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Temperature-dependent magnetic experiments such as pump-probe measurements generated by a pulsed laser
have become a crucial technique for switching the magnetization in the picosecond time scale. Apart from having
practical implications on the magnetic storage technology, the research field of ultrafast magnetization poses also
fundamental physical questions. To correctly describe the time evolution of the atomic magnetic moments under
the influence of a temperature-dependent laser pulse, it remains crucial to know if the magnetic material under
investigation has magnetic excitation spectrum that is more or less dependent on the magnetic configuration,
e.g., as reflected by the temperature dependence of the exchange interactions. In this paper, we demonstrate from
first-principles theory that the magnetic excitation spectra in Co in fcc, bcc, and hcp structures are nearly identical
in a wide range of noncollinear magnetic configurations. This is a curious result of a balance between the size
of the magnetic moments and the strength of the Heisenberg exchange interactions, that in themselves vary with
configuration, but put together in an effective spin Hamiltonian results in a configuration-independent effective
model. We have used such a Hamiltonian, together with ab initio calculated damping parameters, to investigate
the magnon dispersion relationship as well as ultrafast magnetization dynamics of Co and Co-rich CoMn
alloys.

DOI: 10.1103/PhysRevB.95.214417

I. INTRODUCTION

Ultrafast magnetism, with relevant time scales being an or-
der of a few picoseconds, has become an intense research field.
The motivation may be found both in fundamental aspects as
well as practical implications of these phenomena. Most of
the information stored technologically is done in a magnetic
medium. Hence, the possibility to write and retrieve infor-
mation in a magnetic material at a high speed and with low-
energy consumption has obvious societal implications. For this
reason, ultrafast magnetization dynamics has naturally become
an intense research field. The experiment by Beaurepaire and
co-workers [1] represents a breakthrough experiment, with
several experimental studies that followed [2–8]. However,
despite several years of intense investigations, a microscopic
understanding of the processes of ultrafast magnetization
dynamics is far from being established.

The most common experimental technique is by pump
probe, where an optical laser pulse excites the electron subsys-
tem. The excited electrons become thermalized quickly [9] and
the thermal energy of the electron subsystem is transferred to
the spin and lattice subsystems. This defines three thermal
reservoirs and typically the three reservoirs reach thermal
equilibrium after some 10–20 ps. The time evolution of the
temperatures of these reservoirs may be quantified by the so-
called three-temperature model [1,10,11]. It should be noted
that in the first few picoseconds of a pump-probe experiment,
the material is not in thermal equilibrium between the three
reservoirs, but at a sufficiently long time after the pump pulse,
the temperature is the same in different subsystems.

On the theoretical side, it has been argued that atomistic
spin-dynamics simulations should be relevant over a time
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scale of picoseconds and longer [12]. The argument here is
that a description of atomistic moments is relevant, and that
these moments evolve in time with a spin temperature that is
given by the three-temperature model [13]. In this description,
the magnetic moments and all parameters of an effective
spin Hamiltonian are evaluated from first-principles theory.
Coupled to the equations of motion of the atomic spins [14],
this allows for numerical results of the time evolution of the
magnetic moments, forming an ab initio theory that does
not rely on experimental results as input. The dominating
parameters of such a spin Hamiltonian are the size of the atomic
moments coupled to the interatomic exchange interaction [15].
To mention an example of the fruitfulness of this approach, we
note that the first experimental result of fcc Ni was reproduced
by such simulations with good accuracy [16].

Recently, it was shown that the interatomic exchange inter-
actions of bcc Fe have a distinct temperature dependence, and
only a good agreement with experimental room-temperature
magnon excitations was achieved when the exchange pa-
rameters were evaluated at room temperature [17]. This
demonstrates that if a too broad temperature interval needs
to be covered, bcc Fe is not an ideal Heisenberg system,
and that the normal concepts of a Heisenberg Hamiltonian,
e.g., magnons, can still be considered although configuration-
dependent exchange parameters must be evaluated and used.
This puts high demands if a three-temperature model is
attempted to be used to reproduce an experimental pump-probe
experiment since at each time step the exchange parameters
(and magnetic moment) should in principle be recalculated, in
order to take the changing temperature of the spin system into
account. If a material is a good Heisenberg system or not, i.e., if
the exchange parameters are independent on the temperature or
not, is difficult to stipulate before a first-principles calculation
of the configurational-dependent exchange parameters has

2469-9950/2017/95(21)/214417(12) 214417-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.214417


R. CHIMATA et al. PHYSICAL REVIEW B 95, 214417 (2017)

been made, but several systems have by now been suggested
to have exchange parameters that depend more or less strongly
on temperature. Hence, it seems that there are indeed very few
materials that are good Heisenberg systems. In this paper, we
demonstrate that Co, in fcc, bcc, and hcp structures, is rather
unique in this sense, at least among the elemental metals,
displaying the features of a Heisenberg magnet in a wide range
of magnetic configurations. As we shall see below, this comes
with a twist since both the values of the magnetic moments and
the strength of the Heisenberg exchange parameters depend on
configuration, but put together in a spin Hamiltonian, they form
a model that curiously is configuration independent. We also
investigate the magnetization dynamics of this system, and
compare it to a Co-Mn alloy in the bcc and bct structures.

The paper is organized as follows. In Sec. II, we present the
theoretical tools used to describe the ground state and dynami-
cal properties. Section III contains the numerical details of the
calculations. Results and discussions are presented in Sec. IV.
Finally, we give conclusions in Sec. V.

II. METHODS

In order to investigate ultrafast demagnetization dynam-
ics of Co and Co-Mn alloys, we combined first-principles
electronic structure calculations with atomistic spin-dynamics
simulations. These methods are described below.

A. Electronic structure calculations

The ground-state electronic structure and magnetic proper-
ties of the studied materials are obtained via density functional
theory (DFT) calculations. The Kohn-Sham equations are
solved within the Korringa-Kohn-Rostoker (KKR) Green’s
function formalism as implemented in the spin-polarized
relativistic KKR (SPR-KKR) package [18], and within linear
muffin-tin orbital method [19] in atomic sphere approxima-
tion (LMTO-ASA). We used both real-space (RS) [20] and
reciprocal-space [21] realizations of LMTO-ASA. The rela-
tivistic effects are considered by solving the fully relativistic
Dirac equation [22]. Substitutional disorder is treated by mak-
ing use of the coherent potential approximation (CPA) [23].
The high-temperature paramagnetic phase was modeled by
disordered local moment (DLM) approximation [24,25] in
combination with CPA. Here, the Co-Mn binary systems were
treated as quaternary (Co↑

0.5Co↓
0.5)1−x(Mn↑

0.5Mn↓
0.5)x alloys,

with a random mixture of the two magnetic orientations of
Co and Mn. DLM approach is believed to accurately describe
the high-temperature paramagnetic phase [24], therefore,
we apply this tool, in case of alloys, to evaluate whether
the local magnetic moments and magnetic coupling constants
are sensitive to the temperature-induced fluctuations or not.

The interatomic exchange interactions Jij are calculated via
the Liechtenstein-Katsnelson-Antropov-Gubanov formalism
(LKAG) [15] as implemented in the SPR-KKR and the
RS-LMTO-ASA codes and its extension to noncollinear spin
arrangement [17] (see Sec. II B). The site- and element-
resolved Gilbert damping parameters (α, α1(Co), α2(Mn)) are
calculated based on the linear response formalism [26] (see
Sec. II C).

B. Calculation of the interatomic Ji j exchange parameters

Interatomic magnetic exchange interaction parameters Jij

are calculated from first principles. For collinear atomic spin
alignment, the method of infinitesimal spin rotation was
derived almost 30 years ago [15]. The energy (grand potential)
variation can be calculated when the atomic spin is rotated by
a small angle simultaneously, and mapped onto a bilinear spin
model:

H = −1

2

∑
i �=j

Jij �ei · �ej , (1)

where the unit vector �ei (�ej ) denotes the direction of the spin
at site i (j ). Although it might seem trivial, we write also this
spin Hamiltonian in the more common form, that explicitly
describes the coupling of atomic spin moments, �m:

H = −1

2

∑
i �=j

J̃ij �mi · �mj . (2)

For the discussion of our results (below) it becomes relevant to
make a distinction between Eqs. (1) and (2), and the fact that
Jij and J̃ij differ only by a factor mimj , where �mi = mi �ei .

The LKAG interatomic exchange formula can be written
as Jij = A

↑↓
ij , where the symbols ↑ and ↓ refer to the up- and

down-spin channels, respectively, while

A
αβ

ij = 1

π

∫ EF

−∞
dε Im TrL

(
piT

α
ij pjT

β

ji

)
. (3)

For collinear spin configuration, the corresponding T
↑
ij and T

↓
ij

matrices denote the component of the scattering path operator
(SPO), τij , in the two spin channels between sites i and j

while pi and pj stand for the (spin part) of the inverse of
the one-site scattering matrix [15]. In order to treat alloys or
alloy analogy models, the defect atom μ is created at site i

by a defect matrix D
μ

i . This defect matrix is considered in the
effective CPA medium τ̃iμ,jν = D

μ

i τCPA
ij Dν

j [27]. Hence, the
scattering path operator τ̃iμ,jν replaces related components of
the scattering path operator in Eq. (3).

In a noncollinear spin arrangement, the SPO matrix
elements can be grouped into a charge and spin part with
the help of the 2 × 2 unit matrix and the Pauli matrices.
Hence, one can define the exchange matrix A

αβ

ij where indices
α and β run over 0, x, y, or z. By using trace properties,
the general symmetry relation A

αβ

ij = A
βα

ji was found. In the

absence of spin-orbit coupling, we can write that (T α
ij )T = T α

ji ,

which implies that Aαβ

ij = A
βα

ij , i.e., the A matrix is symmetric.
The grand potential (pairwise) variation is proportional to
the variation of the integrated density of states, which is
determined by the Lloyd formula [28]. This leads to the
expression

δEij = −2J nc
ij δ�eiδ�ej − 4

∑
α,β=x,y,z

δeα
i A

αβ

ij δe
β

j (4)

when the spin-orbit interaction is not considered, where

J nc
ij = A00

ij − Axx
ij − A

yy

ij − Azz
ij . (5)

At low temperatures, where the degree of noncollinearity
between atomic spins is small (a regime we denote the
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quasicollinear regime), the second term of Eq. (4) does not
give a significant contribution, hence, we will here resolve
J nc

ij for different systems, which can be mapped onto Eq. (1),
i.e., onto a Heisenberg model when the calculated exchange
parameters are spin configuration independent. Note that in
the exact collinear limit (e.g., in ferromagnetic ground state),
Eq. (5) reduces to the expression A00

ij − Azz
ij , and it can be

shown that this is equal to the LKAG formula given by A
↑↓
ij .

C. Element- and site-resolved damping parameters

Within this work, the Gilbert damping parameter is calcu-
lated on the basis of the linear response formalism [26]. The
approach used derives from a representation of the electronic
structure in terms of the Green function G+(E) that in turn is
determined by means of the multiple scattering formalism [18].
The diagonal elements μ = x,y,z of the Gilbert damping
tensor can be written as [26]

αμμ = g

πmtot

∑
j

Tr
〈
T μ

0 τ̃ 0j T
μ

j τ̃ j0

〉
c
, (6)

where the effective g factor g = 2(1 + morb/mspin) and total
magnetic moment mtot = mspin + morb are given by the spin
and orbital moments mspin and morb, respectively, ascribed
to a unit cell. Equation (6) gives αμμ for the atomic cell
at lattice site 0 and implies a summation over contributions
from all sites indexed by j including j = 0. The elements of
the matrix τ̃ 0j are given by τ̃ 		′

0j = 1
2i

(τ		′
0j − τ	′	

0j ) where
τ 0j is the so-called SPO matrix [26] evaluated for the Fermi
energy EF . Finally, the matrix T μ

j is represented by the matrix
elements

T μ,	′	
j =

∫
d3r

[
Z	′

j (�r)
]×

[βσμBxc(�r)]Z	
j (�r) (7)

of the torque operator T̂ μ = β(�σ × m̂z)μBxc(�r) [29]. Here,
Z	

j (�r) is a regular solution to the single-site Dirac equation
for the Fermi energy EF labeled by the combined quantum
numbers 	 = (κ,μ), with κ and μ being the spin-orbit and
magnetic quantum numbers [30].

To calculate the configurational average indicated by
the brackets 〈. . .〉c, in the case of disordered alloys, the
CPA alloy theory is used. This is done using the scheme
developed by Butler [31] in the context of electrical con-
ductivity, that splits the summation in Eq. (6) into a site
diagonal part 〈T 0μ τ̃ 00 T

μ

0 τ̃ 00〉c, and a site off-diagonal part∑
j �=0 〈T μ

0 τ̃ 0j T
μ

j τ̃ j0〉c, respectively. Dealing with the second
term, one has to account in particular for the so-called
“in-scattering processes” that deals with vertex corrections
of crucial importance for the Gilbert damping [32].

As indicated above, Eq. (6) gives in the case of a unit cell
involving in the case of an alloy several atomic types a value
for αμμ that is averaged over these types. In the case of a
system consisting only of magnetic components, i.e., none of
its components have an induced magnetic moment, one may
also introduce a type-projected damping parameter α

μμ
t . As

the average for the site diagonal as well as site off-diagonal
contributions to αμμ involve a sum over the types t with
the type-specific contribution weighted by the corresponding
concentration xt [31], one is led in a natural way to the

expression

α
μμ
t = gt

πmt
Tr T μ

0

⎡
⎣〈

τ 00T
μ

0 τ 00

〉
t on 0

+
∑
j �=0

∑
t ′ on j

xt ′
〈
τ̃ 0jT

μ

j τ̃ j0

〉
t on 0; t ′ on j

⎤
⎦ (8)

with t and t ′ denoting the atomic types at the lattice positions
0 and j , respectively. Here, we use a type-specific g factor
gt and magnetic moment mt given by the corresponding
spin and orbital moments mt

spin and mt
orb, respectively. The

resulting definition for the element-projected Gilbert damping
α

μμ
t leads now to an average for the unit cell according to

αμμ = ∑
t xtα

μμ
t . Because of the normalizing factor g/mtot

used in Eq. (6), this expression will lead in general to results
slightly deviating from that based on Eq. (6).

The calculations of the Gilbert damping parameter for finite
temperature presented below have been done using the so-
called alloy analogy model [26]. This approach is based on
the adiabatic approximation assuming random temperature-
dependent displacements of the atoms from their equilibrium
positions. Using a discrete set of displacements with each
displacement treated as an alloy component, the problem of
calculating the thermal average for a given temperature T

is reduced to the problem of calculating the configurational
average as done for substitutional alloys [26].

D. Atomistic spin dynamics

The temperature-dependent evolution of spins is calculated
from atomistic spin-dynamics (ASD) simulation at different
temperatures using the framework of Landau-Lifshitz-Gilbert
(LLG) formalism. The temporal evolution of an atomic
moment in LLG formalism is given by [14]

d �mi(t)

dt
= − γ

(1 + α2)

(
�mi(t) × �Bi(t)

+ α

mi

�mi(t) × [ �mi(t) × �Bi(t)]

)
, (9)

where γ is the gyromagnetic ratio, α represents the dimension-
less Gilbert damping constant, and �mi stands for an individual
atomic moment on site i. Note that �mi = mi �ei where mi is the
magnitude of the magnetic moment (at site i). The effective
magnetic field is represented by �Bi = − ∂H

∂ �mi
+ �bi , where H is

given by Eq. (2) and �bi is a time-evolved stochastic magnetic
field, which depends on the spin temperature evaluated from
the two-temperature (2T) model [33].

The analytical expression of the two-temperature model
reads as

Ts = T0 + (TP − T0) × (1 − exp(−t/τinitial)) × exp(−t/τfinal)

+ (TF − T0) × (1 − exp(−t/τfinal)), (10)

where Ts is the spin temperature, T0 is the initial temperature
of the system, TP is the peak temperature after the laser pulse
is applied, and TF is the final temperature. τinitial and τfinal

are exponential parameters. The calculated spin temperature
from Eq. (10) is explicitly passed into LLG equation via the

214417-3



R. CHIMATA et al. PHYSICAL REVIEW B 95, 214417 (2017)

TABLE I. Theoretically estimated lattice parameters (a), total (M) and element (mCo,mMn) projected magnetic moments, Curie temperatures
(TC), total and element projected densities of states at the Fermi level [DOS(EF )], and Gilbert damping parameters (α) calculated for bcc,
fcc, and hcp Co as well as for Co1−xMnx (x = 0.1,0.15,0.2,0.3) alloys in the bcc and bct crystallographic phases. The experimental Curie
temperatures, lattice constants, magnetic moments are shown in brackets and the DLM results are shown in parentheses. The magnetic moments
are calculated using experimental lattice parameters.

System a/c (Å) M (μB/atom) TC (K) DOS(EF ) (states/Ry) α

bcc Co 2.85[2.83] [45] 1.70[1.77, 1.50] [45,46] 1280 25.3(31.448) 0.0091(0.011)
fcc Co 3.58[3.54] [47] 1.62[1.68] [50] 1311[1392] [61] 16.8(29.170) 0.0057(0.009)
hcp Co 2.48/4.04[2.50/4.05] [62] 1.59[1.52] [51] 1306[1388] [60] 12.8(28.68) 0.0030(0.019)

System M mCo mMn Total Co Mn α α1(Co) α2(Mn)

Co0.90Mn0.10 [63] 2.86 1.89 1.77(1.51) 2.99(2.75) 1280(1054) 20.1 21.6 7.1 0.0072 0.0083 0.0013
Co0.85Mn0.15 [63] 2.87 1.96 1.78 2.98 1248 19.5 21.2 9.1 0.0066 0.0081 0.0015
Co0.80Mn0.20 2.88 2.03 1.79 2.97 1129 18.3 20.2 11.0 0.0058 0.0076 0.0016
Co0.70Mn0.30 2.89 2.13 1.80(1.46) 2.89(2.72) 1050(833) 16.0 17.5 12.7 0.0045 0.0061 0.0022
Co0.90Mn0.10 bct 2.83 [2.71] [43] 1.79 1.69 2.73 1235[1215] [43] 19.1 20.2 9.0 0.0080 0.0090 0.0025
Co0.70Mn0.30 bct 2.87 [2.90] [43] 2.11 1.80 2.85 1054 [842] [43] 16.8 17.6 14.9 0.0047 0.0062 0.0025

stochastic magnetic field �bi in Eq. (9), which takes into account
thermal fluctuations of the system and the strength of the
stochastic field is defined as D = αkBTs

γm
, kB is the Boltzmann

constant. Alloying Co is treated by spatial random disorder of
the Mn dopant.

The dynamical structure factor, which describes the
magnon dispersion relation, is obtained from the Fourier
transform of space and time displaced correlation function

Cμ(�r,�r ′,t) = 〈
m

μ

�r (t)mμ

�r ′(0)
〉 − 〈

m
μ

�r (t)
〉 〈

m
μ

�r ′(0)
〉
, (11)

where the ensemble average is represented in the angular
brackets and μ = x,y,z is the Cartesian component, and its
Fourier transform is written as

Sμ(�q,ω) = 1√
2πN

∑
�r,�r ′

ei �q·(�r−�r ′)
∫ ∞

−∞
dt eiωtCμ(�r,�r ′,t),

(12)
where �q and ω are the momentum and energy transfer,
respectively. N is the number of terms in the summation.

To estimate the Curie temperatures, we used the fourth-
order size-dependent Binder cumulant [34], which is defined
as

UL = 1 − 〈M4〉L
3〈M2〉2

L

, (13)

where M is the total or average magnetization. 〈. . .〉 is the
ensemble and time average. Binder cumulants exploit the
critical point and critical exponents in a phase transition from
the crossing point of magnetization curves for different sizes
L of the system.

III. NUMERICAL DETAILS

The Perdew, Burke, and Ernzerhof (PBE) [35] version of
the generalized gradient approximation is used to describe the
exchange-correlation potential. The spin-polarized scalar rel-
ativistic full-potential (SR-FP) mode [18] is used to calculate
the total energies as a function of volume [E(V )] and the total
(M) and element-resolved (mCo,mMn) magnetic moments.
For the exchange integral (Jij ) and damping parameter

(α, α1(Co), α2(Mn)) calculations, the potential is described
within the atomic sphere approximation (ASA) using the
scalar-relativistic (SR) and relativistic (R) modes, respec-
tively [18,32]. The basis set consisted of s, p, d, and f orbitals
(lmax = 3). The number of �k points was set to ≈300, ≈500, and
≈1 000 000 for the calculation of the ground-state properties,
density of states (magnetic exchange integrals), and site- and
element-resolved damping parameters, respectively. Equilib-
rium lattice constants are obtained by fitting E(V ) curves with
a Morse type of equation of state [36]. The exchange constants
are calculated up to 12 nearest-neighbor shells.

We performed ASD simulations by using the UPPASD

software [12,37] for the Co-based systems with a size of 20 ×
20 × 20 unit cells employing periodic boundary conditions.
Here, we used calculated exchange constants from ab initio
and 16 ensembles were considered for averaging.

IV. RESULTS AND DISCUSSION

A. Static properties of Co and Co-Mn alloys

1. Electronic structure and magnetic properties

The estimated theoretical lattice parameters (a) are listed
in Table I for bcc, fcc, and hcp Co as well as Co1−xMnx alloys
in the bcc and bct crystallographic phases, calculated using
the PBE exchange-correlation functional. The local density
approximation (LDA) calculations underestimate the lattice
parameter by about 2% when compared to PBE. The presented
PBE values for pure Co are in good agreement with the
experimental data found for bcc Co grown in GaAs surface
(2.82 Å) [38] and for fcc Co/Cu film (3.54 Å) [39], as well
as with the results of the previous DFT simulations [40]. The
Co-Mn alloys can be grown on a GaAs surface in bcc [41,42] or
bct [43,44] crystal structure. The theoretical lattice constant a

of bcc alloys increases with Mn addition, which is consistent
with the larger atomic radius for Mn compared to Co. The
estimated lattice constants for x = 0.3 (see Table I) and
x = 0.4 (2.89 Å) is in line with the experimental lattice
parameters data reported for x = 0.32 (0.4) [41,42] which
is 2.9 (2.89) Å. The in-plane lattice parameter for the bct
phase of Co0.90Mn0.10 and Co0.70Mn0.30 alloys is taken from
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FIG. 1. Density of states (DOS) per atom of bcc Co (blue), fcc
Co (red), hcp Co (green) (upper panel), and bcc and bct Co1−xMnx

(lower panel). DOS for Co in Co1−xMnx alloys is labeled by full line
while DOS of Mn is represented by dashed line. Dotted line illustrates
the Fermi energy.

experiments, Refs. [43,44], respectively, while the out-of-
plane lattice parameters have been optimized theoretically (see
Table I).

Calculated densities of states (DOS) for pure Co in bcc,
fcc, and hcp crystal structure are presented in Fig. 1. For
these crystal structures, the 3d majority spin channel is fully
occupied, resulting in a low DOS at the Fermi level DOS↑(EF ),
while DOS↓(EF ) lies near a peak in the 3d DOS. The energy
split between the majority and minority channels leads to
a magnetic moment of 1.73 μB for the bcc lattice, in good
agreement with the previous theoretical data [40,46]. The
experimental value for the magnetic moments of Co in the bcc
structure is estimated from Co films grown on GaAs [45,48].
The average value is given as 1.4 μB but in the center of
the film (50 Å) the estimated experimental value for the Co
magnetic moment in the bcc structure is ∼1.7 μB [48] which
is in good agreement with the theoretically estimated value. For
fcc Co, the calculated magnetic moment is in agreement with
the previously published theoretical value of 1.64 μB [40,49]
and in decent agreement with the experimental value of
1.68 μB [50]. Finally, the magnetic moment of hcp Co is
in good agreement with the reported experimental [51] and
theoretical data [40].

In both bcc and bct phases of Co-Mn alloys, the DOS↑(EF )
of Co is small due to the full occupation of the 3d majority
channels, and the shift in the occupation of the majority and
minority channels results in a magnetic moment higher than
that in pure bcc Co and it is found to increase with increased
Mn content (see Table I). The Mn 3d majority band is not
fully occupied, and the 3d minority band contains less states
than in case of Co, due to the reduced number of electrons
for Mn. The exchange splitting results in a higher magnetic
moment for Mn than for Co (see Table I). As Table I shows for
Co-Mn alloys, the coupling between Co and Mn moments is
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FIG. 2. Calculated magnetic moment as a function of rotation of
a single spin with an angle θ , in the FM background of bcc Co.

ferromagnetic, with a large moment on both atoms. The results
for the bcc structure give larger moments compared to data for
the bct structure.

The smallest magnetic moments are given by the SR-FP
mode. The SR-ASA (R spin) moments are in average 0.6%
(0.5%) larger compared to the SR-FP moments. We find the
same trends for SR-ASA and R spin moments as a function of
composition and structure as in the case of SR-FP moments.
The orbital moment of Co is 0.085 μB in the bcc phase. Its
variation among different crystal structures and alloying is
within 7% and follows the same trend as for the spin moments.
The orbital moment of Mn in bcc Co0.9Mn0.1 is 0.018 μB.
This value decreases to 0.016 μB for x = 0.3 Mn content in
the bcc phase. The orbital moment of Mn in the bct phase
is smaller compared to its value in the bcc phase for the
corresponding composition. Local magnetic moments of Co
and Mn in the DLM phase of Co1−xMnx for x = 0.1 and 0.3
are also presented in Table I. Here, we find that mCo and mMn

are reduced with 15% and 20%, respectively, in the DLM phase
compared to that of FM solution.

All entries in Table I show that the DLM configuration
results in lower magnetic moments than for the FM configu-
ration. To analyze this further, we calculated the size of the
magnetic moment of a supercell of 16 atoms in a bcc lattice,
in which only the central atom had its magnetic moment
rotated away from the z axis with an angle θ . The rotated
moment is denoted as mi and the rest of the spins are labeled
mj . The self-consistently obtained values of mi and mj are
shown for each value of θ in Fig. 2. One can see that once θ

increases, the magnitude of the moment mi tends to decrease.
We repeated the same calculations for bcc Fe and obtained
qualitatively the same behavior. Thus, the results of Fig. 2
are consistent with the data in Table I, and seem to reflect
a quite general phenomenon that the rotation of a moment
in a system with predominant FM interactions leads to the
decrease of its length. This fact can be understood on the
basis of a simple model, containing the energy of longitudinal
spin variation (containing even powers of magnetization, as
appropriate for a Landau expansion) and a nearest-neighbour
exchange coupling (J1). In the case of the single-spin rotation
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in the ferromagnetic background, one obtains

E = −α1m
2
i − α2M

2 + β1m
4
i + β2M

4 − J̃1 �mi · �M, (14)

where M = ∑N
j=1 mj represents the macrospin formed by

all N nearest-neighbor spins from the FM background. The
parameters α1, α2, β1, and β2 are phenomenological constants
originating from the local exchange interactions. The energy
penalty stemming from the Heisenberg term when rotating the
moment mi with an angle θ will be given by

E(θ ) − E(0) = J̃1miM[1 − cos(θ )]. (15)

It is straightforward to show that, if the magnitude of mi is
allowed to change, the system will try to minimize the energy
costs of the single-spin rotation by decreasing its length. In
principle, a reduction of M would also reduce the energy cost
of rotating a single spin, but the Landau parameters describing
this change are not in favor of this scenario. Finding the
minima of the energy with respect to mi leads to the solution
of nonlinear equation, which can be solved numerically. The
numerical results confirm that with an increase of θ , the value
of mi corresponding to the minimum of the energy goes down.

Thus, for the case of a single-spin rotation in bcc Co,
we have shown that the magnitude of the magnetic moments
unavoidably depends on the magnetic configuration. In order to
quantify how sensitive the magnetic excitations to interatomic
noncollinearity, we have performed a series of spin spiral
calculations [52] for the same structure. Spin spiral states
are characterized by the propagation direction (�q) and the
cone angle � between the magnetization and �q vectors. Note
that spin spirals with infinitesimal � would correspond to the
actual magnon excitation. The bottom panel of Fig. 3 shows the
self-consistently obtained value of the magnetic moment in all
different spin spiral states. Just as in the case of the single-spin
rotation (Fig. 2), the magnetic moment experiences a variation
when �q is changed. In the top panel of Fig. 3 we show the
relative energies of the spin spirals calculated for various �q
and � values. On the y axis we plot E�q − Eq=0/sin2(�),
which is supposed to be � independent for a truly Heisenberg
magnet (see, e.g., Ref. [53]). It is clearly seen from Fig. 3 that,
despite the changes in the magnetic moment values, all curves
lie nearly on top of each other, if � lies within the range of
5◦ to 45◦. At larger � angles, most of spin spiral energies
are still very close to each other and the largest differences
appear for �q vectors along �-H direction. Hence, one can
see that Co is a remarkable system, which is characterized
by a configuration-independent magnetic excitation in a wide
range of magnetic states. From Fig. 3 we estimated that the
Heisenberg Hamiltonian [Eq. (1)] is perfectly valid up to a
critical value of the angle between the nearest-neighboring
spins of about 90◦. Quite importantly, the results indicate an
intriguing interplay between the strength of the J̃ij ’s and the
magnitude of �mi’s, which tends to balance each other resulting
in configuration independent Jij ’s.

2. Temperature-dependent exchange interactions Ji j

The calculated exchange interactions Jij for all Co-based
systems at T = 0 K are plotted in Fig. 4. The Co-Co
interactions have positive values showing a ferromagnetic
coupling between Co atoms. In the Co-Mn alloys, the Mn
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FIG. 3. Calculated relative spin spiral energies for different values
of cone angle � along with the self-consistent values of the magnetic
moment as a function of the propagation vector �q.

atoms are ferromagnetically coupled to the Co atoms and
favor antiparallel coupling to the nearest Mn atoms, while
the Co-Co interactions are ferromagnetic. All Jij ’s decay fast
with distance. Increased Mn content is found to enhance all

0
5

10
15 hcp Co

bcc Co
fcc Co (DLM)
hcp Co(DLM)
bcc Co(DLM)

0.5 1 1.5 2 2.5

0
5
10
15

fcc Co

-20
-10

0
10
20

J ij
(m

eV
)

-20
-10
0
10
20

0.5 1 1.5 2

-20
-10

0
10
20

0.5 1 1.5 2 2.5
d (a units)

-20
-10
0
10
20

Co0.1Mn0.9 Co0.7Mn0.3

Co0.1Mn0.9 Co0.7Mn0.3
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function of distance d (in a lattice parameter units). JCo-Co are labeled
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filled green circles. The exchange parameters are obtained for the FM
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FIG. 5. Solid lines: noncollinear exchange coupling J nc
ij defined

by Eq. (5) for first-neighbor spin pairs in bcc Fe and Co when one spin
is fixed and the spin directions at its first-neighbor sites are rotated by
θ and φ. Dashed lines: noncollinear exchange coupling J nc

ij defined
by Eq. (5) for first-neighbor spin pairs in bcc Fe and Co when one
spin is rotated by θ and φ. The azimuthal angle φ is set by a random
number generator.

interactions, which can be explained by an increase of mCo and
mMn since, according to Eq. (1), the magnitude of the moments
is effectively contained within the Jij ’s. The results obtained
for the different phases of elemental Co are in overall good
agreement with prior DFT studies, the differences coming from
the employed computational methods [54–58].

To continue the analysis of exchange interactions in these
systems, we investigated whether hcp, fcc, and bcc Co have
Heisenberg exchange parameters that are configuration (tem-
perature) dependent. To this end, we determined J nc

ij defined
by Eq. (5). Note that the second term in Eq. (4) did not give
a significant contribution in Co systems we considered here.
We compare these results to those of bcc Fe which has been
already shown to have Jij ’s that are configuration dependent,
and hence not to be a perfect Heisenberg system [59]. Note that
�ei in Eq. (4) denotes the direction of the spin at site i, which
can be formulated as �ei = �e(θi,φi), where θi and φi are the
polar and azimuthal angles of the spin direction, respectively.
The most simple noncollinear spin configuration may be the
case when one spin in a ferromagnetic background is being
rotated by a finite angle θ . The dashed lines in Fig. 5 show
the J nc

ij ’s for the nearest-neighbor couplings in bcc Co and
bcc Fe. We find that bcc Fe is more configuration dependent
than bcc Co, i.e., bcc Co is closer to a “perfect” Heisenberg
system. However, Fig. 2 shows that this story is somewhat more
complex since for single-site rotation, the magnetic moment
changes significantly with angle of rotation. As was already
demonstrated for the case of spin spirals (Fig. 3), there is no
contradiction since Jij value is defined in such a way that
it contains the magnetic moment value in itself. Thus, we
witness once again that bcc Co reflects the physics intrinsic
to an ideal Heisenberg magnet despite the sensitivity of its
magnetic moment to the environment.

A more realistic spin configuration can be constructed
when one spin is fixed at, say, site i, and where the spin
directions at its first-neighbor sites are rotated by θ and φ.
These results are shown by the solid lines in Fig. 5, modeling a
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FIG. 6. Noncollinear exchange coupling J nc
ij defined by Eq. (5)

for the first six neighbor spin pairs in bcc Fe when one spin is fixed
and the spin directions at its first-neighbor sites are rotated by θ and
φ. Similar for the first six neighbor spin pairs in fcc, bcc, and hcp Co
systems, respectively. In these figures, the azimuthal angle φ is set by
a random number generator.

finite-temperature disordered background. For such a configu-
ration, we also calculated the J nc

ij ’s for neighbors, with varying
distance. Figure 6 shows all the interatomic exchange coupling
parameters for the first six nearest-neighbor shells in bcc Fe,
fcc Co, bcc Co, and hcp Co, respectively. As can be seen, all
the Co phases seem to have an excitation spectrum that is close
to an ideal Heisenberg system, but again it is due to a decrease
of the individual moments and an increase of the Heisenberg
exchange interaction J̃ij , as given by Eq. (2).

The findings presented above motivate that atomistic spin-
dynamics simulations can be made from Heisenberg exchange
parameters from collinear ferromagnetic phases of bcc, fcc,
and hcp Co, if the definition of Eq. (1) is used for the energy
excitations. As mentioned above, of all systems investigated
here, elemental Co stands out to be unique in this regard.

The Jij ’s of Co-Mn alloys are evaluated only in the
DLM phase (not shown) and only for alloy composition
x = 0.1 and 0.3 since the aforementioned approach is
cumbersome to apply for random alloys due to methodological
reasons. The nearest-neighbor JCo-Co, JCo-Mn, and JMn-Mn

interactions are reduced compared to the value of the pure
element by 21%, 26%, 7%, respectively, for x = 0.1 and
35%, 24%, 38%, respectively, for x = 0.3 . These variations
are in the same order as those obtained for Co in the DLM
phase. Hence, Co and doped Co tend to behave like a “bad”
Heisenberg system close to the phase transition temperature.
In the low-temperature regime, however, exchange parameters
of Mn are likely to change (not shown here), similar to Fe,
giving evidence for a non-Heisenberg behavior of CoMn even
at low temperature.

3. Curie temperatures

The calculated and experimental values of the Curie
temperatures of Co-based systems are presented in Table I.
The calculated Curie temperature values of bcc, fcc, and hcp
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Co are in a rather good agreement with experimental data. The
measured Curie temperatures of ferromagnetic Co1−xMnx al-
loys decrease linearly with an increase of concentration of Mn
and become zero around 0.4. The calculated Curie temperature
of Co1−xMnx alloys decrease linearly up to 30% of Mn and
the TC’s are somewhat overestimated when compared with
experimental values. We address this discrepancy to slight
variations of the Heisenberg parameter with Mn doping at
the phase transition temperature. This finding is supported by
the reduced TC values calculated in DLM configuration for
Co0.9Mn0.1 and Co0.7Mn0.3 (see Table I). Since the difference
in the phase transition temperature between the FM and the
DLM phase is small compared to the maximal temperature
obtained for the simulated pump-probe experiment, we make
the approximation that a small amount of Mn in Co-Mn
alloys will not change the temperature independence of
the Heisenberg exchange parameters. Hence, the extracted
FM collinear parameters are used in simulated pump-probe
experiments of bcc, fcc, and Co, as well as bcc and bct Co-Mn
alloys, as detailed below.

4. Damping parameters

Results for the Gilbert damping parameter of pure Co as
well as for Co1−xMnx alloys calculated at T = 324 K are
presented in Table I together with the DOS(EF ). In the case
of pure bcc Co, this temperature corresponds approximately
to the minimum of the α(T ) curve, that indicates the crossover
of the contributions due to the intraband (dominating at
low temperature) and the interband (dominating at high
temperature) electron scattering events [64]. In the case of
Co1−xMnx alloys, on the other hand, the interband spin-flip
scattering events are responsible for magnetization dissipation
in the whole temperature regime, similar to the case of
Cu impurities in Ni [26]. When the temperature increases
above room temperature (not shown here), the thermal lattice
vibrations lead for Co as well as Co1−xMnx alloys to an
increase of α(T ).

As can be seen in Table I, an increase of the Mn concentra-
tion x for bcc Co1−xMnx results in a decrease of the Gilbert
damping, which correlates well with a decrease of the total
DOS(EF ). For the atom-resolved damping parameters, we
also find its correlation with the value of the DOS(EF )/atom.
With increasing Mn concentration in these alloys, the damping
parameter of Mn spins and DOS(EF )/atom both tend to
increase, while the opposite is found for the Co spins.
Comparing the Gilbert damping for the bcc and bct phases of
Co0.90Mn0.10 (Co0.70Mn0.30), we find that the damping reaches
higher values in bct phase than in bcc for both sublattices,
which is in contrast to the DOS(EF )/atom. This point also
indicates that other effects also play a role in determining the
damping parameter, and that the correlation between damping
and DOS is strongest for alloys within the same crystal
structure.

B. Dynamical properties

1. Dispersion relations

The calculated dynamical structure factor or magnon
spectrum Sz(�q,ω) of fcc, bcc, and hcp Co along the

FIG. 7. Magnon dispersion relation of fcc, bcc, and hcp Co
along high-symmetry directions of the Brillouin zone. Dots represent
experimental measurements from Ref. [65]. All simulations were
done assuming a negligibly low temperature and in FM state.

high-symmetry directions of the Brillouin zone are presented
in Fig. 7. In these simulations, we used the exchange parame-
ters reported in Fig. 4 and the Gilbert damping of 0.005. The
fcc Co magnon dispersion along �-X high-symmetry path is in
good agreement with experimental magnon data [65]. The hcp
Co magnon dispersion along �-M and �-A high-symmetry
path agrees also quite well with experimental magnon data
already reported in Refs. [66,67]. Also, the results in Fig. 7 are
consistent with results published by Etz et al. [68].
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eters are obtained from SPR-KKR calculations. M0 is magnetization
at 300 K.

2. Ultrafast magnetization under laser fluence

In the following section, we present ultrafast magnetization
dynamics of fcc, bcc, and hcp Co as well as bcc and bct Co-Mn
alloys under the influence of a femtosecond laser pulse. The
results are obtained by the integration of the atomistic LLG
equation in combination with the analytical two-temperature
model [69], and are plotted in Fig. 8. The simulated laser
pulse results in a temperature profile that initially starts at room
temperature as initial temperature T0 and reaches its maximum
at TP = 1500 K and finally relaxes to TF = 450 K via several
scattering processes (see top panel of Fig. 8). The exponential
parameters τinitial = 1 × 10−14 s and τfinal = 3 × 10−12 s
are used in the 2TM model. Damping values taken from the
first-principles theory are considered in the simulations, called
α, but also artificially enhanced values of the damping are
used to investigate how the damping influences the ultrafast
magnetization dynamics. The enhancement considered is 5
and 10 times larger, i.e., 5 × α and 10 × α. The magnetization
decreases rapidly to a minimum of about 44% to 84% of the to-
tal magnetization in fcc Co, 42% to 84% in bcc Co, and 20% to
57% in hcp Co for different damping values, as shown in Fig. 8.

As Fig. 8 shows, the quenching of magnetization increases
with the increase of damping parameter. This highlights the
fact that both the demagnetization time and the reduction
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FIG. 9. Time evolution of the normalized average magnetization (M/M0) of Co0.90Mn0.10 and Co0.85Mn0.15 and alloys under the influence
of a thermal heat pulse for different sublattice damping parameters with FM state. The black and red lines represent the Co and Mn sublattices,
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SPR-KKR calculations.
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TABLE II. Element-specific demagnetization times for Co-based
systems. α1 refers to Co and α2 refers to Mn. Experimental data from
polycrystalline samples presented in brackets.

Co Mn
System τde (ps) τde (ps)

fcc Co (α = 0.0057) 0.255 [0.15–0.25] [11]
bcc Co (α = 0.0091) 0.250[0.15–0.25] [11]
hcp Co (α = 0.0030) 0.300[0.15–0.25] [11]
Co0.90Mn0.10

(α1 = 0.0083,α2 = 0.0013)
0.219 0.6

Co0.90Mn0.10 (α = 0.0072) 0.22 0.375
Co0.70Mn0.30

(α1 = 0.0061,α2 = 0.0022)
0.23 1.0

Co0.70Mn0.30 (α = 0.0045) 0.5 0.65
Co0.90Mn0.10 bct

(α1 = 0.0090,α2 = 0.0025)
0.215 0.56

Co0.90Mn0.10 bct (α = 0.0080) 0.225 0.375
Co0.70Mn0.30 bct

(α1 = 0.0062,α2 = 0.0025)
0.22 0.7

Co0.70Mn0.30 bct (α = 0.0047) 0.45 0.6

of the magnetic moment in laser-induced demagnetization
measurements depend critically upon the damping parameter.
Furthermore, Fig. 9 shows that for systems with more
than one magnetic sublattice, the magnetization dynamics
may be different and that these sublattices therefore display
different demagnetization times. The demagnetization times
are calculated using a double exponential fitting function,
as described in Ref. [70] and τm are listed in Table II.
We would like to avoid a detailed comparison between the
obtained theoretical and experimental demagnetization times
because the theoretical values are calculated for single-crystal
phases while the measurements are made for polycrystalline
samples, potentially with several crystallographic phases
present. However, the gross features of the numbers listed in
Table II may be comparable to experimental data [11]. To end
this section, in Table II, it is shown that the demagnetization
time is reduced for increasing value of the damping parameter
in agreement with the findings published in Refs. [71,72].

In Fig. 10 we show the distribution of azimuthal angles (θ )
of the atomic spins during the demagnetization process, for bcc
Co. Note that at each time, the distribution of the θ angles is
found to follow essentially a Boltzmann distribution function.
This is not an obvious result since the atomic spins are in out-
of-equilibrium situation. We have also calculated the angles
between the nearest-neighbor spins (not shown) and found that
at each time step, these angles do not exceed 90◦. As we have
shown above (Fig. 3), the magnetic excitation energies in bcc
Co are represented accurately in this interval of angles using
Eq. (1) (see also Fig. 5), which lends credence to the approach
adopted here to study ultrafast magnetization dynamics.

Next, we analyze the Co-Mn alloys in more detail, and we
focus on Co0.90Mn0.10 and Co0.70Mn0.30 in the bcc and bct
structures, respectively. Element-specific damping parameters
[α1 (Co), α2 (Mn)] of Co-Mn alloys are used to investigate
the angular momentum exchange between the sublattices
in the spin-dynamics simulations. Results are presented in
Fig. 9. The calculated element-specific demagnetization and

FIG. 10. The time evolution of the distribution of the azimuthal
angle θ , for the different atomic spins for bcc Co. Note that the
distribution is shown in intervals 0◦–10◦, 10◦–20◦, etc., where each
interval is shown as a bar with a specific color. The distribution is
shown for t = 0 ps, 0.25 ps, 0.5 s, 1.0 ps, and 5.0 ps after the laser
pulse starts to heat up the sample.

remagnetization of Co-Mn alloys show a variety of possible
situations that can be encountered in laser experiments on
alloys with two magnetic sublattices. The demagnetization of
Co precedes that of Mn by 0.15–0.6 ps due to the low damping
value of Mn. The increase of damping parameters on both
sublattices by 5 to 10 times in all considered alloys reduces
the relative difference between the sublattice magnetism in
the demagnetization phase. Furthermore, our results show that
the quenching of magnetization on both sublattices increases
with the increased damping parameter. For the lowest damping
value of Mn in bcc Co0.70Mn0.30, the Mn demagnetization
time is ∼4 times slower than that of the demagnetization of
Co. The results of Fig. 9 show that a large asymmetry in
the damping parameter in multicomponent magnets is a good
parameter to use when one wants to identify systems with
very different behavior of the demagnetization in ultrafast
pump probe experiments. We propose that this is a parameter
that should be explored when one tries to identify alloys
and compounds in which the element-specific magnetization
dynamics is drastically different. We hope these results can
motivate further experimental studies.

V. CONCLUSION

With the extension of LKAG ab initio interatomic exchange
calculation method for noncollinear spin systems, we have
analyzed the exchange interactions and magnetic moments
of Co in fcc, bcc, and hcp crystal structures. We found that
elemental Co is unique in that it has excitations energies
that reflect an almost perfect Heisenberg system in a rather
wide range of angles between the spins. This has a significant
importance in the correct description of the time evolution
of the atomic magnetic moments under the influence of a
temperature-dependent laser pulse. Note that in contrast to
Co, bcc Fe shows significant spin configuration dependence,
for any definition of the spin Hamiltonian, as it was shown
here and in previous studies [17].
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Mn spins, on the contrary, exhibit strongly non-Heisenberg
behavior already for small degree of interatomic noncollinear-
ity. A relatively small amount of Mn dopants, as in the case of
the alloys studied here, is not expected to drastically alter the
system’s properties. We note, however, that high Mn concen-
tration will definitely lead to the breakdown of the Heisenberg
picture, and we plan to investigate it in detail in future.

The calculated structural and magnetic properties of Co-
rich Co-Mn alloys are compared with experimental data. We
find that they are in very good agreement with observations.
The calculated TC’s reproduce well the measured values and
show a linear decrease as a function of increasing Mn content,
in line with the experiments. The magnon dispersion curves of
fcc, bcc, and hcp Co are plotted along the high-symmetry direc-
tions of the Brillouin zone and they are indeed in good agree-
ment with experimental data, where comparison can be made.

We have also addressed the temporal behavior of the
magnetism of Co in the bcc, fcc, and hcp structures as well as
Co-Mn alloys, after a laser excitation. Ultrafast magnetization
dynamics of these Co systems was studied for different

damping parameters, and it was found that the demagnetization
behavior depends critically on the damping parameter as
well as the strength of the exchange interaction represented
by different concentrations of Mn. This becomes especially
interesting for Co-Mn alloys that have very different values
of the damping parameters and exchange interactions of the
constituents, which lead to drastically different magnetization
dynamics of the Co and Mn sublattices.
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