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We study numerically the entanglement entropy and spatial correlations of the one-dimensional transverse-field
Ising model with three different perturbations. First, we focus on the out-of-equilibrium steady state with an energy
current passing through the system. By employing a variety of matrix-product state based methods, we confirm
the phase diagram and compute the entanglement entropy. Second, we consider a small perturbation that takes the
system away from integrability and calculate the correlations, the central charge, and the entanglement entropy.
Third, we consider periodically weakened bonds, exploring the phase diagram and entanglement properties first
in the situation when the weak and strong bonds alternate (period two bonds) and then the general situation
of a period of n bonds. In the latter case we find a critical weak bond that scales with the transverse field as
J ′

c/J = (h/J )n, where J is the strength of the strong bond, J ′ is that of the weak bond, and h is the transverse
field. We explicitly show that the energy current is not a conserved quantity in this case.
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I. INTRODUCTION

The transverse-field Ising model (TFIM) possesses a central
role in both quantum statistical and condensed matter physics
[1] It is used as the benchmark model where new concepts,
ideas, and theoretical techniques have been derived from or
tested. With the surge of activity on quantum information,
this model also plays a very important role in simulating
interactions among qubits [2,3] and serves as a quantum
paradigm which can be explored by novel means. While the
pure TFIM can be solved exactly [4,5], relevant physical
perturbations (such as longitudinal fields or spin exchange)
prohibit an exact solution. In this case advanced numerical
tools have to be employed to understand the physics of the
models.

In this work, we study the TFIM with ferromagnetic
nearest-neighbour interactions with three different perturba-
tions. We use a combination of matrix-product state (MPS)
based numerical techniques starting with the time-evolving
block decimation (TEBD) that allows an efficient time
evolution of matrix-product states in real or imaginary time
[6]. This method is similar in spirit to the density matrix
renormalization group (DMRG) method that we also employ
[7–10] and has been shown to work for the entanglement
spectrum near criticality in finite quantum spin chains [11].
Ground-state entanglement for example of the XY and
Heisenberg models shows the emergence of universal scaling
behavior at quantum phase transitions. Entanglement is thus
controlled by conformal symmetry. Away from the critical
point, entanglement gets saturated by a mass scale [12]. Here,
we investigate the entanglement, as well as correlations, of
the TFIM with perturbations. The simulations are performed
directly in the thermodynamic limit assuming translational
invariance with respect to a unit cell.
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We start in Sec. II by revisiting the exactly solvable
TFIM in a nonequilibrium steady state, with an energy current
passing through the system. We confirm the phase diagram
obtained in Refs. [13,14]. In addition, we provide new insights
for the chiral order parameter, the spin-spin correlations, and
the entanglement properties. In the case of central charge,
we found the change from c = 1/2 to c = 1 as analytically
calculated in Ref. [15]. In Sec. III, we add a perturbation that
breaks the integrability of the model, seeking to characterize
the system using the bipartite entanglement entropy and central
charge. Subsequently, in Sec. IV, we weaken the strength of
a bond periodically in space, studying the properties of the
system first in equilibrium. The critical value of the weak
bond scales with the transverse field as J ′

c/J = (h/J )n, when
n is the spatial period of the weakened bond. We show that
the energy current is not a conserved quantity in this case,
so there is no out-of-equilibrium steady state in the sense as in
the homogeneous system. We finally summarize and conclude
in Sec. V.

II. TFIM WITH ENERGY CURRENT

A. Diagonalization of Hamiltonian

The Hamiltonian for the TFIM with energy current is given
by

H = HIs + λ1J
E
Is, (1)

HIs = −
N∑

i=1

Jσ z
i σ z

i+1 + hσx
i , (2)

JE
Is = −

N∑
i=1

Jh

2

(
σ z

i σ
y

i+1 − σ
y

i σ z
i+1

)
, (3)

where J is the strength of the nearest-neighbor interaction,
�σ are the Pauli matrices, h is the transverse applied field, JE

is the energy current, and λ1 is a Lagrange multiplier. The
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energy current JE
Is is derived from the continuity equation for

the conserved local energy operator [16] (the derivation is
presented in Appendix A).

This Hamiltonian is exactly solvable through a standard
process by mapping it to a quadratic fermionic model.
After a Bogoliubov transformation and Fourier transform
to momentum space, the Hamiltonian in terms of fermionic
operators γk reads

H =
∑

k

εk

(
γ
†
k γk − 1

2

)
, (4)

with energy relation [13]

εk = 1
2 (

√
J 2 + h2 + 2Jh cos ka + L sin ka). (5)

It is convenient to use the notation L = Jhλ1. For small
L � J , the energy spectrum is gapped and no current flows.
Then the zero-current phase is extended until L > J where
the imposed current density is strong enough to destroy the
gap and mix the excited states with the ground state. Then
we enter the region of finite energy current flow. The phase
boundaries are calculated by requiring the dispersion relation
and its derivative to vanish with respect to the wave number k

[13]. The values of the critical Lc are Lc = h if h � J , or J if
h < J ; the energy current is nonzero for values of L � Lc.

The transition into the current-carrying region can be seen
directly through the computation of the chiral order parameter,
essentially the average energy current over all bonds:

Czy =
∑

n

〈
σ z

nσ
y

n+1 − σy
n σ z

n+1

〉
. (6)

The expectation value of Czy is

Czy/N = 1

πL2
(L2 − h2)1/2(L2 − J 2)1/2. (7)

At the phase boundaries, the critical behavior of Czy is Czy ∝
(L − h)1/2 if h �= J and Czy ∝ (L − J ) if h = J . This has
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FIG. 1. Chiral order parameter Czy as a function of magnetic field
in the TFIM with the coefficient of the energy current term L = 2J

and critical value of the transverse field hc = 2J .
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FIG. 2. Spin-spin correlations of the TFIM with energy current L

in range {0,0.2, . . . ,1.8,2.0} and magnetic field h = 0.5J below the
critical value hc = J . The oscillatory behavior of the zz-correlation
function is shown above the critical value of the energy current Lc =
J . In the region L � J normal FM correlations are observed. Inset:
A fast Fourier transform (FFT) is used to calculate the period as it
shifts with L.

been also verified by the numerical calculations in the present
study. For example Czy as a function of h is shown in Fig. 1.

B. Spin-spin correlations

The behavior of the spin-spin correlation function 〈σ z
nσ z

n+R〉
reveals distinct properties within the current region (L = 2J

in Fig. 2). We confirm the oscillatory behavior accompanied
by a power-law decay (as 1/

√
R), where R is the distance

(in number of sites) between two correlated spins, as obtained
in Ref. [13]. The specific power-law is considered to govern
the critical region of nonequilibrium steady-state models in
general [17]. The correlation function is written as

〈
σ z

nσ z
n+R

〉 ∼ Q(h,L)√
R

cos (kR). (8)

The value of Q(h,L) can be calculated exactly in the limit
L → ∞, as the limit of the amplitude of the same correlations
of the XY model in one dimension [18], with the result
Q(h,L = ∞) = e1/22−4/3A−6 � 0.147, where A � 1.282 is
the Glaisher’s constant. For different values of L, Ref. [13]
approximated Q(h,L) away from the phase boundaries with

Q(h,L) � Q(h,∞)

(
L2 − h2

L2 − J 2

)1/4

, (9)

while, close to the boundary, h = J,Q(h = J,L) �
Q(h,∞)( L2

L2−J 2 )1/8. The wave number k of the spatial depen-
dence of the correlations is independent of the magnetic field

214410-2



ENTANGLEMENT SCALING AND SPATIAL CORRELATIONS . . . PHYSICAL REVIEW B 95, 214410 (2017)

TABLE I. Numerical data showing how the wavelength R and
wave number k vary with current L.

L R k

1.2 10.31 0.61
1.4 7.67 0.82
1.6 7.29 0.86
1.8 6.10 1.03
2.0 5.98 1.05

[13] and as L → ∞ it is given by

k = arccos(1/L). (10)

Numerically, the correlations are computed using the
infinite TEBD (iTEBD) algorithm and the critical correlations
in the energy-current-carrying region has been verified. Using
fast Fourier transform (FFT), the peak of the oscillations in
space, determines the wavelength R = 2π/k. This is shown
in Fig. 2. Table I lists results for current, wavelength, and wave
number. A least-squares fit of the data indicates that Eq. (10)
is in general reliable and we find that

k = (1.01 ± 0.06) arccos[(0.99 ± 0.05)/L]. (11)

C. Entanglement scaling and central charge

The universal entanglement properties of the TFIM are
accessible within conformal field theory [19]. A universal
formula for the entanglement entropy

S ∼ c

6
ln (ξ/a)

depends on the central charge c and the correlation length ξ (a
is the lattice spacing). In this expression for the entanglement
entropy the prefactor is 1/6 (and not 1/3), due to the fact that
we consider an infinite DMRG algorithm in the calculations,
therefore there is only one contact point between the two parts
of the spin chain to be taken into account. This is in contrast
to the case of a chain with a periodic boundary condition.

To study the properties of the system, at a quantum
critical point where the correlation length is infinite within
the MPS framework, we can perform an entanglement scaling
as χ → ∞ [20,21], in the spirit of the work of Ref. [7].
More specifically, the entanglement entropy is calculated from
the Schmidt decomposition singular values using the von
Neumann entropy

S = −
∑
an

(
λ[0]

an

)2
ln

(
λ[0]

an

)2 = −
∑
an

(
λ[1]

an

)2
ln

(
λ[1]

an

)2
. (12)

The values are identical for either half of the chain (odd or even
bond) and the bipartite splitting of the MPS has entropy that is
maximally entangled at ln χ . The information on the critical
properties of the system can be obtained by employing finite
entanglement scaling. In a critical chain the scaling equation

ξ ∝ χκ (13)

holds, where χ is the number of states kept and κ is a constant
that depends only on the central charge of the model [20]. This
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FIG. 3. Central charge as a function of the transverse field h in
the current-carrying TFIM at L = 1.2J . In the inset we show an
example of how the central charge c = 1 is determined in the current-
carrying TFIM (at h = 0.5J and L = 1.2J ) from the calculation of
S = c

6 ln(ξ ).

method for extracting the central charge is followed in the next
sections as well and more details are presented in Appendix B.

From the calculation of the entanglement entropy, we
extract the central charge c in the current-carrying region which
is critical with an expected central charge c = 1. A change in
c naturally occurs at the boundary to the gapped region where
c = 0. For example at fixed current L = 1.2 and noncritical
field h = 0.5J the system sits in the current region. The typical
scaling behavior of the entanglement entropy is presented in
in the inset of Fig. 3.

The system remains critical in the entire current-carrying
region. The transverse-field dependence of the scaling is shown
in Fig. 3. At a small growing perturbation in h  L is observed
a denser set of points on the left-hand side of Fig. 3, and shows
a central charge c = 1. Further increase of the magnetic-field
strength into the noncritical paramagnetic (PM) region hits the
boundary at h = L where the central charge is c = 0. Multiple
points around L = 1.2J show numerical noise which is due to
instabilities near the transition.

III. TFIM WITH A PERTURBATION THAT
BREAKS INTEGRABILITY

Integrability breaking can be achieved by introducing
certain perturbation terms in the TFIM. One way that this
can be achieved in the TFIM is through the introduction of
an interaction Dσx

i σ x
i+1 longitudinal to the magnetic field

direction x and transverse to the original spin ordering
interaction z. The Hamiltonian reads

Hnon = −
N∑

i=1

Jσ z
i σ z

i+1 + hσx
i + Dσx

i σ x
i+1. (14)

We choose to work with this Hamiltonian, because it is
to large extent unexplored compared to other ways to break
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FIG. 4. Correlations of the nonintegrable TFIM at h = 0.5 with
integrability-breaking parameter D.

the integrability of the system. If the spin couplings have
equivalent interaction strength J = D = 1, the Hamiltonian
is the isotropic XY model with an integrability-breaking
x-directed magnetic field. Additionally, in the absence of
magnetic field h = 0, and D � J , the anisotropic XY model
emerges. This has a known exact solution, with the energy
dispersion relation

εnon
h=0,k = J

(
1 −

[
1 −

(
1 + D/J

1 − D/J

)2]
sin2(ka)

)1/2

. (15)

where a is the lattice constant. As a consequence, there are
two limits where the system is integrable with known critical
entanglement properties.

A. Spin-spin correlations

The system passes through a critical point as D increases;
the zz correlations are presented in Fig. 4. At low values of
D there is long-range order until the critical point is reached
at Dc, and correlations with power-law decay emerge. The
nonintegrable term acts similarly to a transverse field, and
at Dc, the system experiences a phase transition from a Z2

symmetry-breaking FM to PM phase.

B. Entanglement scaling and central charge

There are two known critical points at h = J,D = 0 and
h = 0,D = J ; the TFIM and the isotropic XY (or XX) limits,
with central charges 0.5 and 1, respectively [22]. A critical line
connects these two points. The full phase diagram is found
numerically using a combination of the iDMRG algorithm
and finite entanglement scaling as shown in Fig. 5. As
demonstrated in Appendix B, the critical line that connects
the two known critical points is located by observing a peak
in the effective correlation length ξ as it increases with χ . The
entanglement scaling along the line maintains c = 0.5 until
the XY point is reached, where c = 1. This is in complete
analogy with the anisotropic XY model which only at the
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FIG. 5. Phase diagram of the TFIM with integrability-breaking
term as function of the transverse field h and the nearest-neighbor
interactions.

point of isotropy (XX model) the universality class is of the
free boson with central charge c = 1; but away from that point,
in the critical region, the universality class is free fermions
with c = 1/2 [23]. We see the same physics by perturbing the
system differently in this case.

IV. TFIM WITH A PERIODICALLY WEAKENED BOND

A. Diagonalization of Hamiltonian

So far, the two variations of the TFIM describe homoge-
neous two-site interactions across the length of the spin chain.
If we consider weakening the coupling at every even site, the
Hamiltonian can be written as

Hwb = −
N∑

i=1

(
Jσ z

i σ z
i+1 + hσx

i

) −
[N/2]∑
j=1

(J ′ − J )σ z
2j σ

z
2j+1.

(16)

This is equivalent to defining two Majorana fermion popula-
tions with two independent particle number operators. The
Hamiltonian can be diagonalized with a four-dimensional
Bogoliubov transformation [24] with the dispersion relation

εwb
k = [2J 2 + 2J ′2 + 4h2

+ 2
√

(J 2−J ′2)2 + 4h4(J 2 + J ′2) + 8JJ ′h2 cos ka]1/2.

(17)

Integrating this equation over k for N → ∞, the exact
ground-state energy is calculated. The second derivative of
the energy with respect to J ′ diverges at sufficiently weak J ′,
Fig. 6. A second-order phase transition occurs as the system
passes through this point. This becomes clear from the form
of the order parameter, which changes continuously to zero
upon approaching the transition bond strength. The behavior
is universal and identical to the situation where the system
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FIG. 6. Second derivative of the weak bond Ising energy disper-
sion relation with respect to J ′. The peaks are normalized for clarity
since their magnitudes decay with increasing field. The divergence
indicates quantum critical points as d2E0/dJ ′2 → ∞. The divergence
is also calculated numerically from the ground-state energy using
iTEBD and the critical points are depicted as vertical dashed lines.

passes through the critical point by varying the magnetic field
in the TFIM.

B. Spin-spin correlations

Figure 7 shows the correlations as every even bond is
weakened through the transition point at J ′

c = 0.25J when
h = 0.5J . This coincides with the peak in Fig. 6. Long-range
order is maintained until J ′ is tuned to Jc and power-law decay
appears. On the other side of the transition Jc < 0.25J the
region experiences exponential decay. When the bond strength
is completely diminished J ′ = 0 and the chain is isolated into
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FIG. 7. Correlations for the TFIM with weakened bond at h = 0.5.

FIG. 8. Central charge as a function of (h/J )2 in the weakened
bond transverse-field Ising model at critical J ′. Inset is the entangle-
ment scaling where the central charge of c = 0.5 is extracted from.

pairs. The correlations are instantaneously cut off and the chain
ceases to correlate beyond the first neighbor.

Short-range interactions are modified from the usual
equivalent bond strength TFIM. The odd bond preserves a
modulated pairing between spins experiencing the full strength
J . Correlations show an almost sawtooth decay instead of a
smooth curve.

C. Entanglement scaling and central charge

The entanglement scaling properties are investigated at the
divergent points in Fig. 6. The critical nature at (J ′

c/J ) =
(h/J )2 shares universal properties with the TFIM. This sug-
gests the entanglement scaling should exhibit similar behavior.

Figure 8 presents a plot of the central charge at the
critical points. The central charge is identical to the TFIM.
Otherwise when J ′/J �= (h/J )2 the system is tuned away from
criticality, the scaling disappears, and the central charge is zero.

D. In the presence of energy current

In the situation where an energy current is introduced in the
system, in a similar way as in the homogeneous TFIM, then
it can be proved that there is no energy current conservation.
The system then is not in a steady state. To show this we
shall take the energy current over two consecutive bonds, as
schematically seen in Fig. 9, and find its time derivative. The

J J'

j

J J' J

j

2n 2n+1 2n+2 2n+32-n2 1-n2

FIG. 9. Illustration of the sites, corresponding interactions, en-
ergy currents, and bonds that are involved. Due to the symmetry of
the problem, the energy currents j2n and j2n+1 need to be considered
in the continuity equation.
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FIG. 10. Critical boundary for TFIM with weakened bond over
n sites, (J ′

c/J ) = (h/J )n. Second-order phase transition occurs
crossing the line from above (ordered to disordered).

energy current density over two sites 2n,2n + 1 that involves
three bonds as indicated in Fig. 9 reads:

j2n + j2n+1 = J ′hσ z
2n−1σ

y

2n − Jhσ
y

2nσ
z
2n+1

+ Jhσ z
2nσ

y

2n+1 − J ′hσ
y

2n+1σ
z
2n+2. (18)

The continuity equation then takes the form

∂t (j2n + j2n+1) = −i[H,j2n + j2n+1]

= 2h(J ′2 − J 2)
(
σx

2n − σx
2n+1

)
+ 2J ′h2[(σy

2n−1σ
y

2n − σ z
2n−1σ

z
2n

)
− (

σ
y

2n+1σ
y

2n+2 − σ z
2n+1σ

z
2n+2

)]
. (19)

The form of the above equation indicates that upon summation
over all sites, the last term on the right-hand side, proportional
to J ′h2, will vanish except from the boundaries; but the first
term on the right-hand side will only vanish if J ′ = J . Thus
there is no energy current conservation in the system, contrary
to the homogeneous case.

E. Generalization to n-site period

The previous discussion considered the weakening of every
second bond. The generalization to a periodically weakened
bond of a period of n sites reveals a relationship for the critical
J ′ that scales with the transverse field as J ′

c/J = (h/J )n.
Figure 10(a) shows the critical lines for n from 2 to 6.

The physics behind the above result is that as the distance
between the weakened bonds becomes larger, then lower
values of J ′ are required to produce the same effect and in the
limit of very large n then J ′

c approaches 0, which indicates that
it effectively requires cutting the chain in order to produce the
same result. The analytical treatment and proof of this relation
is beyond the scope of the present work and will be presented
elsewhere because it involves the nontrivial diagonalization
of a chain of n spins with periodically modulated couplings
and periodic boundary conditions [25]. The case of a single

site with transverse field in an n-periodic chain has been
investigated analytically, e.g., in Ref. [26]; the treatment there
is simplified by the fact that the defect is on the site rather than
on the bond.

V. DISCUSSION

In this work we present a detailed study of entanglement
entropy and critical correlations of the one-dimensional TFIM
in three cases using mainly numerical calculations. We have
revisited the TFIM with an energy current confirming the
phase diagram and correlations [13] and the entanglement
properties where we found that the central charge c takes the
value 1 instead of 1/2 which was also analytically calculated
[15]. Similar change of the central charge was seen in the
entanglement scaling for the XX chain in the current-carrying
region [27]. The reason is that the Fermi sea is now doubled.
For symmetrically arranged multiple Fermi seas it has been
shown [28] that the entanglement is proportional to the
number of the Fermi seas. This has been generalized to
arbitrary arrangement of the Fermi seas and to cases without
particle-number conservation. It is worth mentioning that in
Ref. [15] it was pointed out that there exists a duality relation
between the transverse field Ising chain with energy current
and the XX chain with energy current.

Then as a natural continuation, we added an integrability-
breaking term (an interaction of the form σ zσ z) and studied the
entanglement properties. We found a critical line that connects
two known critical points: the pure TFIM and the isotropic XY
(or XX). Away from the point with XX symmetry, the central
charge is c = 1/2 along the critical line.

Subsequently by taking the TFIM and altering every other
bond (from J to J ′), we analyzed the energy dispersion
relation and found the critical points. By adding a current we
showed that there is no energy current conservation, which
is only recovered if J = J ′. We generalized the model to
one with n-site periodicity and found a critical J ′ that scales
as J ′

c/J = (h/J )n, where n is the distance of two adjacent
weakened bonds. This demands further analytical treatment
to be reported elsewhere. It should be noted that there have
been studies of isolated impurities of quantum spin chains,
via bosonization [29] and most recently using numerical
techniques [30].

Overall, taking a TFI chain as a basic model with sci-
entific and also practical (such as in quantum information)
consequences, we provide new results in different variants by
using matrix-product state based methods. The entanglement
properties of quantum XY spin chains of arbitrary length
has been investigated by using the notion of global measure
[31,32]. In earlier works it was found that the field derivative of
the entanglement density becomes singular along the critical
line. The form of this singularity is dictated by the universality
class which controls the quantum phase transition. Moreover,
it was pointed out that there is a deeper connection between
the global entanglement and the correlations among quantum
fluctuations. This is another direction to be clarified.
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APPENDIX A: ENERGY CURRENT DERIVATION

Application of energy current creates a nonequilibrium
steady state if the time derivative of the total energy current
is zero. In a steady state, energy flows through the system
at a constant rate continuously, without any impulses causing
discontinuous energy transfer. The energy is conserved and
thus characterized by a conservation law. If the Hamiltonian
of the system can be written as the sum of terms that
depend on two sites H = h1,2 + · · · + hi,i+1 + · · · + hN,N+1

and [hi,i+1,hi−1,i] �= 0, then the conservation of energy is
expressed in the form of a continuity equation [16]

∂hi,i+1(t)

∂t
+ �ji = 0, (A1)

�ji = ji+1 − ji is the discrete divergence of the current.
Applying a unitary transformation (working in the Heisen-

berg picture)

hi,i+1(t) = Uhi,i+1U
−1 = eiHthi,i+1e

−iH t ,

the time derivative is

∂hi,i+1(t)

∂t
= i[H,hi,i+1(t)]

= i[hi−1,i ,hi,i+1(t)] − [hi,i+1(t),hi+1,i+2],

where we have used the relations dU/dt = iHU and [H,U ] =
[H,U−1] = 0. As the two commutation relations on the right-
hand side depend on the previous i − 1 and next i + 1 sites,
they can be identified as the local current operators ji and ji+1,
respectively, meaning the continuity equation is

∂hi,i+1(t)

∂t
= ji(t) − ji+1(t) (A2)
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FIG. 12. Central charge along the nonintegrable critical line.

with ji(t) = i[hi−1,i ,hi,i+1(t)]. We now apply the above for
the two cases of TFIM we have considered, finding

1. Energy current in TFIM

jE
i = Jh

(
σ z

i−1σ
y

i − σ
y

i σ z
i+1

)
. (A3)

2. Energy current in TFIM with alternating bond strength

jE
i = h

(
J ′σ z

i−1σ
y

i − Jσ
y

i σ z
i+1

)
(A4)

if the strength of the interaction (bond) is J ′ between sites
i − 1,i and J between i,i + 1. Note that in this case, to derive
the continuity equation we need to take into account the flow
of energy density passing through two adjacent sites, due to
the doubling of the unit cell.

APPENDIX B: FINITE ENTANGLEMENT SCALING

In infinite matrix product state methods the length of the
system is no longer a limiting factor. The finite size scaling
is traded for finite entanglement of the state with the bond
dimension χ used as the new scaling resource, which now
limits the representation of the state. The universal formula
for the entanglement entropy is

S ∼ c

6
ln

(
ξ

a

)
(B1)

and depends on the correlation length ξ calculated from the
two dominant eigenvalues of the quantum transfer matrix

ξ = 1/ ln(λ1/|λ2|) = −1/ ln |λ2|. (B2)

As the MPS has been built in canonical form with orthonormal
left and right eigenvectors, the first eigenvalue in the transfer
matrix is 1, thus we need to calculate the second eigenvalue.
The correlation length scales inversely with energy gap until
it diverges at the critical point when the gap vanishes.

As explained in Sec. II, the entanglement entropy is calcu-
lated from the Schmidt decomposition’s singular values using
the von Neumann entropy, followed by a finite entanglement
scaling. In a critical regime, ξ ∝ χκ . Although the perfect
description of the state at a critical point requires χ to diverge
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to infinity, the fact that χ is finite leads to an effective finite
correlation length ξχ at the critical point. The phase transition
is seen at the peak in a curve as the control parameter passes
through the critical point. Depending on the number of states
retained the peak can be broad for low values of χ and give
an less accurate representation of the exact critical point. For

larger values of χ the peak becomes sharper and more reliable.
This is seen in Fig. 11 which is an example of how the critical
points in Sec. III were calculated.

Furthermore, in Fig. 12 we illustrate, by using examples,
how the central charge is determined from the scaling of
entanglement entropy.
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