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with quantum Ising interaction

Yan-Wei Dai,1,2 Qian-Qian Shi,2,1 Sam Young Cho,2,3,* Murray T. Batchelor,2,4 and Huan-Qiang Zhou2,3

1College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2Centre for Modern Physics, Chongqing University, Chongqing 400044, China

3Department of Physics, Chongqing University, Chongqing 400044, China
4Mathematical Sciences Institute and Department of Theoretical Physics, Research School of Physics and Engineering,

The Australian National University, Canberra ACT 2601, Australia
(Received 26 January 2017; revised manuscript received 27 April 2017; published 14 June 2017)

The finite-temperature phase diagram is obtained for an infinite honeycomb lattice with spin-1/2 Ising
interaction J by using thermal-state fidelity and the von Neumann entropy based on the infinite projected
entangled pair state algorithm with ancillas. The tensor network representation of the fidelity, which is defined
as an overlap measurement between two thermal states, is presented for thermal states on the honeycomb
lattice. We show that the fidelity per lattice site and the von Neumann entropy can capture the phase
transition temperatures for an applied magnetic field, consistent with the transition temperatures obtained
via the transverse magnetizations, which indicates that a continuous phase transition occurs in the system.
In the temperature-magnetic field plane, the phase boundary for finite temperature is found to be well approximated
by the functional form (kBTc)2 + h2

c/2 = aJ 2 with a single numerical fitting coefficient a = 2.298(7), where Tc

and hc are the critical temperature and field with Boltzmann constant kB . The critical temperature in the absence of
magnetic field is estimated as kBTc/J = √

a � 1.516(2), compared with the exact result kBTc/J = 1.51865 . . . .
For the quantum state at zero temperature, this phase boundary function gives the critical field estimate
hc/J = √

2a � 2.144(3), compared to the known value hc/J = 2.13250(4) calculated from a cluster Monte Carlo
approach.

DOI: 10.1103/PhysRevB.95.214409

I. INTRODUCTION

Since Landau’s spontaneous symmetry breaking theory
was developed, the Landau-Ginzburg-Wilson theory [1] has
been pivotal to understanding phase transitions in quantum
many-body systems [2,3]. In the last decade, quantum phase
transitions have been intensively and extensively investigated
to provide a deeper understanding of quantum critical
phenomena from the perspective of quantum information [4].
Significant progress in understanding measures of quantum
entanglement, i.e., purely quantum correlations absent in
classical systems, has been achieved in connection with
quantum phase transitions. Especially, for any finite-size one-
dimensional spin system, it was shown that the von Neumann
entropy quantifies the bipartite entanglement between the two
partitions of the system, with logarithmic scaling behavior
with respect to the partitioned system size, and a scaling
prefactor proportional to the central charge c, a fundamental
quantity in conformal field theory and critical phenomena
[5–9]. Recently, geometric measures quantifying multipartite
entanglement have been shown to scale inversely with the
system size [10–13] where the scaling factor is universally
connected to the minimum Affleck-Ludwig boundary
entropy [14], i.e., the minimum ground-state degeneracy
corresponding to one of the boundary conformal field
theories compatible with the bulk criticality [15]. Quantum
entanglement has then been used as a marker and characteristic
property of quantum phase transitions driven by quantum
fluctuations in one-dimensional quantum many-body systems.

*sycho@cqu.edu.cn

As another way to characterize quantum phase transitions,
quantum fidelity, defined as an overlap measurement between
quantum states, has been introduced from the basic notion
of quantum mechanics based on quantum measurement in
quantum information [16–26]. In order to explore quantum
phase transitions from the viewpoint of quantum fidelity,
various quantum fidelity approaches have been suggested,
such as fidelity per lattice site (FLS) [18], reduced fidelity
[20], fidelity susceptibility [21], density-functional fidelity
[22], and operator fidelity [23]. Quantum fidelity approaches
have been shown to capture critical behavior in a range of
systems and provide an alternative marker of quantum phase
transitions without knowing any detailed broken symmetry.
Especially, the ground-state FLS has been demonstrated to
capture drastic changes of the ground-state wave functions
in the vicinity of a critical point, even for those which
cannot be described in the framework of Landau-Ginzburg-
Wilson theory, such as a Beresinskii-Kosterlitz-Thouless
transitions [27] and topological quantum phase transitions [28]
in quantum one-dimensional many-body systems. Further,
quantum fidelity has also manifested the relation between
degenerate ground states and spontaneous symmetry breaking
[29,30].

Such developments in understanding quantum phase
transitions could be applied towards understanding finite-
temperature phase transitions more deeply from the perspec-
tives of entanglement and fidelity. It is then natural to ask
whether such approaches can be generalized to characterize
finite-temperature phase transitions. As a measure of simi-
larity between two quantum states, quantum fidelity defined
by the overlap function between them can be generalized
to a fidelity defined by an overlap function between two
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thermal density matrices in thermodynamic systems at finite
temperature. As is well-known, at zero temperature, ground
states in different phases should be orthogonal due to their
distinguishability in the thermodynamic limit. This fact allows
the quantum fidelity between quantum many-body states in
different phases signaling quantum phase transitions from an
abrupt change of the fidelity when system parameters vary
through a phase transition point. Similar to the quantum
fidelity, the thermal fidelity may exhibit a singular behavior
for a finite-temperature phase transition. Based on such a
thermal fidelity, a fidelity susceptibility has been mainly
investigated [31–38] and a thermal fidelity per lattice site
has been studied very recently in the Kitaev honeycomb
model [39]. A thermal reduced density matrix can be defined
from the thermal density matrix. For finite-temperature phase
transitions, a von Neumann entropy defined by the thermal
reduced density matrix at finite temperature can exhibit a
similar behavior to the von Neumann entropy at zero tem-
perature. A few investigations have been carried out to use the
von Neumann entropy for finite-temperature phase transitions
[40–44].

In this paper, we numerically investigate the finite-
temperature phase transition for the honeycomb lattice with
spin-1/2 Ising interactions. To describe the honeycomb spin
lattice, we employ the infinite projected entangled pair state
(iPEPS) representation [45] with ancillas [46,47]. The ancilla
states have been introduced to include finite-temperature
effects. Thermal states can be expressed in the Hilbert space
enlarged due to the ancilla states. In terms of a thermal density
matrix given by the thermal states, we introduce a thermal
fidelity and von Neumann entropy at finite temperature. We
show that the thermal fidelity and von Neumann entropy can
detect finite-temperature phase transitions. The detected phase
transition points in the temperature-magnetic field plane are
discussed by introducing a phase boundary function with a
single numerical constant. From this, the estimated quantum
critical point at zero temperature and the estimated critical
temperature in zero magnetic field are shown to be consistent
with the Monte Carlo calculation [48] and the exact result
[49,50], respectively.

Our paper is organized as follows. In Sec. II, we in-
troduce the honeycomb lattice with Ising interactions. A
brief explanation is given for the extension of the iPEPS to
thermal projected entangled pair states (tPEPS) with ancillas
[46] in the enlarged Hilbert space at finite temperature on
the honeycomb lattice. This approach allows us to define
a thermal state of the system including finite-temperature
effects. In Sec. III, we outline the numerical procedure for the
tensor-network-based thermal-fidelity and discuss the singular
behavior of thermal-fidelity indicating the occurrence of a
phase transition. The singular behavior of the von Neumann
entropy at the phase transition temperature is discussed in
Sec. IV. The transition temperatures obtained are shown to
be consistent with those calculated from the magnetization
in Sec. V. Section VI is devoted to the discussion of the
phase boundary and the estimates of the quantum critical field
at zero temperature and critical temperature in the absence
of the magnetic field. A summary and remarks are given in
Sec. VI.

II. HONEYCOMB LATTICE WITH QUANTUM
ISING INTERACTION

We consider an infinite honeycomb lattice with spin-1/2
Ising exchange interaction in the presence of a transverse
magnetic field. The Hamiltonian defined on the honeycomb
lattice can be written as

H = Hzz + Hx, (1)

where the spin exchange interaction Hzz and the interaction
with the magnetic field Hx are respectively given by

Hzz = −J
∑

〈s,s ′〉
σ s

z σ s ′
z , (2a)

Hx = −h
∑

s

σ s
x (2b)

with the strength of the spin exchange interaction J > 0
and the transverse magnetic field h. Here, σ s

z and σ s
x are

the spin-1/2 Pauli matrices at site s. 〈s,s ′〉 runs over all
nearest-neighbor pairs on the honeycomb lattice. At zero
temperature T = 0, if the spin exchange interaction J is much
bigger than the magnetic field h, i.e., J � h, the Hamiltonian
can be reduced to H ≈ −∑

〈s,s ′〉 σ
s
z σ s ′

z on the honeycomb
lattice. The Hamiltonian becomes H ≈ −∑

s σ s
x for J 	 h.

Then the system can undergo a quantum phase transition due to
a spontaneous Z2-symmetry breaking, which is characterized
by a nonzero transverse magnetization Mz = 〈ψ |σz|ψ〉 with a
ground-state wave function |ψ〉 at zero temperature. The quan-
tum critical point was estimated as hc/J = 2.13250(4) from
the cluster Monte Carlo approach [48]. The Ising model on the
honeycomb lattice has the exact critical temperature [49,50]

kBTc/J = 2

ln (2 + √
3)

= 1.51865 . . . (3)

in the absence of the transverse magnetic field (h = 0).

A. Projected entangled pair states representation
at finite temperature

To study thermal fidelity, one needs to first obtain thermal
states on the infinite honeycomb lattice with the Hamiltonian
H , where every lattice site is described by S spin states
(i = 1, . . . ,S). We then employ iPEPS representation with
ancillas. By appending each lattice with an ancilla, i.e.,
accompanying a ancilla states (a = 1, . . . ,S), iPEPS can be
extended to thermal projected entangled pair states (tPEPS)
including finite-temperature effects. Thus the Hilbert space
is enlarged due to the ancilla states. Thermal states |�(β)〉
depending on temperature can be defined in the enlarged
Hilbert space, where β is the inverse temperature, i.e., 1/β =
kBT with the temperature T and the Boltzmann constant kB .
Thermal states |�(β)〉 with ancilla states can be obtained
from imaginary time evolution [51] of a pure state in the
enlarged Hilbert space spanned by states

∏
s |is,as〉, where

the product runs over all lattice sites s. Actually, the pure state
can be defined as a state at infinite temperature, i.e., |�(0)〉 =∏

s (
∑S

i=1
1√
S
|is,ia〉) because the density of state becomes

ρ(β = 0) = ∏
s (

∑S
i=1

1
S
|is〉〈is |) by defining the density of
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FIG. 1. (a) Pictorial representation of the tensor Aia
lur . (b) Am-

plitude �A,B [{as,is}] with all bond indices connecting the nearest-
neighbors contracted. The lines connecting two tensors indicate the
index contraction.

state at finite temperatures [46] as

ρ(β) = Trancillas|�(β)〉〈�(β)|. (4)

Also, the thermal state |�(β)〉 can be written in terms of the
pure sate |�(0)〉 by defining an evolution operator U (β), i.e.,

|�(β)〉 = U (β)|�(0)〉. (5)

In fact, the density of states at finite temperature can be
expressed as ρ(β) ∝ e−βH and then the imaginary time
evolution for time β with H/2 makes it possible to define
the imaginary time evolution operator as U (β) = e−βH/2 for
the thermal states |�(β)〉.

For our honeycomb lattice, which is two-site translational
invariant, a thermal state |�(β)〉 in iPEPS is represented by
two tensors Aia

lur (β) and Bia
lrd (β), where S = 2 and l,r,u,d =

1, . . . ,D are the bond indices with the bond dimension D. In
the tensor representation, thermal states can then be written as

|�(β)〉 =
∑

as ,is

�A,B[{as,is}]
∏

s

|as,is〉, (6)

where the sum runs over all indices is,as at all sites. The tensor
contraction of the amplitude �A,B[{as,is}] is shown pictorially
on the honeycomb lattice in Fig. 1. For the imaginary time
evolution, the initial state |�(0)〉 defined at infinite temperature
(β = 0) can be chosen as a product state [46]

Aia
lur (0) = δiaδl0δu0δr0, (7a)

Bia
lrd (0) = δiaδl0δr0δd0 (7b)

with the minimal bond dimension D = 1. Thus, once one
obtains the tensors A(β) and B(β) for a given temperature after
the imaginary time evolution, the thermal states are determined
in the tensor representation.

B. Imaginary time evolution and tensor renormalization

To calculate a thermal state of the system, the idea is to
use the imaginary time evolution of the initial state |�(0)〉
at infinite temperature driven by the Hamiltonian H on
the honeycomb lattice. On performing the imaginary time
evolution by the time evolution operator U (β) = e−βH/2

on the initial state |�(0)〉, the second-order Suzuki-Trotter
decomposition [52] is employed for an infinitesimal time step

as a product

U (dβ) = Ux(dβ/2)Uzz(dβ)Ux(dβ/2) + O(dβ3), (8)

where the evolution gates of the interaction and of the
transverse field are defined as Ux(dβ) = e−Hxdβ/2 and
Uzz(dβ) = e−Hzzdβ/2, respectively. The single-body evolution
gate Ux(dβ/2) acting on iPEPS with ancillas gives the new
tensors Ã and B̃,

Ãia
lur ∝ Aia

lur + ε
∑

j=0,1

σ ij
x A

ja

lur , (9a)

B̃ia
lrd ∝ Bia

lrd + ε
∑

j=0,1

σ ij
x B

ja

lrd , (9b)

where ε = tanh[hdβ/4] and the dimensions of the new tensors
Ãia

lur and B̃ia
lrd are kept as D. While the two-body evolution gate

Uzz(dβ) acting on the iPEPS with ancillas gives the new tensors
Ã and B̃ are

Ãia
2l+sl ,2u+su,2r+sr

∝ εs/2(−1)isAia
lur , (10a)

B̃ia
2l+s ′

l ,2r+s ′
r ,2d+s ′

d
∝ εs ′/2(−1)is

′
Bia

lrd , (10b)

where ε = tanh[Jdβ/2]. The indices satisfy s = sl + su + sr

and s ′ = s ′
l + s ′

r + s ′
d with sl,su,sr ,s

′
l ,s

′
r ,s

′
d ∈ {0,1}. Equations

(10a) and (10b) are an exact map but the tensors A and B are
changed from the original D dimension into 2D dimension
after applying the two-body evolution gate Uzz, i.e., the new
tensors Ã and B̃ have the bond dimension 2D instead of the
original bond dimension D.

In order to complete updating the tensors for each in-
finitesimal time step, the new tensors Ã and B̃ with the bond
dimension 2D in Eqs. (10a) and (10b) should be reexpressed
by another new tensors with the bond dimension D. This can
be accomplished by using an optimal isometry W that maps
from 2D- back to D-dimensions for the new tensors Ã and B̃

in Eqs. (10a) and (10b) as, respectively,

2D∑

l′,u′,r ′=1

Wl′
l Wu′

u Wr ′
r Ãia

l′u′r ′ = Aia
lur , (11a)

2D∑

l′,r ′,d ′=1

Wl′
l W r ′

r Wd ′
d B̃ia

l′r ′d ′ = Bia
lrd . (11b)

These processes are known as the so-called renormalization
of the updating tensors Ã and B̃. Constructing the optimal
isometry W requires calculating the environment tensors of
the updating tensor Ã and B̃. The corner transfer matrix
renormalization method [53] is implemented to contract the en-
vironmental tensors. The environmental tensors are contracted
with each other by indices of dimension M (called environment
dimension). Similar implementing processes in Ref. [46] have
been then performed to get the updated tensors A(dβ) and
B(dβ) with truncating back to D from 2D dimensions of the
updating tensors Ã and B̃.

III. THERMAL FIDELITY PER LATTICE SITE

Once the thermal wave functions |�(β)〉 are obtained
as a function of temperature from the finite-temperature
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FIG. 2. (a) Contraction of the tensor A and the complex conjugate
tensor A∗ giving the reduced tensor a. (b) Tensor network representa-
tion of the density matrix ρ(h,β) = Trancillas|�(β)〉〈�(β)| by tracing
over the ancilla states.

iPEPS algorithm, the thermal density matrix ρ(β) =
Trancillas|�(β)〉〈�(β)| is obtained by taking the trace over the
ancillas state of thermal wave functions. The thermal density
matrix ρ(β) can then be presented by the reduced tensors a

(denoted by orange circles) and b (denoted by green circles)
in the tensor network representation in Fig. 2(b), where, as is
shown in Fig. 2(a), the reduced tensor a is obtained by taking
trace over the ancillas index of the tensor A and the complex
conjugate tensor A∗, and the reduced tensor b (denoted by
a green circle) is calculated in the same way. Similar to the
quantum fidelity [18,54], the thermal fidelity can be defined in
terms of thermal density matrices [32–35,55] as

F (β1,β2) = Tr
√√

ρ(β1) ρ(β2)
√

ρ(β1)√
Tr

√
ρ(β1) Trρ(β2) Tr

√
ρ(β1)

. (12)

This thermal fidelity has basic properties such as F (β,β) = 1
for equal temperatures and F (β1,β2) = F (β2,β1) for exchang-
ing the thermal states. Also, for relatively large lattice sites,
the thermal fidelity can be scaled asymptotically as F ∼ dL,
where d is a scaling parameter and L is the number of sites.
Actually, the scaling parameter d is the averaged thermal-state
fidelity per lattice site (tFLS), which is well defined in the
thermodynamic limit,

d(β1,β2) ≡ lim
L→∞

F (β1,β2)1/L. (13)

From the thermal fidelity, the tFLS satisfies (i) d(β,β) = 1 for
the normalization, (ii) d(β1,β2) = d(β2,β1) for the exchange
symmetry, and (iii) 0 � d(β1,β2) � 1. At zero temperature
T = 0, the tFLS reduces to the quantum fidelity per lattice
sites (FLS) [18,54] for quantum states.

In performing the calculation of the thermal fidelity, for the
density product, i.e., ρ(β1)1/2ρ(β2)ρ(β1)1/2, the two basic cell
structures can be constructed on the honeycomb lattice with
the transfer matrices E1 and E2 in Fig. 3(a). By using the two
basic cell structures, the density product can be represented
by contracting out the physical indices in the density matrix
tensor in Fig. 3(b). As a consequence, the thermal fidelity can
be presented in the tensor network representation in Fig. 3(b).
The tFLS d(β1,β2) is equivalent to the maximum eigenvalue
of the transfer matrix [54].

(a)
2E1E 2E

(b)

2( , )h1/2
1( , )h 1/2

1( , )h

FIG. 3. (a) Two basic cell structures for E1 and E2. (b) Tensor
network representation of the product ρ(β1)1/2ρ(β2)ρ(β1)1/2.

Generally, in the tensor network representation of the
thermal fidelity in Fig. 3(b), each bond dimension of the tensors
E1 and E2 is D6 and then a relatively-larger environment
dimension M is needed for reliable calculation results. Conse-
quently, calculation of the thermal fidelity in the tensor network
representation in Fig. 3(b) requires a lot of computational
memory space and a long calculation time. In our case,
however, all of the system parameters of the given Hamiltonian
H are fixed in calculating the thermal fidelity. This fact
allows us to improve the computation efficiency because the
thermal-state fidelity can be simplified due to ρ = e−βH as

F (β1,β2) = Tr ρ(β̃)√
Trρ(β1)

√
Trρ(β2)

, (14)

where β̃ = (β1 + β2)/2. With the effective temperature β̃ =
(β1 + β2)/2, the simple form of the thermal fidelity in Eq. (14)
is represented in the tensor network representation in Fig. 2(b).
In the representation, each bond dimension of the maximum
tensors a and b becomes D2, where the tensors a and b

correspond to the transfer matrices E1 and E2 in Fig. 3(b). This
results in the representation dimensions of the tensors a and
b being much smaller than those of the tensors E1 and E2.
The consequential environment dimension M becomes much
smaller than that in Fig. 2(b). Thus, in our study, we have
used the tensor network representation in Fig. 3(b) of the
thermal fidelity in Eq. (14) with the effective temperature
β̃ = (β1 + β2)/2. The computational cost of our algorithms
scales like D3M6.

A. Pinch points of tFLS

At zero temperature, the fidelity per lattice site (FLS)
for quantum states has been applied successfully in the
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FIG. 4. Thermal fidelity per lattice site d(β1,β2) for transverse
magnetic fields (a) h = 0 and (b) h = 0.8 J in the β1 − β2 parameter
space. Pinch points are indicated on the thermal fidelity surfaces.
Also shown is the projection of the thermal fidelity surface onto the
β1 − β2 plane, on which the intersection lines are indicated.

investigations of quantum phase transitions because it can
capture unstable fixed points, corresponding to phase transition
points, along renormalization group flows [18,54]. In a similar
fashion, our tFLS can capture thermal phase transition points.
Suppose that a thermal system undergoes thermal phase
transitions at a critical temperature Tc (or βc), which may
imply that the thermal state of the system experiences a
nontrivial change of its structure. Such a nontrivial change
in the thermal state can be captured by the tFLS. Specifically,
d(β1,β2) reveals singular behavior when β1 (β2) crosses βc for
a fixed β2 (β1). At the point (βc,βc), the singular behaviors can
characterize a transition point, especially named as a pinch
point d(βc,βc) of the tFLS, which is the intersection of two
singular lines β1 = βc and β2 = βc as a function of β1 and β2

for continuous phase transitions. Then there are two possible
ways to investigate a thermal phase transition: (i) detecting
pinch points on the tFLS surface and (ii) detecting singular
behavior of the tFLS. For continuous phase transitions the
second way is more practical. However, for discontinuous
phase transitions the pinch points are obviously identified on
the tFLS surface.

In Fig. 4, we plot the tFLS surface d(β1,β2) for (a) h = 0
and (b) h = 0.8 J in the β1 − β2 parameter space for bond
dimension D = 2 and the environment truncation dimension
M = 32. The pinch points, obtained from the singularity
behavior of the tFLS as discussed below, are identified. The
accuracy of these results is discussed in Sec. V.
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∂β
1
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1,β
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12
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h=0      D=3 M=20 
h=0.8J D=2 M=16
h=0.8J D=3 M=20

(a)

(b)

FIG. 5. (a) The first partial derivative of the thermal fidelity per
site ∂d(β1,β2)/∂β1 as a function of β1 for transverse magnetic fields
h = 0 and 0.8 J with Jβ2 = 0.5 and 0.6, respectively. (b) The second
partial derivative of the thermal fidelity per site ∂d(β1,β2)/∂β1 as
a function of β1. In (b), the singular points appear at Jβc = 0.659
and 0.711 for h = 0 and 0.8 J , respectively, which correspond to
critical point estimates. For both (a) and (b), data are presented for
different values of the bond dimension D and environment truncation
dimension M .

B. Singular behavior of the tFLS

To determine phase transition points from the tFLS, we
examine the singular behavior of the tFLS itself and its
derivatives. We consider the tFLS d(β1,β2) with a reference
state |�(β2)〉 for a fixed value of β2, i.e., Jβ2 = 0.5 for h = 0
and Jβ2 = 0.6 for h = 0.8 J . In Fig. 5, we plot the (a) first-
and (b) second-derivatives of tFLS d(β,∞) as a function of β

for h = 0 and 0.8 J . Here the value of the step is Jdβ = 10−3.
The first derivatives are shown to be continuous, i.e., to exhibit
nonsingular behavior. However, the second derivatives exhibit
singular behavior showing a discontinuity. The discontinuous
points indicate a thermal phase transition point. For bond
dimension D = 2 and the environment truncation dimension
M = 32 corresponding to Fig. 4, the critical temperatures
are estimated as kBTc/J = 1.51745 (Jβc = 0.659) for h = 0
and kBTc/J = 1.40647 (Jβc = 0.711) for h = 0.8 J . The
convergence of these results with increasing values of D

and M is apparent in Fig. 5 and discussed in Sec. V. The
continuous behavior of both the fidelity surface in Fig. 4 and
the first derivative in Fig. 5(a) imply that the system undergoes
a continuous phase transition.

IV. VON NEUMANN ENTROPY
AT FINITE TEMPERATURE

In our tPEPS approach, we can use the thermal density
matrix ρ(h,β) in Fig. 2(b) to investigate whether finite-
temperature phase transitions can be quantified by using
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the von Neumann entropy. We consider two types of re-
duced density matrices, i.e., one-site reduced density matrix
ρA/B(h,β) = TrB/A∪C ρ(h,β) and two-site reduced density
matrix ρA∪B(h,β) = TrC ρ(h,β), where C denotes the remain-
der of the system. The von Neumann entanglement entropy S

of a bipartition of the system is thus given in terms of the
reduced density matrix

Sj = −Tr ρj (h,β) log2 ρj (h,β), (15)

where ρj (h,β) = Trj c ρ(h,β), with j = A,B or A ∪ B, is the
reduced density matrix obtained from the full density matrix
by tracing out the degrees of freedom of the rest of the
subsystem j c.

In Fig. 6, we plot (a) the von Neumann entropies and (b)
the derivatives as a function of the inverse temperature β for
the same values of the transverse magnetic fields h = 0 and
h = 0.8 J , with step value Jdβ = 10−4. In Fig. 6(a), the plots
show that as temperature increases, both the one-site and the
two-site von Neumann entropies increase due to the increment
of thermal fluctuations and that they exhibit singular behavior.
In Fig. 6(b), the derivatives of the von Neumann entropies show
the singular points clearly. At the critical inverse temperatures
βc, the singular points correspond to the singular points of
the tFLS for the same values of the bond dimension D and
environment truncation dimension M . It is thus shown that the
one-site and the two-site von Neumann entropies capture the
finite-temperature phase transitions in this model. Similar to
the continuous behavior of quantum phase transitions [29,56],
the continuous behavior of the von Neumann entropy at the
singular points implies that a continuous phase transition
occurs at the transition temperatures [57].

V. TRANSVERSE MAGNETIZATION

In order to confirm the results from the tFLS and the von
Neumann entropy, we investigate the local order parameter,
defined by the transverse magnetization, in this section. In
the classical limit, i.e., β = 0, for the case of h = 0, the
two site interaction gate Uzz(β) acts on an initial state |�(0)〉
and the exact state |�(β)〉 = Uzz|�(0)〉 can be obtained. The
bond dimension D = 2 is then enough for an exact iPEPS
representation of any classical state including the critical one.
However, the calculations of expectation values require an
effective approximate environment. Thus, in the vicinity of
the critical point, a bigger environment truncation dimension
M is required to calculate expectation values of operators such
as magnetizations and spin correlations [46]. For the opposite
limit, i.e., β → ∞, which corresponds to the quantum case,
the state of the system is in a product state configuration,
where either every spin is in the | ↑〉z state or every spin is
in the | ↓〉z state. Then the system exhibits a spontaneous
symmetry breaking, which randomly chooses either the spin
up or spin down configuration. According to Eqs. (10a)
and (10b), the zero temperature ferromagnetic state
Uzz(∞)|�(0)〉 is represented exactly by Ãia

sl ,su,sr
∝ (−1)isδia

and B̃ia
sl ,sr ,sd

∝ (−1)isδia .
In Fig. 7, we plot the magnetization MZ = 〈σz〉 as a function

of the inverse temperature β for transverse magnetic field at
the values h = 0 and 0.8 J with different values of the bond
dimension D and environment truncation dimension M for
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FIG. 6. (a) The von Neumann entropies S and (b) the derivatives
as a function of inverse temperature β for transverse magnetic fields
h = 0 and 0.8 J . The singular behavior of the von Neumann entropy
is observed at Jβc = 0.6585 and 0.711 for transverse magnetic field
h = 0 and 0.8 J , respectively. Data are presented for different values
of the bond dimension D and environment truncation dimension M .

the step value Jdβ = 10−4. The spontaneous magnetizations
have nonzero value for the inverse temperatures β > βc. Here
Jβc = 0.6585 and 0.711 for transverse magnetic fields h =
0 and 0.8J , respectively. These critical temperatures are the
same as those obtained from the tFLS in Sec. III B and from
the von Neuman entropy in Sec. IV.

With regard to the accuracy of our results, we show in
Tables I and II estimates of the critical (inverse) temperature for
transverse magnetic field values h = 0 and 0.8 J with different
values of the bond dimension D and environmental truncation
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FIG. 7. Magnetization Mz as a function of inverse temperature
β for transverse magnetic fields (a) h = 0 and (b) 0.8 J . The insets
show the spontaneous magnetizations MZ plotted for different bond
dimensions D and environment truncation dimensions M . The critical
inverse temperatures are estimated as Jβc = 0.6585 and 0.711 for
transverse magnetic field h = 0 and 0.8 J , respectively.

TABLE I. Estimates of the inverse critical temperature βc for
different bond dimensions D and environment truncation dimensions
M for magnetic field h = 0.

M = 8 M = 10 M = 16 M = 20 M = 32

D = 2 0.6576 0.658 0.6584 0.6584 0.6585
D = 3 0.6576 0.6581 0.6584 0.6584
D = 4 0.6578 0.6581 0.6584 0.6585

TABLE II. Estimates of the inverse critical temperature βc for
different bond dimensions D and environment truncation dimensions
M for magnetic field h = 0.8 J .

M = 8 M = 10 M = 16 M = 20 M = 32

D = 2 0.7099 0.7106 0.7109 0.7110 0.7110
D = 3 0.7100 0.7108 0.7110 0.7111
D = 4 0.7102 0.7109 0.7110 0.7112

dimension M . It is readily apparent that these estimates soon
saturate to the number of significant figures shown.

VI. PHASE DIAGRAM IN THE PRESENCE
OF TRANSVERSE MAGNETIC FIELD

So far, we have studied the tFLS and the von Neumann
entropy with characteristic singular behavior indicating finite-
temperature phase transitions at the two magnetic field values
cases h = 0 and 0.8 J for the quantum transverse Ising model
on the honeycomb lattice. In this section we investigate the
phase boundary in the wider parameter space 0 � h/J � 1.9.
In determining the critical temperature and field, the accuracy
of the iPEPS is more affected by the environment truncation
dimension M than the bond dimension D (see Tables I and II).
From our calculations, we have noticed that the practical
optimized dimensions are the bond dimension D = 2 and the
environment dimension M = 16 with the step value Jdβ =
10−3, which means that other choices for the dimensions would
not change the numerical critical temperature within the errors
of the accuracy of the iPEPS.

We have calculated twenty critical points including the
case of zero-magnetic field for the model. In Table III, we
summarize the critical temperatures kBTc and the correspond-
ing critical magnetic fields hc in units of the interaction
strength J . In the temperature-magnetic field plane, we
plot the phase boundary in Fig. 8. As the magnetic field
increases, the critical temperature becomes lower. Note that
Fig. 8 shows a monotonic behavior of the critical points in
the temperature-magnetic field plane, which implies that the
phase separation can be determined by a phase boundary
function f (Tc,hc) = (kBTc/J )2 + (hc/J )2/2 with a single
numerical fitting constant a, i.e., f (Tc,hc) = a. Thus the
model is in the ferromagnetic phase for f (Tc,hc) < a, with
a nonmagnetic phase for f (Tc,hc) > a. A best numerical
fitting is performed to give the fitting constant a = 2.298(7).
In Fig. 8, the dashed line is the fitted phase boundary. One can
also estimate the critical temperature and field by using the
fitted phase boundary (kBTc)2 + h2

c/2 = aJ 2. As the magnetic
field varies, the critical temperature can be obtained by the
relation kBTc =

√
aJ 2 − h2/2. The critical temperatures can

be estimated as, for instance, kBTc/J = √
a � 1.516(2) for

h = 0 and kBTc/J � 1.406(3) for h = 0.8 J . Alternatively,
as temperature varies, the critical field can be obtained by
the relation hc =

√
2aJ 2 − 2(kBT )2. The critical fields can be

estimated as, for instance, hc/J = √
2a � 2.144(3) at T = 0

and hc/J � 2.139(3) at kBT /J = 0.1. In comparison with the
numerical estimates, the fitted critical values shown in Table III
have absolute errors less than around 10−3.
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TABLE III. Critical temperature kBTc(= 1/βc) for values of the magnetic field h in the honeycomb spin lattice with quantum Ising
interaction in units of the interaction strength J . The fitted critical temperature kBT fit

c was estimated by using the phase boundary function
(kBTc)2 + h2/2 = aJ 2 with the numerical constant a = 2.298(7). The absolute error is defined as εerr = |kBTc − kBT fit

c |/(kBTc).

h 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
βc 0.659 0.659 0.662 0.665 0.671 0.678 0.687 0.698 0.711 0.727
kBTc 1.5175 1.5175 1.5106 1.5038 1.4903 1.4749 1.4556 1.4327 1.4065 1.3755
kBT fit

c 1.515(2) 1.514(2) 1.509(2) 1.501(2) 1.489(2) 1.474(2) 1.455(2) 1.432(2) 1.406(3) 1.375(3)
εerr 0.002(1) 0.002(2) 0.0015(8) 0.002(2) 0.0016(7) 0.0016(5) 0.0016(2) 0.00170(8) 0.00177(6) 0.0018(3)

h 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
βc 0.747 0.770 0.799 0.834 0.877 0.931 1.000 1.095 1.223 1.417
kBTc 1.3387 1.2987 1.2516 1.199 1.1403 1.0741 1.000 0.9132 0.8177 0.7057
kBT fit

c 1.340(3) 1.301(3) 1.256(3) 1.205(3) 1.148(3) 1.083(3) 1.008(3) 0.923(4) 0.823(4) 0.702(5)
εerr 0.002(2) 0.002(2) 0.004(2) 0.005(2) 0.007(3) 0.008(3) 0.009(3) 0.011(4) 0.007(5) 0.007(5)

Consequently, these results indicate that the phase boundary
of the transverse Ising model on the honeycomb lattice with
quantum Ising interactions is well described for finite T , where
the thermal fluctuations are dominant, by the phase boundary
function (kBTc)2 + h2

c/2 = aJ 2 with the single numerical
fitting constant a = 2.298(7).

We note that if this simple curve was an exact result for
all T , the constant value a = 4/[ln(2 + √

3 )]2 = 2.3063 . . .

follows from (3). This value is close enough to the fitted
value, but the inferred quantum critical point at T = 0,
hc/J = 2

√
2/ ln(2 + √

3 ) = 2.1476 . . ., where the quantum
fluctuations dominate, leads to a discrepancy with the high
precision Monte-Carlo estimate hc/J = 2.13250(4) [48]. As
is well known [2], the effect of quantum fluctuations remains
significant in the vicinity of the quantum critical point (T = 0),
leading to interesting effects in the quantum critical region
where the thermal and quantum fluctuations compete. In
this study, we have concentrated on the effects of thermal
fluctuations via the thermal fidelity and von Neumann entropy
for finite temperature in the region where the fitted function
applies. Understanding this discrepancy and the quantum

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

hc/
√

2J

k
B

T
c
/
J

FIG. 8. Phase boundary in the temperature-magnetic field plane
for the honeycomb lattice with quantum Ising interactions. The circles
indicate the numerical data and the dashed line is the numerical fitting
function (kBTc)2 + h2

c/2 = aJ 2 with a = 2.298(7).

critical region in general requires further refinement of the
approaches used here.

VII. CONCLUSION

We have investigated the phase boundary of the quantum
transverse Ising model on the honeycomb lattice. To calculate
the thermal ground state at finite temperature, we have em-
ployed the tPEPS algorithm with ancillas. In order to quantify
the finite-temperature phase transition, we have used the von
Neumann entropy and the thermal-sate fidelity defined as the
overlap measurement between two thermal states. The tensor
network representation of the tFLS has been constructed for
thermal states on the honeycomb lattice. The tFLS and the von
Neumann entropy have been shown to successfully detect the
continuous phase transition points in the temperature-magnetic
field plane.

The phase boundary in the temperature-magnetic field
plane is found to be well-approximated by the curve
(kBTc)2 + h2

c/2 = aJ 2 for finite T with the single numerical
fitting coefficient a = 2.298(7). Then for (kBTc)2 + h2

c/2 <

aJ 2, the model is in the ferromagnetic phase and for
(kBTc)2 + h2

c/2 > aJ 2 in the nonmagnetic phase. The
fitted phase boundary estimates the critical temperature
kBTc/J = √

a � 1.516(2) at h = 0, which agrees well with
the exact result (3). On the other hand, at T = 0 the fitted phase
boundary estimates the quantum critical field hc/J = √

2a �
2.1443(3) compared to the known Monte Carlo estimate
hc/J = 2.13250(4) [48]. Understanding this discrepancy
requires further refinement of the methods used here, which
are applicable in the region where thermal fluctuations
dominate. Similar quadratic curves for finite T may possibly
apply for the quantum transverse Ising model on other planar
lattices. More importantly, our results show that the thermal
fidelity and von Neumann entropy for finite temperature can
be used to capture finite-temperature phase transitions. Thus
the fidelity and the von Neumann entropy approaches can
be extended to the corresponding thermal fidelity and von
Neumann entropy approaches for finite temperature.
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