λ2(qsp))/2 and λ1(qcs) > (λ1(qsp) + λ2(qsp))/2,
respectively. These conditions are equivalent to Tcs > Tsp and
Tcs < Tsp, correspondingly. Conditions for transitions from
the ICS to other phases mentioned above can be formulated
in terms of inequalities between values of Tcs , Tsp, Tel1,
and Tel2 given by Eqs. (11), (13), (15), and (18). The
following six different scenarios can be distinguished which
are schematically shown in Fig. 1.

(i) Tcs > Tsp,Tel1,Tel2. There is a first-order transition from
the ICS to the CS state. The sequence of the phase transitions

under temperature decreasing is the following: PM → ICS →
CS. Phase transitions in MnBr2 follow this scenario [15].

(ii) Tsp > Tcs,Tel1,Tel2. It is possible only if qsp �= qsin.
Then, there is a first-order transition from the ICS to the
SP phase. The corresponding sequence is PM → ICS →
SP. This scenario appears in MnI2 which is complicated by
small anisotropic spin interactions leading to an additional
transition splitting the ICS state into two different ICS phases
(see below).

(iii) Tel1 > Tcs,Tsp,Tel2 and Tcs > Tsp. There is a second-
order transition from the ICS to the EL1 structure and a
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first-order transition from the EL1 to the CS order. The
corresponding sequence is PM → ICS → EL1 → CS. This
succession of phase transitions was experimentally observed
in MnWO4 [12].

(iv) Tel1 > Tcs,Tsp,Tel2 and Tsp > Tcs . There is a second-
order transition from the ICS to the EL1 structure. The
subsequent transition from the EL1 to the SP phase is of the
first-order type if qsp �= qsin and of the second-order type if
qsp = qsin. The corresponding sequence is PM → ICS →
EL1 → SP.

(v) Tel2 > Tcs,Tsp,Tel1 and Tcs > Tsp. There is a second-
order transition from the ICS to the EL2 structure and a
first-order transition from the EL2 to the CS phase. The
corresponding sequence is PM → ICS → EL2 → CS.

(vi) Tel2 > Tcs,Tsp,Tel1 and Tsp > Tcs . There is a second-
order transition from the ICS to the EL2 structure and a first-
order transition from the EL2 phase to the spiral order. The
corresponding sequence is PM → ICS → EL2 → SP. This
scenario is realized in XY HAFs on the stacked triangular
lattice [4,5].

Notice that some fine details can be omitted in the picture
just described. For instance, a small third harmonic of the
modulation vector q can arise in Eq. (7) which leads to a
weak temperature dependence of q in the ICS state as it was
observed [15] in MnBr2. However we believe that apart from
such fine details the above picture reflects all the possible
phases and phase transitions which can arise in the considered
model. Notice also that additional magnetic atoms in the unit
cell and/or small anisotropic short-range spin interactions can
complicate the above scenarios as it is demonstrated below by
the example of MnI2.

We assume in the present consideration that frustration
leads to a coplanar spin ordering at small T and consider
how dipolar forces influence the temperature transition to
this ordered state. Our analysis shows that only coplanar
intermediate phases can arise due to dipolar forces in this case.
Generally, noncoplanar spin textures can appear in frustrated
Heisenberg models (see, e.g., Refs. [17,18]). Consideration of
the dipolar interaction in such systems is out of the scope of
the present paper.

III. SHORT-RANGE ANISOTROPIC SPIN INTERACTIONS

In this section, we discuss the possibility to describe at least
qualitatively the influence of the long-range dipolar interaction
by some short-range spin interactions. We show first that
although dipolar forces act as a source of low-symmetry biaxial
anisotropy in a system, six scenarios of phase transitions
discussed in Sec. II cannot be reproduced by the one-ion biaxial
anisotropy of the form

Ean =
∑

i

(
E

[(
sx
i

)2 − (
s
y

i

)2] − G
(
sz
i

)2)
. (19)

Let us assume for definiteness that z is the easy axis and x is
the hard one:

G > E > 0, δA = G − E. (20)

Particular analysis shows that the EL2 structure is always less
energetically favorable than the EL1 state. Then, only relations
between eigenvalues at q = qsin and the lowest eigenvalue

among commensurate points λ1(qcs) determine the sequence
of phase transitions. By the energy reason, the modulation
vector in the SP and in the EL1 phases should be equal to qsin.
As a result, the system can follow three different scenarios.

(i) A “strong anisotropy” scenario is realized when Tcs >

Tel1 [see Eqs. (13) and (15)] that reads as

λ2(qsin) − λ1(qsin) = δA > 2

(
1 +

√
2

3

)
(λ1(qcs) − λ1(qsin))

(21)

[notice that Tel1 is always larger than Tsp given by Eq. (11)
in the considered model with biaxial anisotropy (19)]. Thus,
scenario (i) described in Sec. II is realized.

(ii) A “moderate anisotropy” case implies

2(λ1(qcs) − λ1(qsin))

< δA < 2

(
1 +

√
2

3

)
(λ1(qcs) − λ1(qsin)) (22)

that leads to the scenario (iii) described in Sec. II. Thus, the
phase diagram very similar to that of MnWO4 is obtained
recently theoretically in Ref. [19] in a spin model containing
single-ion anisotropy (19) and not containing the dipolar
interaction.

(iii) A “weak anisotropy” case implies that

δA < 2(λ1(qcs) − λ1(qsin))

⇔ λ1(qsin) + λ2(qsin)

2
< λ1(qcs) (23)

and scenario (iv) described in Sec. II is realized. However the
last first-order transition (from the EL1 to the SP phase) occurs
at small temperature beyond the range of the mean-field theory
validity: It follows from Eqs. (10) and (14) that Fsp does not
cross Fel1 because

Fsp − Fel1 = (λ2(qsin) − λ1(qsin))2

8BT
> 0, (24)

where we replace qsp by qsin as it is noted above. The very
existence of the transition from the EL1 to the SP phase
follows from the fact that the SP state is stable at T = 0 in
the considered “weak anisotropy” regime.

We point out that all six scenarios described in Sec. II can
be obtained using a small anisotropic short-range exchange
interaction of the form [cf. Eq. (19)]

Ean2 = 1

2

∑
i,j

(
Eij

[
sx
i sx

j − s
y

i s
y

j

] − Gij s
z
i s

z
j

)
. (25)

It happens because Fourier components of Eij and Gij become
momentum dependent that enriches the model behavior.

IV. PHASE TRANSITIONS IN MnI2

MnI2 crystallizes in a hexagonal-layered structure shown
in Fig. 2 with lattice parameters a = 4.146 Å and c =
6.829 Å [8]. Mn2+ ions have spin S = 5/2 and g factor
g ≈ 2. Three successive phase transitions were identified
upon temperature decreasing [7]. At TN1 = 3.95 K, a second-
order transition occurs from the paramagnetic state to the
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FIG. 2. Crystal structure of MnI2. Exchange interactions J are
also shown.

incommensurate sinusoidal phase with the modulation vector
qsin = (0.1025,0.1025,0.5). At TN2 = 3.8 K, a second-order
transition occurs to another incommensurate sinusoidal phase
in which the modulation vector moves continuously from qsin

towards qsp = (0.181,0,0.439) upon temperature decreasing.
At TN3 = 3.45 K, a jump takes place to a proper screw helical
order with the spiral vector qsp. Spins remain perpendicular to
the modulation vectors at T < TN1. Then, in the helical phase,
spins lie in a plane which is canted from the triangular basal
ab plane. One notes that a modified scenario (ii) described
in Sec. II is realized in MnI2 [as compared to scenario (ii),
the additional transition arises in MnI2 separating two ICS
phases]. We demonstrate below that small one-ion anisotropic
interactions are responsible for this modification.

A. Basic equations

For the mean-field description of the successive phase
transitions in MnI2, we use a model which is based on
those proposed before for MnI2 [9] and for the isostructural
compound MnBr2 possessing a collinear low-temperature
phase rather than the spiral one [15]. The latter model includes
the magnetic dipole interaction, three in-plane exchange
interactions, and three exchange couplings between spins from
neighboring planes (see Fig. 2). Notice that interaction Jnnc

is included because of its straight superexchange path via
iodide atoms. This is the only exchange interaction which
lowers the sixfold rotational symmetry around the c axis to the
threefold one. We take into consideration also small anisotropy
terms which are allowed by symmetry: a single-ion easy-axis
anisotropy, an in-plane hexagonal anisotropy, and DMI. DMI
arises only in the spiral phase (which is ferroelectric in MnI2)
due to displacements of iodide atoms removing the inversion
symmetry [11] (see also Appendix B).

The corresponding mean-field energy reads as

E = 1

2

∑
i,j

Jij (sisj ) + 1

2

∑
i,j

D
αβ

ij sα
i s

β

j − Y
∑

i

(
sz
i

)2

−Z
∑

i

(
s
y

i

)2[(
s
y

i

)2 − 3
(
sx
i

)2]2 + EDM, (26)

where the first two terms describe the exchange and the dipolar
interactions, the third and the fourth terms are the one-ion and
the sixfold in-plane anisotropies, respectively, the last term

stands for the DMI energy which is discussed below in detail,
and a Cartesian coordinate system is implied whose y and z

axes coincide with crystallographic b and c ones (see Fig. 2),
respectively. The characteristic dipolar energy in MnI2 is ω0 ≈
0.31 K.

Due to the sixfold anisotropy in Eq. (26), one has to expand
the free energy F up to the sixth order in s with the result
[cf. Eq. (4)]

F = E + AT
∑

i

s2
i + BT

∑
i

s4
i + CT

∑
i

s6
i , (27)

where A, B, and C are given by Eqs. (A7)–(A9). The Fourier
transform of the exchange interaction has the form

Jq = 2[J1( cos qa + cos qb + cos(qa + qb)) + J2( cos 2qa

+ cos 2qb + cos 2(qa + qb)) + Jc cos(qc)

+ Jab( cos(2qa + qb) + cos(qa + 2qb) + cos(qa − qb))

+ 2Jnc cos qc( cos qa + cos qb + cos(qa + qb))

+ Jnnc( cos(2qa + qb − qc) + cos(qa + 2qb + qc)

+ cos(qa − qb + qc))]. (28)

B. Sinusoidal phases

As it is explained above, the transition takes place from the
PM phase to the ICS one at T = TN1 which is given by Eq. (6).
Let us consider the spin ordering at T < TN1. It depends
strongly on the values of the model parameters. However,
the range of possible values of the exchange constants is
reduced considerably by the requirement that Jq should
have a minimum at q ≈ qsin. Then, we try to reproduce the
experimental data by slightly varying the exchange constants
and including the small interactions. Our analysis shows that
the behavior of λ1(q) and the corresponding eigenvector are
quite simple at a moderate easy-axis anisotropy constant
Y < ω0/2. Dipolar forces make the first eigenvector to be
always perpendicular to q and to lie in the ab plane. This
finding is in agreement with experimental data observed in ICS
phases [7]. The difference λ1(q) − Jq is almost independent of
qz and it depends slightly on the value of the q projection on the
ab plane. Then, at temperatures slightly below TN1, we obtain a
spin texture of the form (7) with q = qsin and a1 = s(1,−1,0),
a2 = 0. The corresponding free energy is given by

F (1)
ics = s2

2
(λ1(qsin) + AT ) + 3

8
BT s4

− 5

16
Zs2

y

(
s2
y − 3s2

x

)2 + 5

16
CT s6. (29)

Notice that the last two terms are negligible in Eq. (29) at
T ≈ TN1 because they are of the sixth order in s. However
they come into play at lower T upon s growing up. They
are indispensable for the description of the experimentally
obtained transition at T = TN2 < TN1 to another ICS phase
in which the modulation vector q moves continuously from
qsin towards qsp upon the temperature decreasing at TN2 >

T > TN3. The reason for this moving is simple: The sixfold
anisotropy makes directions [100], [010], and [110] to be
easy directions for the magnetization. On the other hand, s
is directed along the hard [11̄0] direction at T ≈ TN1. As a
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qsin

qf

ssin

sf

┴

┴

FIG. 3. Spin polarization s and the projection q⊥ of the mod-
ulation vector on the ab plane in two incommensurate sinusoidal
phases of MnI2. At TN1 > T > TN2, q = qsin and s = ssin. At
TN2 > T > TN3, s and q⊥ rotate continuously upon the temperature
decreasing from ssin and q⊥

sin to sf and q⊥
f , respectively. The clockwise

rotation presented and the corresponding anticlockwise rotation
are equally possible. The spin polarization remains perpendicular
to the modulation vector in both incommensurate sinusoidal phases.

result, the magnetization (7) starts to rotate as it is shown in
Fig. 3 from [11̄0] to one of the nearest easy directions ([01̄0] or
[100]) at some temperature T = TN2 < TN1, when the value
of the third term in Eq. (29) becomes large enough. The
second-order transition at T = TN2 is related with the breaking
of the twofold rotational symmetry in the first ICS phase (the
magnetization is directed along the twofold symmetry axis of
the magnetic subsystem in the first ICS phase, as is seen from
Fig. 3). To demonstrate this, let us consider the correction δF
to free energy (29) which arises due to small deviations of s
and q from ssin and qsin, respectively,

δF = c1

2
s2δq2 − c2sδsδq + δs2

(
1

2

(
Jqsin − c3 + AT

)

+ 3

4
BT s2 + 15

16
CT s4 − 45

16
Zs4

)

+ δs4 3

8

(
BT + 5

2
s2(2Z + CT )

)
, (30)

where s = ssin + δs, δs ⊥ ssin, |ssin| = s is given by Eq. (9),
q = qsin + δq, and c1,2,3 are some coefficients which are
positive in MnI2. Minimization of Eq. (30) with respect for
δq gives δq = δsc2/(c1s). Substituting the latter equality to
Eq. (30), one finds that the coefficient before δs2 becomes
negative at T < TN2 signifying the second-order transition at
T = TN2, where

TN2 ≈ TN1

(
1 +

√
2B2(ATN1 − �)

5A2Z

)−1

, (31)

� = Jqsin − c3 − c2
2/c1, and we neglect terms proportional

to C which are negligible in MnI2 as specific calculations
show. The modulation vector q remains perpendicular to the

magnetization in both ICS states in order to minimize the
exchange and the dipolar energy.

C. The proper screw spiral phase

The first-order transition is observed in MnI2 from the
second ICS phase to the proper screw spiral phase. The plane
in which spins lie in the SP phase does not coincide with the
ab plane. The free energy of this phase reads as

Fsp = s2

[
J (q) + 1

4
Dαβ

q vα
spvβ∗

sp − Y

2
sin2 θ + AT

]

+BT s4 − Zs6f (θ,ϕ) + CT s6 + EDM, (32)

where θ and ϕ are spherical angles determining the normal
to the plane in which spins lie, vsp = (cos θ cos ϕ + i sin ϕ,
cos θ sin ϕ − i cos ϕ, − sin θ ), f (θ,ϕ) = (294 + 171 cos 2θ +
42 cos 4θ + 5 cos 6θ + 160 cos 6ϕ sin6 θ )/1024, and the spin
ordering of the form (7) is assumed with a1 ⊥ a2 and |a1| =
|a2|. The easy-axis anisotropy Y produces the canting of the
plane in which spins lie from the ab plane (spins would lie in
the ab plane in the spiral phase if Y was zero). In Appendix
B, we carry out a phenomenological consideration of DMI in
MnI2 based on available experimental data and show that EDM

in Eq. (32) has the form

EDM = −2s2D sin

(√
3

2
qx

)
cos θ. (33)

D. Results of numerical calculations

We obtain the following set of parameters using which the
above theory reproduces quantitatively almost all the essential
features of phase transitions in MnI2:

J1 = −0.13, J2 = 0.1, Jab = −0.04,

Jc = 0.04, Jnc = −0.0084, Jnnc = 0.0036,

Y = 0.05, Z = 0.015, D = 0,

(34)

where all values are in Kelvins. Note that D is equal to zero in
ICS phases due to the inversion symmetry. Equations (6) and
(31) reproduce accurately transition temperatures to both ICS
phases TN1 = 3.95 K and TN2 = 3.8 K. The trajectory of the
modulation vector q in the second ICS phase is almost straight
in the reciprocal space. It can be described as

q ≈ (1 − X(T ))qsin + X(T )qf , (35)

where qsin = (0.1025,0.1025,0.5) and qf = (0.167,0,0.442)
are the initial and the final modulation vectors, correspondingly
(see Figs. 3 and 4). This behavior of q is in a good quantitative
agreement with experimental data from Ref. [7]. One finds for
coefficients in Eqs. (30) and (31): c1 ≈ 0.08 K, c2 ≈ 0.045 K,
c3 ≈ 0.007 K, and � ≈ 0.62 K.

Unfortunately, the above formulas failed to describe quan-
titatively the experimentally observed first-order transition at
TN3 ≈ 3.45 K to the spiral phase which would take place as a
result of the free energies Fics and Fsp crossing. The reason is
that our theory is actually based on the expansion in powers
of s/S whereas this parameter reaches the value of 0.6 at
T ≈ TN3. We find by minimizing energy (26) at T = 0 that
the following set of parameters gives the proper screw spiral
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T (K)
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FIG. 4. Plot of X(T ) which parametrizes the evolution of the
modulation vector q upon the temperature decreasing in incommensu-
rate sinusoidal phases of MnI2 [see Eq. (35)]. At TN3 < T < TN2, the
trajectory of q is almost straight in the reciprocal space which starts
at qsin = (0.1025,0.1025,0.5) and finishes at qf = (0.167,0,0.442).
Experimental data taken from Ref. [7] are shown by circles.

ordering with qsp = (0.166,0,0.428) (the latter is very close
to the experimentally observed value of (0.181,0,0.439)):

J1 = −0.105, J2 = 0.095, Jab = −0.025,

Jc = 0.06, Jnc = −0.0008, Jnnc = 0.03,

Y = 0.122, Z = 0.015, D = 0.001,

(36)

where all values are in Kelvins. Notice that DMI plays a minor
role in the stabilization of the experimentally observed spiral
structure at small T . The small discrepancy between Eqs. (34)
and (36) is quite expected because it is well known that thermal
fluctuations can renormalize bare parameters in the free energy.

V. SUMMARY AND CONCLUSION

To summarize, we discuss within the mean-field theory
the impact of the dipolar interaction on critical properties of
frustrated Heisenberg spiral antiferromagnets. We demonstrate
that dipolar forces turn the single second-order temperature
transition from the paramagnetic phase to the spiral one
into a sequence of phase transitions of the first and of
the second orders. We distinguish six possible scenarios of
the successive phase transitions and possible intermediate
phases which are summarized in Fig. 1. To the best of our
knowledge, at least four of these scenarios were observed
before experimentally in specific compounds (e.g., MnBr2,
MnI2, MnWO4, and RbFeCl3). We find that not all of
these scenarios and intermediate phases can be obtained by
replacing the long-range dipolar forces by one-ion anisotropy
interactions. In contrast, all the essential features obtained can
be reproduced qualitatively by proper short-range exchange
anisotropy terms in the Hamiltonian.

We examine using the mean-field theory phase transitions
in multiferroic MnI2 showing incommensurate spiral ordering
at T = 0. We reproduce quantitatively the majority of exper-
imental findings observed in this compound. It is shown that

the dipolar interaction plays the crucial role in producing the
sequence of phase transitions found experimentally. However
small symmetry-allowed short-range anisotropic interactions
should be also taken into account which lead also to a mod-
ification of the corresponding scenario of phase transitions:
The additional second-order transition arises separating two
different ICS phases.
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APPENDIX A: MEAN-FIELD EXPANSION
OF THE FREE ENERGY

The mean-field expansion of the free energy F in powers
of s can be carried out in Heisenberg antiferromagnets with
dipolar forces as it is done, e.g., in Ref. [20]. The effective
mean-field Hamiltonian reads as

Heff = −
∑

i

HiSi , (A1)

where Hi is the effective field [see Eq. (1)]

Hα
i = −1

2

∑
jβ

D
αβ

ij s
β

j − 1

2

∑
j

Jij s
α
j . (A2)

One obtains from the partition function Z = Sp(e−Heff/T ) for
the magnetization at ith site

sα
i = ∂ ln Z

∂Hα
i /T

= Hα
i

Hi

SBS

(
HiS

T

)
, (A3)

where

BS(x) = 2S + 1

2S
coth

(
2S + 1

2S
x

)
− 1

2S
coth

( x

2S

)
(A4)

is the Brillouin function. One infers from Eq. (A3) that si‖Hi ,
∂F = −∑

iα sα
i ∂Hα

i , and

F = −
∑
iα

∫ Hα
i

0
sα
i dHα

i = −
∑
iα

sα
i Hα

i +
∑
iα

∫ sα
i

0
Hα

i dsα
i

= E + T
∑

i

∫ si/S

0
B−1

S (x)dx, (A5)

where E is given by Eq. (1), B−1
S (x) is the inverse of the

Brillouin function. Using expansion

B−1
S (x) = 3S

S + 1
x + 9((2S + 1)4 − 1)

80(S + 1)4
x3

+ 9S6

5(S + 1)6

[
9S

5(S + 1)

(
(2S + 1)4 − 1

(2S)4

)2

− 6((2S + 1)6 − 1)
7(2S)6

]
x5 + o(x6), (A6)
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y(a) (b)

1
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v

┴

FIG. 5. (a) MnI2 in the ferroelectric spiral phase in which the
electric polarization is parallel to the y axis. The projection of the
spiral vector q⊥

sp on the ab plane is shown which is directed along
the x axis. White and gray big circles are iodide ions which lie above
and below the ab plane, correspondingly (see also Fig. 2). Shifts
of iodide ions are depicted by arrows which are discussed in the
text. (b) Illustration of how these shifts break the inversion symmetry
between two manganese ions and lead to the Dzyaloshinskii-Moriya
interaction.

one comes from Eq. (A5) to Eqs. (4) and (27), where

A = 3

2S(S + 1)
, (A7)

B = 9((2S + 1)4 − 1)
20(2S)4(S + 1)4

, (A8)

C = 3

10(S + 1)6

[
9S

5(S + 1)

(
(2S + 1)4 − 1

(2S)4

)2

− 6((2S + 1)6 − 1)
7(2S)6

]
. (A9)

APPENDIX B: DZYALOSHINSKY-MORIA INTERACTION
IN THE SPIRAL PHASE OF MnI2

It is obtained experimentally that the phase with the spiral
magnetic order is ferroelectric in MnI2 [11]. The helical
magnetic order breaks almost all symmetry elements: As
soon as the in-plane projection of qsp is directed along the
x axis, only the twofold rotational symmetry with respect to
the y axis remains [see Fig. 5(a)]. This symmetry element
allows the electric polarization to be directed along the y

axis. This conclusion is in agreement with the experimental
observation of Ref. [11]. In Ref. [10], the general Katsura,
Nagaosa, and Balatsky (gKNB) model was proposed for the
electric polarization in spiral phases of triangular-lattice anti-
ferromagnets. However, it is pointed out in Ref. [11] that the
inverse Dzyaloshinskii-Moriya mechanism describes correctly

the electric polarization in MnI2 at small magnetic fields.
According to the inverse Dzyaloshinskii-Moriya mechanism
(that is a simplified version of the gKNB model), contribution
to the polarization from a couple of neighboring spins
reads as [6]

pij ∝ eij × [si × sj ], (B1)

where eij = rij /rij and rij is a vector connecting sites i and j .
Let us consider the gray iodide ion lying on the x axis shown in
Fig. 5(a) and calculate contributions to the polarization p from
three spin pairs adjacent to this iodide ion which are presented
in Fig. 5(a). Using Eq. (B1), we find that one spin pair does not
contribute to p because spins are collinear in this pair whereas
one has for the rest two spin pairs

si × sj = s2 sin

(√
3

2
qx

)
n, (B2)

where n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is a unit vector that
is normal to the plane in which spins lie. Then, one obtains
from Eqs. (B1) and (B2) for the contribution to p related to
one iodide ion

p ∝ s2 sin

(√
3

2
qx

)
[(

√
3/2,1/2,0) × n

+ (
√

3/2,−1/2,0) × n]

∝ eys
2 sin

(√
3

2
qx

)
cos θ, (B3)

where ey is a unit vector directed along the y axis. Equation
(B3) is nonzero for the incommensurate proper screw spin
helix whose plane is canted from the ab plane (that is in
agreement with results of Ref. [10]). It can be shown that
Eq. (B3) is valid for all iodide ions. Thus, we obtain that
Eq. (B1) describes correctly the direction of p observed
experimentally in MnI2. Then, due to the C2 symmetry of the
y axis and the translational invariance, iodide ions should shift
as is shown in Fig. 5(a). As DMI vector Dij in DMI between
a pair of spins related with one iodide ion is proportional to
rij × v [see Fig. 5(b)], impacts to Dij from two iodide ions
(shown in Fig. 5 in gray and white) would cancel each other
if there were not these displacements. Then, iodide ions shift
produces the electric polarization and Dij ∝ rij × ey which
is parallel to the c axis. As a result, one comes to Eq. (33)
for EDM .
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