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By applying Berry-phase theory for the effective half-filled Hubbard model, we derive an analytical expression
for the electronic polarization driven by the relativistic spin-orbit (SO) coupling. The model itself is constructed
in the Wannier basis, using the input from first-principles electronic structure calculations in the local-density
approximation, and then treated in the spirit of the superexchange theory. The obtained polarization has the
following form: Pij = εjiP ij · [ei×ej ], where εji is the direction of the bond 〈ij〉, ei and ej are the directions of
spins in this bond, and P ij is the pseudovector containing all the information about the crystallographic symmetry
of the considered system. The expression describes the ferroelectric activity in various magnets with noncollinear
but otherwise nonpolar magnetic structures, which would yield no polarization without SO interaction, including
the magnetoelectric (ME) effect, caused by the ferromagnetic canting of spins in magnetic field, and spin-spiral
multiferroics. The abilities of this theory are demonstrated for the analysis of linear ME effect in Cr2O3 and
BiFeO3, and the properties of multiferroics MnWO4, β-MnO2, CuFeO2, and MnI2. In all considered examples,
the theory perfectly describes the symmetry properties of the induced polarization. However, in some cases, the
values of this polarization are underestimated, suggesting that other effects, besides the spin and electronic ones,
can also play an important role.
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I. INTRODUCTION

The relativistic spin-orbit (SO) interactions is responsible
for many spectacular phenomena in condensed matter physics,
which are widely employed in many technological applica-
tions. Particularly, being a natural mechanism connecting spin
and orbital degrees of freedom, it provides a unique possibility
for the mutual control of various spin and lattice-related
properties. Every year, growing interest in this problem leads
to the discovery of new and more sophisticated schemes of
such control [1].

One of the interesting topics is the effect of the SO coupling
in noncentrosymmetric substances. In magnetic systems, it
leads to the famous antisymmetric Dzyaloshinskii-Moriya
(DM) interaction dij · [ei×ej ] between spins in the noncen-
trosymmetric bond 〈ij 〉, where ei and ej are the directions
of these spins [2,3]. On many occasions, the DM interactions
result in spin canting and noncollinear magnetic order. How-
ever, one can also look at this situation from the opposite side:
suppose there is a noncollinear arrangement of spins, which is
produced by other means, such as an external magnetic field or
frustrated magnetic interactions of nonrelativistic origin. Then,
in some magnetic architectures, this noncollinear arrangement
can break the inversion symmetry, which will immediately
manifest itself in the ferroelectric (FE) activity. The canonical
example of such activity is the magnetoelectric (ME) effect,
where the noncollinearity is induced by the external magnetic
field [4]. The interest in this problem has reemerged a
decade ago, after the discovery of a new generation of
multiferroic materials, where the FE activity is triggered by
some massive change of the magnetic structure, which breaks
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spontaneously the inversion symmetry [5]. Nevertheless, the
microscopic understanding of mechanisms resulting in finite
electric polarization is still far from being complete, even
despite significant progress in this direction.

Historically, the first phenomenological expression for the
electric polarization induced by the noncollinear spin order
was introduced by Moriya in 1968 on the basis of general
symmetry considerations [6]: in each magnetic bond, such
polarization

P a
ij =

∑
b

dab
ij [ei × ej ]b, (1)

has the same form as the DM exchange interaction, where the
vector dij is replaced by the tensor dab

ij with a and b denoting
x, y, or z.

The first microscopic derivation of the electric polarization
driven by the relativistic SO coupling in noncollinear magnetic
substances was undertaken by Katsura, Nagaosa, and Balatsky
(KNB) [7]. However, it should be understood that the KNB
model deals with a very special example of electronic structure,
consisting of the transition-metal (TM) t2g levels with some
particular scheme of filling, which are split by the SO coupling
and interact via intermediate oxygen (O) 2p states in the single
undistorted TM-O-TM bond. Thus the analysis is hardly to be
complete. Nevertheless, on the basis of these considerations,
the authors of Ref. [7] have concluded that the electric
polarization should behave as

Pij ∝ εji × [ei × ej ], (2)

where εji is the unit vector in the direction of TM site
j relative to the TM site i. It is also referred to as the
spin-current mechanism of the electric polarization, which is
widely used today for the analysis of experimental data [5].
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A similar conclusion was drawn in Ref. [8] on the basis
of phenomenological Ginzburg-Landau theory for a cubic
symmetry. Thus, expression (2) does not depend on the specific
crystallographic symmetry of considered compounds, so that
one can have a wrong impression that the electric polarization
in all noncollinear magnets should behave in a similar way.
It clearly contrasts with the DM interaction dij , which does
depend on the symmetry. Nevertheless, this expression is
formally consistent with the general definition (1) given by
Moriya and can be reduced to it if dab

ij = −εabcε
c
ji , where εabc

is the antisymmetric symbol of Levi-Civita. The spin-current
mechanism frequently tends to be identified with the inverse
DM mechanism, proposed in Ref. [9]: similar to how the off-
centrosymmetric oxygen displacement in the bond TM-O-TM
gives rise to the noncollinear alignment of spins [2,3], one
can expect the opposite (magnetostrictive-like) effect, where
the noncollinear magnetic alignment should lead to the off-
centrosymmetric atomic displacement. However, it should be
understood that these mechanisms are quite different (though
complementary to each other): Ref. [7] deals with the purely
electronic effect, while Ref. [9] deals with the lattice effect.

There are several examples where the KNB theory fails to
explain the experimental behavior of the electric polarization.
It has never been applied to the analysis of the ME effect,
though the ferromagnetic (FM) canting of spins, which is
responsible for this effect, is one of the possible types of the
noncollinear magnetic arrangement and, therefore, the induced
electric polarization should be describable by some proper
spin-current theory. Furthermore, there are several multiferroic
materials (e.g., CuFeO2 [10] and MnI2 [11]), which exhibit
proper-screw type magnetic order (εji ||[ei×ej ]), where the
KNB theory predicts no net polarization, contrary to the exper-
imental evidence. This urged several authors to generalize the
KNB theory, also on a phenomenological basis. Arima [10]
has considered single-ion contributions (also predicted by
Moriya [6]) caused by the SO-dependent change of the TM-O
hybridization. However, if the magnetic TM ion is located
in the inversion center (like in CuFeO2 and MnI2), such
contributions are expected to vanish [6], as it also follows
from the modern formulation [12] based on the Berry-phase
theory [13–15]. Xiang et al. [16] have basically considered the
general expression proposed by Moriya [6] (both single-ion
and bond contribution) and fit all the coefficients using
the input from first-principles calculations with constrained
directions of the magnetic moments.

The most rigorous theoretical basis for the analysis of
electronic polarization is provided by the Berry-phase theory,
which relates the polarization with the expectation value of the
position operator in the basis of localized Wannier functions
for the occupied states [13–15]:

P = − e

V

∫
r w2(r) dr, (3)

where −e < 0 is the electron charge, V is the unit-cell volume,
and w2(r) = ∑M

n=1 |Wn(r)|2 is the total weight of the Wannier
functions for the M occupied states. Each Wannier function
is centered near a certain site of the lattice and can have
tails spreading to the neighboring sites. The relative weight
of these tails depends on the magnetic state. This is how the
Wannier function bears the information about the magnetic

configuration at the neighboring sites. Thus the understanding
of magnetic-state dependence of the electronic polarization is
essentially the understanding of how the magnetic order and
relativistic SO interaction leads to the asymmetric deformation
of the Wannier functions around each magnetic site [17–19]. It
should not be confused with the asymmetric distribution of the
electron density, which includes the contributions of several
Wannier functions centered at different sites and, therefore,
leads to the incorrect answer [13,14].

In our previous work [18], we have applied this strategy
to the analysis of electronic polarization caused by the
nonrelativistic double exchange mechanism in multiferroic
manganites. In that case, competing magnetic interactions
of both relativistic and nonrelativistic origin result in highly
asymmetric magnetic structure, which breaks the inversion
symmetry. The SO interaction plays an important role in
this asymmetry by deforming the homogeneous spin-spiral
texture [18,20] (the so-called bunching effect due to the
single-ion anisotropy [21]). This deformation gives rise to the
polarization Pij ∝ (ei · ej ), which depends on the SO coupling
only indirectly, via the noncentrosymmetric distribution of
spins, while the proportionality coefficient between Pij and
(ei · ej ) does not depend on the SO coupling. This double ex-
change mechanism has allowed us to rationalize many aspects
of the electric polarization in multiferroic manganites [18].

In this paper, we consider the proper spin-current mech-
anism. In some sense, the situation is the opposite to the
double exchange mechanism, considered in Ref. [18]. Namely,
we will deal with some noncollinear magnetic structures,
which are stabilized by nonrelativistic means: it can be
either the spin-spiral structure arising from the competition
of several isotropic exchange interactions or a canted spin
structure, inherent to the ME effect, where the collinear
antiferromagnetic (AFM) order is deformed by the magnetic
field. Without SO coupling all these magnetic structures can be
transformed to themselves by combining the spacial inversion
with some appropriate rotation of the spin system as the
whole [22]. Therefore the electric polarization will vanish.
Nevertheless, the situation may change after switching on the
SO coupling, which does not deform the spin texture itself (or,
at least, such deformation can be neglected), but can deform
the Wannier functions, resulting in their asymmetry and finite
electronic polarization.

In our analysis, we use the effective Hubbard model derived
from the first-principles electronic structure calculations and
the local-density approximation (LDA) as the starting point
for such derivation [23]. We consider the simplest case of
the half filling, which also allows us to get rid of additional
complications related to the orbital degrees of freedom.
Furthermore, the on-site Coulomb repulsion is the largest
parameter in our model, so that other parameters can be
treated as a perturbation in the spirit of the superexchange
(SE) theory [24]. We will use this strategy in order to derive
an analytical expression for the DM exchange interactions
and electronic polarization. We will show that in the first
order of the SO coupling the correct expression for the
electronic polarization in the framework of the Berry-phase
theory [13,14] has the following form:

Pij = εjiP ij · [ei × ej ], (4)
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where the pseudovector P ij contains all the information about
the individual symmetry of the lattice. Thus there is at least one
important addition to the phenomenological expression (2):
the polarization does depend on the symmetry of the lattice,
as it should be. In terms of Moriya’s definition [6], the tensor
dab

ij is now given by dab
ij = εa

jiPb
ij . We will show that this

expression is very general and describes not only the behavior
of polarization in various spin-spiral magnets, but also the ME
effect caused by the FM canting of spins in otherwise collinear
AFM state of a special symmetry.

Another important issue is whether the spin-current mecha-
nism alone is able to reproduce experimental values of the ME
effect and electric polarization in real materials. Additional
mechanisms, which are widely discussed in the literature, are
the lattice deformation [25–27] (in line with the proposal [9]),
orbital contribution to the ME coupling [26,28], and hidden
deformation of the magnetic texture with broken inversion
symmetry [20,22]. By using realistic model, derived from the
first-principles calculations, we will show that the situation can
be very different. In some cases, the spin-current mechanism
alone reproduces the experimental polarization reasonably
well. In other cases (e.g., in Cr2O3), it captures only the
symmetry properties of the polarization, while the numerical
values can be off by several order of magnitude, suggesting the
importance of other mechanisms [26–28]. But, generally, the
lattice distortion is expected to play some role in all considered
examples [22]

The rest of the paper is organized as follows. In Sec. II,
we will present our formalism based on the SE theory, which
is applied to antisymmetric DM exchange interactions and
electric polarization in Secs. II A and II B, respectively. The
details of these derivations are given in Ref. [29]. In Sec. III,
we will consider practical applications of this formalism to the
linear ME effect in Cr2O3 and BiFeO3 (Secs. III A and III B,
respectively), the FE activity caused by the spin-spiral order
in multiferroic MnWO4 and β-MnO2 (Secs. III C and III D,
respectively), and symmetry aspects of the electric polarization
in CuFeO2 and MnI2 (Sec. III E). Finally, in Sec. IV, we will
summarize our work.

II. FORMALISM

In this section, we will sketch the main details of derivation
of analytical expressions for the DM exchange interactions
and electric polarization, following the SE theory in the
lowest order of perturbation with respect to the transfer
integrals t̂ij [24]. The technical details can be found in
Ref. [29]. The simplest microscopic model, capturing the
physics of the spin-current mechanism, reads Ĥ = ĥ + t̂ ,
where ĥ ≡ ĥex + ĥcf + ĥso is the on-site part, including the
interaction ĥex = U

2 e · σ̂ with the internal exchange field in
the direction e = (sin θ cos φ, sin θ sin φ, cos θ ) (σ̂ being the
vector of Pauli matrices), the crystal-field splitting ĥcf , and the
SO interaction ĥso = ξ

2 L̂ · σ̂ , while t̂ ≡ [t̂ij ] is the intersite
part. More specifically, Ĥ can be viewed as a mean-field
Hamiltonian (for instance, the one obtained from the solution
of the Hubbard model in the Hartree-Fock approximation),
where ĥex describes the averaged exchange splitting for the
half-filled ionic shell, driven by the effective interaction
U , and the crystal field ĥcf also includes the effects of

nonsphericity of the mean-field potential. Thus, what we
consider here is the canonical “spin-current” model, where the
local magnetic moments are the spin ones, while the orbital
magnetization contributes to neither DM interactions nor the
electric polarization. The parameters of such a microscopic
model, formulated in the Wannier basis [15], can be derived
from the first-principles electronic structure calculations [23].
For practical purposes we use the linear muffin-tin orbital
(LMTO) method [30].

The basic idea of the SE theory is to start from the
atomic limit and treat ĥso and t̂ as a perturbation. Then, the
wave functions of Ĥ0 = ĥex + ĥcf for the occupied (−) and
unoccupied (+) spin states are given by

|�−〉 =
(− sin θ

2 e−iφ

cos θ
2

)
|�〉

and

|�+〉 =
(

cos θ
2

sin θ
2 eiφ

)
|�〉,

respectively, where |�〉 is the column of eigenvectors of ĥcf

with the eigenvalues {εn}. More specifically, |�〉 is the M-
dimensional vector in the subspace of orbital states, while
|�±〉 are 2M-dimensional vectors in the space of spin and
orbital states. Then, the corresponding eigenvectors in the first
order of the SO interaction will be given by

|�̃−〉 = |�−〉 − ξ̄ |�+〉〈�+|(L̂ − [ ˆ̄hcf,L̂]) · Ŝ|�−〉
and

|�̃+〉 = |�+〉 + ξ̄ |�−〉〈�−|(L̂ + [ ˆ̄hcf,L̂]) · Ŝ|�+〉,
where ξ̄ = ξ/U , ˆ̄hcf = ĥcf/U , and [Â,B̂] = ÂB̂ − B̂Â.
Moreover, in the conventional perturbation theory expression,
we further expand (εn − εm ± U )−1 with respect to ˆ̄hcf . Then,
the first term in (L̂ ∓ [ ˆ̄hcf,L̂]) corresponds to ĥcf = 0 (apart
from the constant energy shift), while the second terms appear
in the first order of ˆ̄hcf . In practical calculations, we use
the effective ξ , which also incorporates the change of the
Coulomb and exchange potential in the first order of the SO
interaction, as obtained in the self-consistent linear response
(SCLR) theory [31].

A. Exchange interactions

The exchange interactions in the bond 〈ij 〉 describe the
energy change δEij in the second order of ˆ̄tij = t̂ij /U , where
the transfer integrals connect the occupied and unoccupied
states of the sites i and j :

δEij � −U 〈�̃−
i | ˆ̄tij + 1

2 [ ˆ̄hcf, ˆ̄tij ]|�̃+
j 〉〈�̃+

j | ˆ̄tj i

− 1
2 [ ˆ̄hcf, ˆ̄tj i]|�̃−

i 〉 + (i ↔ j ).

This expression is also valid in the first order of ˆ̄hcf . Then, after
tedious but rather straightforward algebra, it can be rearranged
as (see Ref. [29] for details)

δEij � Jij (1 − ei · ej ) + dij · [ei × ej ], (5)
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where

Jij = −UTrL{ ˆ̄tij ˆ̄tj i} (6)

is the isotropic exchange coupling, which does not depend on
the SO interaction, and

dij = ξTrL{ ˆ̄tij [[ ˆ̄hcf,iL̂], ˆ̄tj i]} (7)

is the DM coupling, which appears in the first order of ξ . Other
exchange interactions, including the symmetric anisotropic
one, appear in higher orders of ξ . TrL in Eqs. (6) and (7)
denotes the trace over M orbital indices.

Finally, we note the following properties. (i) dij is the
antisymmetric pseudovector: Î dij = dij , and dji = −dij .
(ii) The values of the DM interactions depend on the crystal-
field splitting and vanish when ˆ̄hcf = 0 (again, apart from the
constant energy shift). Then, Eq. (7) can be interpreted in the
following way: since [ ˆ̄hcf,iL̂] is the measure of unquenched
orbital magnetization (or the observable orbital magnetization
in the presence of the crystal field), the DM interaction dij is a
probe of the orbital magnetization at the site j by the electron
hoppings from the site i (and vice versa).

B. Electronic polarization

We start with the general expression for the electric
polarization (3) in terms of the Wannier functions for the
occupied states. Then, we adopt it for the lattice model by
assuming that all weights of w are localized in the lattice
points: i.e., if wi are the occupied Wannier functions centered
at the site i, their weights are distributed as

w2
i (r) =

∑
j

w2
ij δ(r − 
τ ji),

where 
τ ji = Rj − Ri is the position of the site j relative to
the site i. Then, the electronic polarization (3) can be related to
the asymmetric transfer of the weights of the Wannier functions
in each bond [18]:

P = 1

2

∑
ij

Pij , (8)

where

Pij = −e
τ ji

V
(wij − wji). (9)

In the SE theory, the quantities wij are evaluated in the first
order of perturbation theory for the Wannier functions with
respect to ˆ̄tij between occupied and unoccupied states, starting
from the atomic limit:

wij � |〈�̃+
j | ˆ̄tj i − [ ˆ̄hcf, ˆ̄tj i]|�̃−

i 〉|2.
Then, using tedious but rather straightforward algebra, one
can obtain the following expression for Pij (see Ref. [29] for
details):

Pij = e
τ ji

V
ξ̄TrL{[ ˆ̄hcf, ˆ̄tij ][[ ˆ̄hcf,iL̂], ˆ̄tj i]

+ [ ˆ̄hcf, ˆ̄tj i][[ ˆ̄hcf,iL̂], ˆ̄tij ]} · [ei × ej ], (10)

which can be further rearranged as Eq. (4) with εji = 
τ ji

|
τ ji |
and

P ij = e|
τ ji |
V

ξ̄TrL{[ ˆ̄hcf, ˆ̄tij ][[ ˆ̄hcf,iL̂], ˆ̄tj i]

+ [ ˆ̄hcf, ˆ̄tj i][[ ˆ̄hcf,iL̂], ˆ̄tij ]}.
Thus we note the following. (i) Unlike dij , P ij is the

symmetric pseudovector: ÎP ij = P ij , while Pji = P ij due
to the definition (9). (ii) Similar to the DM interactions, the
electronic polarization crucially depends on ˆ̄hcf and vanishes
when ˆ̄hcf = 0. (iii) There is a fundamental difference from
phenomenological expression (2) [7,8]. Namely, the spin-
dependent cross product [ei×ej ] does not couple directly to
εji . It couples to the pseudovector Pji , which contains all the
information about the particular crystallographic symmetry of
the system. The directional dependence of P is specified by
the vectors εji , which are modulated by the scalar products
P ij · [ei×ej ]. This important addition will allow us to resolve
several controversies related to the symmetry properties of
electric polarization induced by the noncollinear magnetic
alignment.

III. RESULTS AND DISCUSSIONS

A. Perpendicular magnetoelectric effect in Cr2O3

We start our discussion with the canonical example of ME
effect in AFM Cr2O3 [4], which crystallizes in corundum
structure with the space group R3̄c [32]. The formal con-
figuration of the Cr3+ ions in octahedral environment is t3

2g .
According to LDA calculations, the Cr t2g bands are indeed
well isolated and located near the Fermi level (Fig. 1). Thus,
as a first approximation, we consider the simplest t2g model at
the half filling and apply it for the analysis of the ME effect
in Cr2O3. The model itself is constructed in the Wannier basis
as described in Ref. [23]. The obtained transfer integrals and
parameters of the crystal field are set to reproduce the LDA
band structure for the Cr t2g bands. The matrix of screened
Coulomb interactions was evaluated in the framework of

FIG. 1. Total and partial densities of states of Cr2O3 in the
local density approximation. The shaded light (blue) area shows
contributions of the Cr3d states. Positions of the main bands are
indicated by symbols. The Fermi level is at zero energy (shown by
dot-dashed line).
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FIG. 2. Directions of electronic polarization at four Cr sites in
the primitive cell of Cr2O3, which is induced by the ferromagnetic
canting of spins along the x axis in three possible antiferromagnetic
structures A1, A2, and A3. The directions of spins are denoted by
the blue (dark) arrows. The directions of electronic polarization are
denoted by the cyan (light) arrows. The Cr atoms are indicated by
the big red spheres and the neighboring oxygen atoms are indicated
by the small green spheres. The inversion center is indicated by ∗.
The upper panel is the side view, while the lower panel is the top
view. a, b, and c denote the directions of hexagonal lattice vectors,
and H denotes the external magnetic field along x (in this setting,
the angle between a and b is 120◦, while x is perpendicular to b and
c). The notations (±px, ± py,0) explain the symmetry properties
of the induced polarization vectors ∂P/∂ex at four Cr sites. The
numerical values of (px,py) are (−0.08,0.02), (0.12, − 0.57), and
(0.08, − 0.79)μC m−2 for A1, A2, and A3, respectively.

constrained random-phase approximation (RPA) [33]. It can
be further fitted in terms of two Kanamori parameters [34]: the
intraorbital Coulomb repulsionU = 3.15 eV and the exchange
interaction J = 0.67 eV. Then, the effective interaction
responsible for the intraatomic exchange splitting between
the minority- and majority-spin states can be evaluated as
U = U + 2J (∼4.5 eV). The crystal-field splitting is about
100 meV [35]. Other parameters can be found elsewhere [36].
As we will see below, the model has serious limitations
for the quantitative description of the ME effect in Cr2O3.
Nevertheless, we consider it for the explanatory purposes.

The corundum structure of Cr2O3 has four interconnected
Cr sublattices, which can be arranged antiferromagnetically as
A1, A2, and A3 (see Fig. 2). Among them, the magnetic space
group of A1 contains the spacial inversion Î as it is, while in
A2 and A3 Î is combined with the time reversal T̂ . Thus the
A1 structure allows for the weak ferromagnetism [2], while A2
and A3 are expected to exhibit the perpendicular ME effect,
when the AFM structure is deformed by the external magnetic
field [4] as explained in Fig. 2. The magnetic ground state of
Cr2O3 is A3, which was also confirmed by our calculations
of the total energies and parameters of isotropic exchange
interactions. The directions of magnetic moments are parallel
to c = z.

Equations (8) and (10) allow us to rationalize the behavior
of electronic polarization by separating the contributions of
atomic pairs around each Cr site. Around site 1, the largest

FIG. 3. Fragment of the crystal structure of Cr2O3: central Cr site
of the type 1 and several coordinations spheres of the neighboring
Cr sites of the types 2, 3, and 4. a, b, and c denote the directions of
hexagonal lattice vectors.

contributions to P comes from the atomic pairs in three
coordinations spheres, formed by the atoms 2, 3, and 4, which
are displayed in Fig. 3, and where the notations of atomic types
is the same as in Fig. 2.

First, we note that the FM bond will not contribute to the
perpendicular ME effect: even in the external field H such
spins remain ferromagnetically aligned and, therefore, the
cross product [ei×ej ] will vanish. Moreover, in the case of
perpendicular ME effect, the cross products [ei×ej ] will be
the same for all equivalent bonds.

Another important aspect is the symmetry. In order to
estimate the ME coupling constant, we first evaluate the
parameters P ij , which obey the symmetry properties of the
R3̄c group and contains all the information about the individual
symmetry of the Cr2O3 lattice. For instance, the pseudovectors
P ij in the nearest-neighbor (NN) bonds 〈13〉 and 〈24〉, parallel
to the c axis (Fig. 2), will vanish due to the joint effect of
threefold rotation and glade reflection, which transform this
bond to itself. Then, for the bonds 〈12I〉, 〈13I〉, and 〈14I〉,
(see Fig. 3) the parameters P ij can be estimated (in μC m−2)
as (−0.066,0.007,0), (0,0.009,0), and (−0.002,0.010,0), re-
spectively. The parameters for other bonds can be obtained
from P12I , P13I , and P14I using the symmetry operations of
the space group R3̄c. Moreover, the threefold rotational about
c yields the following property:

∑
j P ij = 0. Nevertheless,

the combination
∑

j εjiP ij , which specifies the value of the
electronic polarization (4), can be finite. All these properties
do not depend on the type of the AFM order and will hold for
A1, A2, and A3.

Then, we consider the behavior of the polarization vectors
pi = ∑

j ∂ P ij /∂ex , induced by the FM canting of spins along
x (see Fig. 2). In the A1 phase, FM bonds between atoms 1 and
2 (3 and 4) will not contribute to pi . Thus one have to consider
all possible connections of the sites 1 and 2 with the sites 3 and
4. Moreover, since the sites 1 and 2 (3 and 4) are transformed
to each other by Î (without flipping the spins), we will have:
ÎεjiP ij = −εj ′i ′P i ′j ′ but [ei×ej ] = [ei ′×ej ′ ], and, therefore,
p2 = − p1 ( p4 = − p3), where i ′ (j ′) is the inversion image of
i (j ). Thus, as expected [2,4], the FM canting of spins in the
phase A1 will lead to the antiferroelectric behavior with no net
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polarization. Our analysis provides a transparent microscopic
explanation to it.

In the phases A2 and A3, however, the spins 1 and 2 (3 and
4) are coupled antiferromagnetically. Therefore these bonds
will contribute to pi . Moreover, in addition to ÎεjiP ij =
−εj ′i ′P i ′j ′ , the symmetry operation Î T̂ will also flip the spins
and, therefore, it will hold [ei×ej ] = −[ei ′×ej ′] and p2 = p1

( p4 = p3). That is why the FM canting of spins in A2 and A3
will result in the ME effect.

The direction of polarization, however, requires additional
symmetry considerations, and this is the point where the
direction of H comes into play. For instance, if (without field)
all ei are parallel to z and H is parallel to x (see Fig. 2),
[ei×ej ] will be parallel to y and, according to Eq. (4), we
have to consider the behavior of Py

ij and εji under the glade
reflection {m̂y |c/2} (m̂y being the mirror reflection y → −y),
connecting the sites 1 and 4 (2 and 3). In the A2 phase,
this transformation is combined with T̂ and, therefore, will
additionally flip the spins. Then, it is straightforward to show
(similar to above considerations for the effect of Î and Î T̂ )
that {m̂y |c/2} will lead to the additional symmetry properties:
px

1 = −px
4 and p

y

1 = p
y

4 (px
1 = px

4 and p
y

1 = −p
y

4 ) for A2
(A3). This explains why P in A2 and A3 will be parallel to,
respectively, y and x.

The ME effect in Cr2O3 cannot be properly described by
the phenomenological expression (2) [7,8]: in the case of ME
effect, the cross product [ei×ej ] is the same for all equivalent
bonds. Then, the bonds 〈14I〉−〈14VI〉 will not contribute to P
because

∑
j εji = 0 (see Fig. 3). For other types of bonds∑

j εji can be finite and parallel to z. Then, H||x will
yield [ei×ej ]|| y. Therefore, according to Eq. (2), the induced
polarization should be always parallel to x. This would explain
the direction of polarization in A3, but not in A2.

Finally, we evaluate the matrix element of the ME tensor
α⊥ at T = 0 (T being the temperature) using the numerical
value of px = 0.08 μC m−2 for the A3 phase and the chain
rule: α⊥ ≡ ∂P x

∂Hx = ∂P x

∂ex
∂ex

∂Hx , where ∂ex

∂Hx is estimated using
parameters of the Heisenberg model EH = −∑

i>j Jij ei · ej ,
obtained in the theory of infinitesimal spin rotations [23,37]
as ∂ex

∂Hx = −M
J0

(M ≈ 3 μB being the spin magnetic moment
and J0 = ∑

j Jij ≈ −116 meV) [38]. It should be noted that
the theory of infinitesimal spin rotations is the most suitable
for treating small deformations of the magnetic system near
the equilibrium, because it is more general and applicable
even in the situations where the conventional SE theory breaks
down. Nevertheless, when U is large and the orbital degrees of
freedom are inactive (like for the half filling), the parameters
Jij are typically well consistent with results of the SE theory,
given by Eq. (6) [23], as was also confirmed by present
calculations. This again justifies the use of the SE theory.
However, the obtained value of α⊥ ∼ 2×10−4 ps m−1 is very
small, which simply means that the considered spin-current
effect is not the main mechanism of the ME coupling in
Cr2O3. This is in line with modern understanding of the ME
effect in Cr2O3, which is known include other contributions
beyond the considered model. Particularly, the lattice effect is
very important [26,27]. Moreover, the orbital magnetization,
which is neglected in the considered half-filled t2g model, can
also contribute to α⊥ [26,28]. We expect that much better

agreement with the experimental data can be achieved by
considering a more general model, consisting of the Cr t2g

and eg bands (see Fig. 1). For instance, we have found that the
DM interactions are strongly underestimated in the t2g only
model in comparison with the five-orbital one. However, in
the case of the five-orbital model, the 3d3 configuration does
not longer correspond to the half filling, which will require
some revision of Eq. (10) for the electric polarization. Below,
we will consider several example of 3d5 compounds, which
are described by the five orbital at the half filling, and argue
that such model generally provides much better description for
DM interactions and electronic polarization.

B. Linear magnetoelectric effect in BiFeO3

BiFeO3 is the well known type-I multiferroic, where the
FE activity is manly related to the off-centrosymmetric atomic
displacements of Bi and O, while magnetism originates from
the half-filled 3d shell of Fe. The good aspect of BiFeO3

is that the FE and AFM transition temperatures are high
(1100 and 650 K, respectively), which makes it promising
for practical applications [5]. In the bulk, the DM interactions,
arising in the noncentrosymmetric R3c structure, overcome
the effect of magnetocrystalline anisotropy, thus, yielding the
formation of incommensurate long-periodic spin-spiral texture
[39–41]. Nevertheless, the magnetocrystalline anisotropy can
be substantially increased in the thin films of BiFeO3, leading
to the formation of the G-type AFM phase. An interesting
aspect of the G-phase is that it allows the possibility of
having the linear ME effect, where the electric polarization
rises linearly with the applied magnetic field, whereas in
the incommensurate phase, this effect is averaged to zero by
the spin-spiral modulation. The linear ME coupling α in the
BiFeO3 films was first experimentally studied in Ref. [42].
However, the obtained value of α was rather moderate (of
the order of 0.51 ps m−1). The interest in this problem has
reemerged again after the report of giant ME coupling, being
of the order of 3 V cm−1 Oe−1 [43]. Even higher value of
24 V cm−1 Oe−1 (corresponding to 3×104 ps m−1 [44]) was
reported later in the composite films including BiFeO3 [45].

In this section we will investigate the linear ME effect
in BiFeO3. The computational details and parameters of the
model, constructed for the Fe 3d bands near the Fermi level,
can be found in the previous publication [31].

The behavior of P ij can be understood on the cluster,
where the central Fe site is surrounded by six nearest neighbors
(Fig. 4). Other bonds can also produce a sizable contribution to
the ME effect, though with some restrictions: for instance, all
second NN bonds in the G-type AFM phase are ferromagnetic
and, therefore, do not contribute to the ME effect (see
discussions in Sec. III A). Using the model parameters, P12I

corresponding to 
τ 2I1 = (−a,0, c
2 ) (where a = 3.222 Å and

c = 4.625 Å are the rhombohedral lattice parameters), can
be estimated as P12I = (7.88, − 3.08, − 1.68) μC m−2. The
parameters for other bonds can be obtained from P12I using
the symmetry operations of the space group R3c, similar to
the DM interactions considered in Ref. [31]. These parameters
P ij are more than two orders of magnitude larger than
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FIG. 4. Fragment of the crystal structure of BiFeO3: central Fe
site of the type 1 is surrounded by neighboring Fe sites of the type 2
(all are indicated by the big spheres). The intermediate O atoms are
indicated by the small green spheres.

the ones obtained in the t2g model for Cr2O3. Again, the
threefold rotational about z imposes the symmetry constraint∑

j P ij = 0. However, when P ij in Eq. (4) is combined with
εji , one can expect finite pi .

In our analysis, we assume that the magnetocrystalline
anisotropy confines the spins in the x y plane (the experimental
situation). To be specific, we consider here only the case of
L|| y, where L = M

2 (e1 − e2) is the AFM order parameter
(Fig. 5). Due to the R3c symmetry, similar analysis can be
also applied for L||x. Then, we consider the effect of the
magnetic field, which cants the spins in the direction of either
z or x.

In the first case (H||z), the active component of P ij ,
which is selected by [e1×e2], is Px

ij . Then, by combing
it with εji , using the symmetry operation of the R3c

group, and noting that ∂
∂ez [e1×e2] = 2, it is straightforward

to show that px
1 ≈ −16aPy

12I
/
√

4a2 + c2, while p
y

1 = pz
1 =

0. This NN contribution accounts for 65% of the total

FIG. 5. Geometry of the linear magnetoelectric effect in BiFeO3:
the spin magnetic moments (denoted by dark blue arrows) are parallel
to the y axis. Then, the external magnetic field applied along z (x)
induces the electric polarization along −x (z), as illustrated in the
part a (b). The Fe atoms are indicated by the big red spheres, the Bi
atoms are indicated by the small blue spheres, and the O atoms are
indicated by the small green spheres. The directions of polarization
at each Fe site are denoted by light cyan arrows.

px
1 = −78.2 μC m−2, obtained after summation of all bonds.

Then, the symmetry operation {m̂y |(0,0, 3c
2 )}, which transform

the Fe sites 1 and 2 to each other, keeps the sign of εx ,
but changes the sign of Px (as it holds for, respectively,
normal vector and pseudovector). Moreover, in the G-type
AFM phase, this transformation flips the spins. Altogether it
leads to the property px

2 = px
1 and net electric polarization

parallel to x.
In the second case (H||x), the active component is Pz

ij ,

yielding px
1 = p

y

1 = 0 and pz
1 ≈ −12cPz

12I
/
√

4a2 + c2 (note
that in this case ∂

∂ex [e1×e2] = −2). The NN contribution
accounts for 60% of the total pz

1 = 19.7 μC m−2. Similar to
H||z, it is straightforward to show that pz

2 = pz
1, resulting in

finite ME effect with the polarization parallel to z.
The induced polarization satisfies the condition P ∼

[H×L], being in total agreement with results of the Ginzburg-
Landau theory [46]. Finally, we evaluate matrix elements of
the ME tensor, α‖ = ∂P z

∂Hx and α⊥ = ∂P x

∂Hz (for L|| y), using the
same procedure as for Cr2O3 and parameters of exchange
interactions Jij reported in Ref. [31], which are consistent
with experimental data and reproduce the experimental value
of Néel temperature (TN). The SE theory, Eq. (6), yields
similar parameters Jij . Then, using the obtained value of J0 ≈
−241 meV and M ≈ 5 μB, we will find |α‖| = 0.03 ps m−1

and |α⊥| = 0.12 ps m−1. These results are consistent (at least,
by an order of magnitude) with direct calculations of electronic
polarization for the model Hartree-Fock Hamiltonian without
invoking the perturbation theory for the SO coupling, and also
the experimental value of 0.51 ps m−1, reported in Ref. [42].
The giant enhancement of the ME coupling, which was
reported in Refs. [43,45], probably requires additional mech-
anisms, such as the structural and magnetic reconstruction in
the critical electric field, as was proposed in Refs. [46–48].

When the spins lie in the x y plane, there is also an “intrinsic
ME effect” due to the FM canting of spins (∼0.5◦ [31,49])
in the direction perpendicular to L, which is caused by DM
interactions without any magnetic field. Below TN, it leads to
the polarization change 
P z, which can be estimated using
the obtained values of P ij as 0.2 μC m−2.

Below, we will critically examine the main approximations
of our theory by considering the DM exchange interactions,
which can be computed by using other techniques. First of all,
the minimal model consisting only of the Fe 3d bands (and
neglecting the contributions of O 2p bands) seems to be a good
starting point for the analysis of magnetic properties of BiFeO3

as it provides very reasonable estimates for TN and the period
of the spin-spiral texture in the bulk [31]. Parameters of DM
interactions d12I = (0.106, − 0.287,0.140) meV, obtained in
the SE theory for bare ξ0 = 53.1 meV, agree reasonably well
with d12I = (0.145, − 0.418,0.177) meV, derived using more
general Green’s function perturbation theory method for the
same model [31]. Both superexchange and Green’s function
methods are the first-order theories with respect to the SO
coupling. Nevertheless, the Green’s function method does not
employ additional approximations, such as the perturbation
theory expansion with respect to the transfer integrals and
the crystal field. The reasonable agreement obtained for the
DM parameters demonstrates that such approximations are
indeed justifiable. The conclusion is not obvious because the
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t2g-eg level splitting in the octahedral environment is not
small, being about 1.7 eV. Nevertheless, it is still smaller
than the effective interaction U ≈ 5.8 eV. Another important
factor is the polarizability of the electron system by the SO
interaction [31], which in our case is taken into account only
approximately, by using the effective coupling ξ = 123 meV
instead of ξ0, where ξ was derived by fitting results of the
SCLR calculations for matrix elements of the “screened” SO
interactions with different projections spins. The “screened”
SO interaction includes the bare contribution as well as all the
self-consistent change of the Coulomb and exchange potential,
treated on the mean-field level in the first order of the SO
coupling. Thus the use of ξ instead of ξ0 simply scales the
DM parameter d12I by about factor of 2. Although it captures
the main tendency, it deviates from d12I = (0.494, − 1.450,

0.330) meV, obtained by combining SCLR with Green’s
function perturbation theory, which is the most rigorous
method for the evaluation of DM interactions [31]. Thus our SE
theory for the DM interactions and ME coupling is probably
only semi-quantitative one. However, we believe that it should
not change the main conclusions, particularly regarding the
comparison with the experimental data for BiFeO3.

Finally, we would also like to stress that the phenomeno-
logical expression (2) fails to describe the ME effect in
BiFeO3: for the canted spin structure, inherent to the ME effect,
[ei×ej ] is the same for all neighboring bonds surrounding each
Fe site. By combining it with the symmetry property

∑
j εji =

0, no ME effect would be expected if Pij ∝ εji×[ei×ej ],
which is obviously not true.

C. Noncollinear spin order and ferroelectric
polarization in MnWO4

MnWO4 has attracted a considerable attention as an ex-
ample of the spin-spiral magnet, which was theoretically sug-
gested to be a multiferroic [50]. This multiferroic behavior was
indeed observed experimentally [50–52], and studied in many
details after that [53–56]. Finite polarization was observed in
the so-called noncollinear AF2 phase, which is realized in
the temperature interval 7.6 K < T < 12.5 K and described
by the propagation vector qAF2 = (−0.214, 1

2 ,0.457) [51]. The
spins rotate in the plane formed by the monoclinic b axis
and one of the axes (a∗) in the ac plane (see Fig. 6). The
direction a∗ is specified by the single-ion anisotropy. The
electric polarization is parallel to the b axis, but can be
realigned along a by applying the magnetic field parallel
to b. In the previous work [22] we have suggested that the
FE activity in MnWO4 may be related to the deformation of
the spin-spiral texture, which explicitly breaks the inversion
symmetry. The computational details and parameters of the
effective low-energy model, constructed for the half-filled
Mn3d bands of MnWO4, can be also found in Ref. [22]. In this
case, the effective interaction U ∼ 5 eV is substantially larger
than the Mn 3d bandwidth and the crystal-field splitting [22],
so that the SE theory is applicable.

The direction of polarization in MnWO4 is described by
the phenomenological model (2). Indeed, for the spin rotation
plane formed by a∗ and b, the cross product [ei×ej ] is
parallel to c∗, which is another vector in the ac plane being
perpendicular to a∗. Then, for qAF2 = (−0.214, 1

2 ,0.457), there

FIG. 6. Noncollinear spin-spiral texture with q = (− 1
4 , 1

2 , 1
2 ) in

MnWO4. a, b, and c are the monoclinic translation vectors. Two
Mn sublattices, which are transformed to each other by the inversion
operation, are indicated by red (dark) and orange (light) spheres.

are two types of noncollinear bonds for which εji ||a and
εji ||c. In both cases, the expression Pij ∝ εji×[ei×ej ] yields
Pij ||b, which agrees with the experimental situation [51].
Nevertheless, below we will show that such agreement is rather
fortuitous and the actual reason behind it is the specific P 2/c

symmetry of MnWO4.
The behavior of pseudovectors P ij , reflecting these sym-

metry properties, is explained in Fig. 7. The parameters P ij

are long-ranged and not restricted by the nearest neighbors.
For instance, we have found sizable P ij spreading up to
twelfth coordination sphere. Similar behavior was found for
isotropic exchange interactions (being in total agreement with
the experimental data [57]) and is related to the long-range
character of the transfer integrals [22]. Due to the twofold
rotation about b (Ĉ2

b ), which is one of the symmetry operations
of the P 2/c group (apart from a translation), in all equivalent
bonds Py will be the same, while Px and Pz will change their
signs. Moreover, if the bond connects two Mn sites of the same
type (either I or II ), Ĉ2

b will transform it to the equivalent
bond, separated by a translation. Therefore, for this type of
bonds, we will have the additional condition Px = Pz = 0.
All these tendencies are clearly seen in Fig. 7.

Then, we consider the effect of noncollinear spin-spiral
texture with q = (− 1

4 , 1
2 , 1

2 ) (Fig. 6), which is close to the
experimental qAF2 [51]. First, we consider a perfect spiral
texture. The effect of deformation of the spin spiral, which
was proposed in Ref. [22], will be investigated after that.

The spin-spiral texture itself is stabilized by competing
isotropic exchange interactions [22]. Nevertheless, its spacial
orientation depends on the single-ion anisotropy and DM
interactions, which also compete with each other: the former
tends to align the spins in the ac plane (and cant them off the a
axis by about 40◦) [22,51]. However, the main DM vectors dij

also lie in the ac plane (∈ ac) [22]. Thus, in order to minimize
the energy of DM interactions, some of the spins should be
parallel to the b axis (||b), which conflicts with the single-ion
anisotropy. Moreover, the DM exchange interactions compete
with the isotropic ones. Thus the situation is indeed very subtle
and the magnetic texture is rather fragile. Nevertheless, this is
a very important point because, as we will see in a moment,
the spacial orientation of the spin-spiral plane can control both
magnitude and direction of the electric polarization.
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FIG. 7. (a) Fragment of the crystal structure of MnWO4 with the explanation of the bond types surrounding Mn site I in twelve coordination
spheres (other equivalent bonds are not shown). Two Mn sites in the primitive cell of MnWO4 are denoted as I and II . a, b, and c are the
monoclinic translation vectors. (b) Distance dependence of pseudovectors P = (Px,Py,Pz) (where y = b, z = c, and x is perpendicular to
y and z), specifying the electric polarization, in twelve coordination spheres (marked by vertical lines and numbered at the top). Due to the
twofold rotational symmetry about b, Py in the equivalent bonds will be the same, while Px and Pz will have opposite signs, as reflected in
the figure.

First, we consider the experimental situation where the spin-
spiral plane is formed by the b axis and one of directions a∗ in
the ac plane [51]. Then, considering the magnetic texture in
Fig. 6, half of the spins is parallel to b and another half belongs
to ac. This means that for the bonds 〈ij 〉 with unparallel
spins, the cross-product [ei×ej ] will also belong to ac and,
therefore, the active components of P ij are Px

ij and Pz
ij . Then,

for the equivalent bond 〈i ′j ′〉, which is obtained from 〈ij 〉
by Ĉ2

b , we will have the following properties: Px
i ′j ′ = −Px

ij ,
Pz

i ′j ′ = −Pz
ij , and [ei ′×ej ′ ] = −[ei×ej ]. The latter property

holds because Ĉ2
b reverses the direction of propagation of the

spin-spiral along a and c. Therefore, if the bond 〈ij 〉 is along
the propagation direction, the bond 〈i ′j ′〉 lies in the opposite
direction. Thus, according to Eq. (4), the finite polarization
is possible in the direction, which does not change under
Ĉ2

b (and keeps the sign of corresponding components of the
vectors εji). For the considered geometry of the spin spiral, this
direction is b, being in total agreement with the experimental
data [51]. However, the absolute value of the polarization
depends on the orientation of spins in the ac plane. Indeed,
according to Eq. (4), if ei = (0,1,0) and ej = (sin β,0, cos β),
the polarization behaves as P

y

ij ∼ (Px
ij cos β − Pz

ij sin β). The
dependence of total polarization P y = ∑

j P
y

ij on β, obtained
using the numerical values ofPx

ij andPz
ij , is displayed in Fig. 8.

Thus one can conclude the follows. (i) The finite polarization
in MnWO4 can be indeed induced by the spiral magnetic order.
In this sense, the conclusion of our previous work [22] about
crucial importance of inhomogeneity (or deformation) of the
spin-spiral order was exaggerated. (ii) The absolute value of
P y strongly depends on the orientation of spins in the ac plane.
The maximal value of about 25 μC m−2 is comparable with
experimental 50 μC m−2 [51]. However, it does not mean that
this maximal value is realized for the same β, which minimizes
the total energy of the system. The directions of spins are
controlled by anisotropic interactions, which are small in
MnWO4 [22]. Therefore the situation is very fragile. This
probably explains the large spread of P y reported in electronic

structure calculations, which are typically underestimated in
comparison with the experimental data [22,58,59].

Then, we consider the situation when all spins lie in
the ac plane and also form the spin-spiral texture with the
propagation vector q = (− 1

4 , 1
2 , 1

2 ). This behavior was observed
experimentally in the magnetic filed H||b, which causes the
spin-flop-like transition and orients the spins in the ac plane,
also changing the direction of experimental polarization from
P||b to mainly P||a [51]. In this case, [ei×ej ] is parallel to b
and the active component of P ij is Py

ij . Then, for two bonds

〈ij 〉 and 〈i ′j ′〉, which are transformed to each other by Ĉ2
b , we

will have: Py

i ′j ′ = Py

ij and [ei ′×ej ′] = −[ei×ej ]. Therefore
the finite polarization is possible in the directions a and c,
which are reversed by Ĉ2

b . The direction of polarization in the
plane ac is not specified by the symmetry. Using the numerical
values of Py

ij (Fig. 7), we obtain P x = 36.6 μC m−2 and
P z = 9.4 μC m−2. In agreement to the symmetry argu-
ments [55], our theory also predicts small polarization along

FIG. 8. Electric polarization P y of the spin-spiral phase of
MnWO4 with q = (− 1

4 , 1
2 , 1

2 ), where half of the spins are parallel
to the b axis, while another half lies in the ac plane and forms the
angle β with the monoclinic c axis (see Fig. 6).
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c, which could be verified experimentally. This conclusion
is formally consistent with the phenomenological model (2).
Nevertheless, we would like to emphasize that the actual reason
for such behavior, both for P||b and P ∈ ac, is the specific
symmetry of MnWO4 and the existence of the twofold rotation
Ĉ2

b among symmetry operations of the space group P 2/c.
Finally, we discuss the effect of spin-spiral inhomogeneity

on the electronic polarization P y in the ground state [22].
This inhomogeneity is caused by the competition of isotropic
and DM exchange interactions, which breaks the inversion
symmetry and makes two Mn sublattices inequivalent (see
Fig. 6 for the notations). Particularly, for the q = (− 1

4 , 1
2 , 1

2 )
texture, half of the spins will remain parallel to the b axis, while
another half will split in two groups, forming different angles
β with respect to the c axis (69◦ and 56◦, respectively) [22].
Then, the Mn sites 1, 2, 5 and 6 in Fig. 6 (and equivalent to
them sites) will have different magnetic environment, which
will result in four distinct values of Pi = ∑

j Pij , respectively:
25.3, 20.0, 11.8, and 21.2 μC m−2. The total polarization in this
case is the average value of these four, yielding 19.6 μC m−2,
which is consistent with the value of electric polarization
|P| ∼ 16 μC m−2 of homogeneous spin-spiral with the average
β = 61.5◦ (see Fig. 8). Thus the spin-spiral deformation
in MnWO4 does not seem to make the main contribution
to P, contrary to the manganites, where the deformation is
substantially larger and contributes to the polarization via the
nonrelativistic double exchange mechanism [18].

D. Symmetry constraints on the direction of polarization
in spin-spiral MnO2

The rutile (β-) phase of MnO2 is another interesting
example. Due to competing first- and second-neighbor AFM
exchange interactions, it develops the incommensurate spin-
spiral order below TN ≈ 92 K [60,61]. The spin spiral
propagates along the tetragonal c axis (= z). Therefore, from
the viewpoint of spin-current theory, it could be another
potentially multiferroic compound [7,8], although it has never
been considered in this context. In this section, we will
show that the multiferroic effect can be indeed expected
in the rutile phase of MnO2. Moreover, the behavior of
electronic polarization obeys the phenomenological rule P ∝
c×[ei×ej ] [7,8]. Nevertheless, we will argue that the actual
reason behind it is related to the specific P 42/mnm symmetry
of MnO2, which imposes the symmetry constraints on the
properties of P ij .

We use the experimental parameters of the crystal structure,
reported in Ref. [62]. There are two Mn sites in the primitive
cell, which are connected by the symmetry operations of the
space group P 42/mnm. Like in Cr2O3, we consider the min-
imal model comprising of half-filled t2g bands near the Fermi
level (Fig. 9). In this case, the crystal-field splitting of t2g levels
is pretty large (about 370 meV). The Kanamori parameters of
screened intraorbital Coulomb and exchange interactions are
3.0 and 0.72 eV, respectively. Other parameters can be found
elsewhere [36]. According to the theory of infinitesimal spin
rotations [37], the isotropic exchange interactions between first
and second neighbors, located at (0,0, ± c) and (± a

2 ,± a
2 ,± c

2 )
(a and c being the tetragonal lattice parameters), are −16.4
and −12.3 meV, respectively. Similar parameters are obtained

FIG. 9. Total and partial densities of states of MnO2 in the
local density approximation. The shaded light (blue) area shows
contributions of the Mn 3d states. Positions of the main bands are
indicated by symbols. The Fermi level is at zero energy (shown by
dot-dashed line).

in the frameworks of the SE theory, Eq. (6). These exchange
interactions support the appearance of spin-spiral superstruc-
ture with q ≈ (0,0, 1

7 ) (comprising of seven primitive cells), in
agreement with the experimental data [60] and results of first-
principle calculations [63]. Moreover, the magnetocrystalline
anisotropy energy confines the spins in the x y plane.

The P 42/mnm space group imposes the symmetry con-
strains on the properties of P ij , which are explained in
Fig. 10. The parameters P ij in the NN bonds (0,0, ± c)
vanish identically due to the mmm symmetry. Then, due to
the symmetry operations {Ĉ4

c |( a
2 , a

2 , c
2 )} and {m̂x |( a

2 , a
2 , c

2 )} (Ĉ4
c

being the fourfold rotation about c), transforming the second-
neighbor bonds to themselves, the corresponding parameters
will behave as P ij = (±P, ± P,0) (see Fig. 10). Therefore it
is straightforward to see that the spin spiral, propagating along
c (= z) and rotating in the x y plane, does not induce any
polarization because the active component Pz

ij is identically
equals to zero. For other bonds with lower symmetry, some
of Pz

ij can be finite. However, the phases of εjiPz
ij alternate

for the equivalent types of bonds, again resulting in no net
polarization.

FIG. 10. Fragment of the crystal structure of MnO2 illustrating
the symmetry properties of pseudovectors P ij in eight neighboring
bonds, connecting two types of Mn sites. The Mn atoms are indicated
by the big spheres and the O atoms are indicated by the small spheres.
The numerical value of parameter P is 0.023 μC m−2.
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However, when the spins rotate in the yz, the active
component is Px

ij , which is finite. Moreover, by combining
the phases of Px

ij with the ones of εji , it is straightforward
to see that P x = P z = 0, while P y can be finite. Using
obtained parameters Px

ij , P y for q ≈ (0,0, 1
7 ) can be estimated

as 2 μC cm−2. Similar conclusion holds when the spins rotate
in the zx plane.

Thus we expect no FE activity in the magnetic ground
state of MnO2. However, small polarization can be induced by
aligning the spins in either yz or zx plane. This can be done by
applying the external magnetic field along either x or y axis.
Thus our finding can be verified experimentally. The result
is formally consistent with the phenomenological expression
P ∝ c×[ei×ej ] [7,8]. However, it should be understood that
the actual reason behind it is again the specific symmetry of
the rutile phase of MnO2.

E. Symmetry aspects of the electric polarization
in CuFeO2 and MnI2

The triangular-lattice compounds such as CuFeO2 and
MnI2 (crystallizing in the space groups R3̄m and P 3̄m1,
respectively) have attracted a considerable attention as ex-
amples of proper-screw spin-spiral multiferroics where the
phenomenological KNB theory breaks down. Experimentally,
the direction of propagation of the spin-spiral q can be
controlled by the magnetic field. However, for all magnetic
configurations, q is perpendicular to the spin rotation plane
and, therefore, according to Eq. (2), there should be no electric
polarization. Nevertheless, the experimental measurements re-
vealed finite polarization [10,11,64], which was also confirmed
by first-principles calculations [16].

The Mn (Fe) atoms in MnI2 (CuFeO2) form the triangular
plane, which is explained in Fig. 11. Then, the experimental
finding can be summarized as follows [11]: for q||x or y, the
electric polarization is parallel to y. In this section we will
show that this result can be easily rationalized by using new
Eq. (4).

Due to the inversion and threefold rotation symmetries,
the coordinates of six normal vectors εj0 around each
TM site are given by εj0 = (sin πj

3 , cos πj

3 ,0), while cor-
responding pseudovectors P0j are transformed as P0j =
(−1)j (sin πj

3 , cos πj

3 ,0)P (see Fig. 11 for the notation of
atomic positions). Then, for q||x, the spins rotate in the
yz plane relative to e0 = (0,0,1) as ej = (0,− sin(εx

j0aq),

FIG. 11. Atoms of Mn (Fe) in the triangular lattice of MnI2

(CuFeO2).

cos(εx
j0aq)), where a is the lattice parameter. Therefore

the active component of P0j is x, and after summing up
the contributions from all six neighbors we will obtain
that P = (0,P y,0) and P y = −√

3P sin (
√

3
2 aq). Very sim-

ilary, if q|| y, the spins rotate in the zx plane as ej =
(sin(εy

j0aq),0, cos(εy

j0aq)). Then, the active component of P0j

is y, and the total polarization is again parallel to y, where
P y = P sin ( 1

2aq)(4 cos ( 1
2aq) − 1).

Thus the symmetry properties of the electric polarization
in the triangular-lattice compounds are naturally reproduced
by Eq. (4). The numerical estimates for MnI2, obtained
by fitting results of first-principles calculations to Moriya’s
expression (1), can be found in Ref. [16].

IV. SUMMARY AND CONCLUSIONS

We have derived an analytical expression for the electronic
polarization driven by the SO interaction in noncollinear
magnets. For these purposes, we have considered the Berry-
phase theory of electric polarization and applied it to the
Hubbard model at the half filling. Thus our analysis is limited
by the spin-current mechanism and does not involve additional
complications caused by lattice distortions and orbital degrees
of freedom. Moreover, all derivations are performed in the
spirit of the SE theory, which is valid in the first order of
the SO coupling and in the lowest order of t̂ij /U , similar to
the analysis of DM exchange interactions [3].

We have found that the electric polarization in each bond
is given by Eq. (4), which represents a substantial revision of
the phenomenological expression (2). Namely, the electronic
polarization in Eq. (4) explicitly depends on the symmetry of
the lattice (similar to the DM exchange interactions dij [2]):
this dependence is described by the pseudovector P ij , which is
coupled to the cross product [ei×ej ], depending on the direc-
tions of spins. Thus this coupling describes how the symmetry
of the lattice interferes with the symmetry of the noncollinear
arrangement of spins. The direction of the polarization itself
is specified by the unit vectors εji , describing the spacial
orientation of the magnetic bonds, which are modulated by
the scalar P ij · [ei×ej ]. We have argued that, even though the
direction of polarization in some spin-spiral magnets can be
described by the phenomenological expression (2), the actual
reason behind it is the specific symmetry of the considered
system, which are described by the pseudovectors P ij .
Moreover, we have shown that the spin-current mechanism
is much more generic and operates not only in spin-spiral
compounds, but also in other types of noncollinear magnets,
where the phenomenological expression (2) breaks down.
Particularly, absolutely the same mechanism may lead to the
ME effect induced by the FM canting of spins in magnetic field.
Furthermore, the new expression (4) naturally explains the
symmetry properties of the electric polarization in spin-spiral
magnets with triangular lattice.

Another important factor, which plays a crucial role, even
at the half filling, is the crystal-field splitting. We have shown
that without the crystal field, both DM exchange interactions
and electronic polarization would vanish. However, the crystal
field may have other interesting consequences. For instance, it
leads to the asphericity in the distribution of the charge density
around each transition-metal site and, if the latter is located
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not in the centrosymmetric position, one can also expect ionic
contribution to the electronic polarization, which can be also
derived from the Berry-phase theory, as was demonstrated
recently for Ba2CoGe2O7 [12]. This is also consistent with the
phenomenological analysis by Moriya [6], who expressed the
total polarization as the sum of ionic contributions and the ones
originating from the bonds. The ionic contributions were also
evaluated in the present work but found to be at least one order
of magnitude smaller than the “anomalous” pair contributions,
which are given by Eq. (4) and related to fine details of the
electronic structure [65].

Using parameters of the effective Hubbard model, derived
from the first-principles electronic structure calculations, we
have evaluated the spin-current contribution to the electronic
polarization for the series of ME materials (Cr2O3 and BiFeO3)
and multiferroics compounds with the spin-spiral structure
(MnWO4 and MnO2). We have shown that, although Eq. (4)
excellently reproduces the symmetry properties of the polar-

ization, its numerical values can be severely underestimated,
depending on the material. Particularly, the largest discrepancy
was found for the ME effect in Cr2O3, which suggest the
importance of other (lattice and orbital) contributions, in
agreement with the previous finding [26–28].

We have also clarified the microscopic origin of FE activity
in the spin-spiral phase of MnWO4: although in this case the
spin spiral is deformed by competing isotropic and antisym-
metric DM exchange interactions, which explicitly breaks the
inversion symmetry [22], this deformation seems to have a
secondary effect on the value of electronic polarization. The
main contribution comes from the spin-current mechanism,
given by Eq. (4), which also describes the change of the
direction of polarization, depending on the spacial orientation
of the spin spiral. Finally, we have predicted the FE activity
in the rutile phase of MnO2—yet another spin-spiral magnet,
where a finite polarization can be obtained by rotating the spins
out of the tetragonal x y plane.
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