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Floquet time crystal in the Lipkin-Meshkov-Glick model
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In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-
interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust
under perturbations of the kicking protocol, its existence being intimately linked to the underlying Z, symmetry
breaking of the time-independent model. We show that the model being infinite range and having an extensive
amount of symmetry-breaking eigenstates is essential for having the time-crystal behavior. In particular, we
discuss the properties of the Floquet spectrum, and show the existence of doublets of Floquet states which are,
respectively, even and odd superposition of symmetry-broken states and have quasienergies differing of half the
driving frequencies, a key essence of Floquet time crystals. Remarkably, the stability of the time-crystal phase
can be directly analyzed in the limit of infinite size, discussing the properties of the corresponding classical phase
space. Through a detailed analysis of the robustness of the time crystal to various perturbations we are able to
map the corresponding phase diagram. We finally discuss the possibility of an experimental implementation by

means of trapped ions.
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I. INTRODUCTION

Landau’s idea of classifying phases of matter in terms of
symmetry breaking is a cornerstone of modern physics [1].
Breaking space translation symmetry gives rise to crystals,
while superfluids and ferromagnets are manifestations of
the spontaneous breaking of gauge or rotational invariance,
respectively. Among all possible complex situations that were
considered and experimentally verified so far, breaking the
time-translation symmetry has received attention only very
recently [2—15]. This was the focus of the pioneering work of
Wilczek [2,4] in which he argues that an autonomous system
can break time-translation symmetry, thus realizing what he
named as time crystals. This possibility has been ruled out
[16] for systems, with not too long-range interactions, in their
ground state or in thermal equilibrium [17].

The no-go theorems proved in Refs. [8,16] clearly indicate
that the right context where to search for spontaneous
time-translation symmetry breaking is in systems out of
equilibrium. The most fruitful setting so far has been provided
by periodically driven systems. Since the pioneering works
[12,13,15] on Floquet time crystals [12] (a.k.a. w-spin glasses
[13,15]), the literature on the subject has vigorously flourished
[14,19-22]. All these proposals consider a many-body system
unitarily evolving under an external periodic driving with
period 7. The time-translation symmetry breaking appears as
the response of an observable which oscillates with periodicity
that is a multiple of the imposed drive (in most cases it is
period doubling 27). These “anomalous” oscillations persist
indefinitely, on approaching the thermodynamic limit. Only
in this limit time-translation symmetry breaking occurs, as
it happens for any standard symmetry breaking. It is worth
noting that time-translation symmetry breaking seems to be
always strictly connected with a global symmetry breaking
(Z, symmetry in Refs. [12—-15]) leading to the the concept of
“spatiotemporal order” [13—15].

A key element in characterizing Floquet time crystals, at
least in the initial works, was the presence of many-body
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localization (MBL) [23,24]. In presence of disorder, short-
range interacting spin or electron systems show no diffusion
due to the existence of an extensive amount of local integrals of
motion (see, e.g., the review Ref. [25]). In the present context
this property forbids the system to heat up, thus avoiding the
destruction of the time crystal. Clean driven systems can be
ergodic, and asymptotically reach infinite temperature [26—30]
(acondition in which there is no time dependence and therefore
no time-translation symmetry breaking), or be integrable and
reach a time-periodic generalized Gibbs ensemble which has
the property of being periodic with period T [31-33]: again,
no time-translation symmetry breaking. On the contrary, in
MBL systems, the absence of diffusion forbids the excitations
to propagate along the chain: in this way localized operators
can be constructed whose Heisenberg dynamics leads to
a period-doubling 27 (or more generally to a multiple of
the imposed period). These operators give rise to the order
parameter of the time-translation symmetry breaking [14].

The interplay between disorder and long-range interactions
was instead considered in Refs. [19,34,35]. In these works, the
authors take a disordered system with power-law interactions:
only for a given choice of parameters the time-crystal behavior
sets in. There is however a regime of parameters such
that the oscillations breaking the time-translation symme-
try decay with a rate exponentially small in the deviation
from the critical parameters (quasi-time-translation symmetry
breaking).

In this framework it came as a surprise the recent proposal
of a system without disorder showing genuine time-translation
symmetry breaking [36]. In this reference, the authors consider
a ladder closely related to the Hubbard model: in this case the
time-crystal behavior is connected to the localization due to
the Hubbard interaction.

The aim of this paper is to present a second example of
a clean system showing time-crystal behavior: the Lipkin-
Meshkov-Glick model. The main virtues of the model we
consider are (i) a truly time-crystal regime can be realized in
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a finite region of system parameters, and (ii) the Hamiltonian
dynamics we discuss is immediately available with trapped
ion experiments [37-39]. In the following we are considering
a spin network with infinite range interactions described by the
Lipkin-Meshkov-Glick model. The arguments of Ref. [14] on
the absence of clean time crystals do not apply here. Being
all the sites interacting with each other, the spreading of
correlations does not imply that the local observables cannot
come back to themselves, after a given multiple period. Due to
the infinite range nature of our model, mean field turns to be
exact in the thermodynamic limit. Time-translation symmetry
breaking in periodically driven mean-field models has been
also described in Ref. [10] (an ultracold atomic cloud described
by Gross-Pitaevskij equation) and Ref. [11] [an O(N) model
with N — o0].

Some of the features related to the time-translation sym-
metry breaking in this model were found, for finite number
of spins and a different form of driving, in Ref. [40]. Here
we further discuss the time-crystal properties in the light of
the developments of Refs. [12—15]: we show how the time-
translation symmetry breaking appears in the thermodynamic
limit of infinite number of spins, we discuss its relation
with the w-spectral pairing of the Floquet spectrum, its deep
connection with the standard Z, symmetry breaking, and its
robustness under modifications of the initial state and the
driving parameters.

The paper is organized as follows. In the Sec. II we
introduce the Lipkin-Meshkov-Glick model (LMG) and its
main properties together with the type of driven dynamics
that will be considered in the rest of the paper. In Sec. III
we briefly review the definition of time crystal and list the
observables that we will consider in order to characterize it. In
Sec. IV we show the existence of time-translation symmetry-
breaking oscillations persisting for an infinite time in the
thermodynamic limit. We first consider an idealized case in
Sec. IV A. We then discuss, in Sec. IV B, that the behavior we
find is robust: the time-crystal behavior is observed in a whole
range of parameters. In Sec. IV D we discuss the properties of
the Floquet spectrum and find that they are in agreement with
those found in Refs. [12,13,15]. It is possible to understand
the time-crystal behavior in the LMG model in terms of the
phase space properties of the classical model describing our
system in the thermodynamic limit. As already mentioned,
the situation we consider in the paper is amenable of an
immediate experimental verification. In Sec. VI we discuss
the perspectives of experimental realization. Section VII is
devoted to our conclusions and to a brief discussion of possible
future directions.

II. THE DRIVEN LIPKIN-MESHKOV-GLICK MODEL

The system we consider in this work is an infinite-range spin
model which is also defined as the LMG model [41]. It can be
experimentally realized in many ways: thanks to a mapping
to an interacting two-component Bose-Einstein condensate
(BEC) with linear coupling [42], by a BEC in a double well
[43], or using trapped ions [37-39]. We will consider in more
detail the implementation with trapped ions at the end of the

paper.
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FIG. 1. Some broken symmetry eigenstates of the Hamiltonian
Eq. (1) with J = 1, h < 1, and energies below the broken symmetry
edge E* = —Nh. We plot their (real) amplitudes in the S* represen-
tation. Numerical parameters: N = 200, 7 = 0.5.

The Hamiltonian of the LMG model is defined as
by N
i,j i

It describes N spin-1/2 (5% is the ath component of the ith
spin) interacting through an infinite range coupling, in the
presence of an external magnetic field / along the x direction.
This Hamiltonian conserves the total spin S (S* = Zi’s?),
so we restrict to the spin sector with S = N/2 (we choose
this particular value of S because it is the one corresponding
to the ground state [44]). When h < J there is Z, symmetry
breaking that involves a finite fraction of all the spectrum.
In the thermodynamic limit N — oo, if we consider energy
eigenvalues below the broken symmetry edge E* = —h N, the
corresponding eigenstates appear in degenerate doublets. Each
member of the pair is localized in the basis of the S*-eigenstates
|S;), respectively, at positive or negative values of the eigen-
value S, (see Fig. 1). There is indeed an extensive fraction
of the spectrum showing Z, symmetry breaking. This kind
of localization occurs in the thermodynamic limit; for finite
size, the true eigenstates are the even and odd superpositions
of each doublet: the levels of each quasidegenerate doublet are
separated by a gap exponentially small in N.

In all the text we consider J = 1, so that there is the
symmetry-breaking phase for 7 < 1.

The properties of the LMG model have been extensively
studied in the literature. Recently many works appeared
concerning its nonequilibrium dynamics [44—49], especially
in connection with a periodic driving [30,40,42,50]. Also in
this work we want to consider a periodically driven dynamics
that we specify in the following of this section. We first present
and discuss the choice and the preparation of the initial states
of our dynamics and then describe the driving protocol under
which we make them evolve.

a. Initial states We initialize the system in one of the
two symmetry-breaking ground states of the Hamiltonian
(1), with h equal to some h; < 1. For definiteness, let us
consider the state with negative z-magnetization |/g4(h;)).
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From a technical point of view, to experimentally prepare
this state also for N finite, one must take the ground state
of the Hamiltonian H; = H(h;) + 8h.>_;5; with 8h, < 1.
The small field along z breaks the Z, symmetry and makes
the ground state localized at negative values of S, (as in the
thermodynamic limit) and no more even under this symmetry.

b. Driving protocol After the initialization the system will
undergo a periodic driving dictated by the following time-
evolution operator over one period:

N
fj = ﬁkick exp[—lﬁ(h)r] with ﬁkick = exp |:—l¢ ZTS‘;X:|,

@

with & < 1 (we will clarify in Sec. IV the reason behind this
choice). The system evolves with H(h); at times ¢, = nt the
kicking operator Uy;ck acts as a rotation around the x axis.

We are going to analyze the long-time dynamics of the
system as a function of %, ¢, and the choice of the initial state,
for different values of N. We will show that there are regimes
where the period doubling appears in the thermodynamic limit
thus confirming the existence of a time crystal in the LMG
model. Before presenting the results, in the next section we
recap the salient features that enable us to characterize time-
translation symmetry breaking.

III. OBSERVABLES IN THE TIME-CRYSTAL PHASE

All quantum systems naturally show oscillations: this leads
to phenomena which range from the Rabi to the Josephson
oscillations; from the Bloch oscillations to the dynamical
localization. In order to spot time-translation symmetry break-
ing, it is very important to define precise criteria which are
able to distinguish this complex collective phenomenon from
analogous single particle effects. A crucial step in this direction
was done in Refs. [12,13,15] where the relevant criteria and
conditions to have a Floquet time crystal were introduced. We
do not attempt to recap here their formulation, the goal of this
section is to summarize the various indicators that will help us
inidentifying a time-crystal regime in the LM G model (see also
Ref. [36]). Following these previous works, there must exist
an observable O (the order parameter) and a class of initial
states |Y) such that, considering stroboscopic times ¢ = nt,
the expectation value in the thermodynamic limit (N — oo):

f@ = lim (y0I01Y @) 3)

satisfies all of the three conditions.

() Time-translation symmetry breaking: f(t + 7) # f(¢)
while H(t + 1) = H(2).

(II) Rigidity: f(z) shows a fixed oscillation period g (for
instance 2t) without fine-tuned Hamiltonian parameters.

(IIT) Persistence: The nontrivial oscillation with fixed
period tp must persist for infinitely long time, when the
thermodynamic limit N — oo in Eq. (3) has been performed.
Thus, the Fourier transform f,, must present a marked peak at
the symmetry-breaking frequency wg = 27 /75p.

Furthermore, it is important that the Floquet eigenstates—
the eigenstates of the stroboscopic dynamics—have long-
range correlations [12]: in the case T3 = 2t we focus on, these
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states appear in pairs with quasienergies (the corresponding
eigenfrequencies) differing by an amount of 7 /7. In summary,
we seek for an observable, the order parameter, such that
it oscillates with frequency 2t for an infinite time in the
thermodynamic limit (when the size of the system N tends
to infinity). The quantity we find to obey the three conditions
listed above is the z magnetization evaluated immediately
before the nth kick

1 o~
m;, = S (WIS W), @

where |{(n7 7)) is the wave function of the system just before
the nth period.

In the next sections we are going to show that this object
meets all three conditions.

IV. RESULTS

In the rest of the paper we characterize in detail the time-
crystalline behavior of the driven LMG dynamics. In the same
spirit of Ref. [12] we first consider a simple situation.

A. Time-crystal phase: ¢ = &

The picture is clearest when ¢ = w and h; = h [the system
is initialized in a symmetry-breaking ground state of H(h)].
In this case the kicking swaps the two degenerate symmetry-
breaking ground states of H () (that is why we need & < 1,
otherwise there is no ground state breaking the Z, symmetry).
After the preparation in the negative magnetization symmetry-
breaking ground state of H(h), the system is commuted at
each kick from the negative magnetization ground state to the
positive one, and vice versa: it changes sign at each kick and
gives rise to a period-doubling time crystal. We can see the
persisting oscillations in Fig. 2, where they appear for many
different initial conditions.

Figure 2 shows the case of different initial [Y5¢(h;)) with
h; < 1. Expressing each of these initial states in the basis of
the eigenstates of H(h), we have numerically checked—for
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FIG. 2. Stroboscopic magnetization (+ = nt) for N = 100 and
kicking given by Eq. (2) with #; = 0.32 and ¢ = 7. We see persistent
oscillations with period 75 = 27 occurring for many different initial
conditions |5s(hi)) (see the main text).
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FIG. 3. Beatings of |m}| for different values of N. Numerical
parameters h; = h =0.32, ¢ =7, = 0.6.

many values of N—that in this superposition there are only
eigenstates of the symmetry-breaking sector, whose number
is extensive in N. All these eigenstates have energy below the
broken symmetry edge and negative z magnetization. Each of
these states has a degenerate partner with positive magneti-
zation: these pairs obey the same qualitative picture that we
have described for the ground state leading to time-translation
symmetry breaking. This picture is still valid in the limit N —
oo thanks to the extensive number of symmetry-breaking
eigenstates. This extensivity comes from the model being
infinite range: this property of the interactions is therefore
very important for the time-translation symmetry breaking.
We find indeed that our order parameter is the z-magnetization
O = §°/N: we are going to see how the time-translation
symmetry breaking appears in the dynamics of this operator
when we increase N and approach the thermodynamic limit.

Let us again start our analysis from the simpler case in
which the initial state is | gq(h)). When N is finite the
symmetric and antisymmetric ground states are nondegenerate
and there are some beatings superimposed to the period
doubling oscillations (see Fig. 3 where we show |m%| for
different values of N). We note that, for finite N, the beatings
are also present for a sinusoidal driving [40]. We find that the
period of the beatings is given by the inverse gap between
the symmetric and antisymmetric ground states: the period is
exponentially large in N being the gap exponentially small.

We can see this phenomenon in |m? |2, the power spectrum
of the z-magnetization discrete Fourier transform numerically
performed over K periods

K
m, =t Zmﬁe”'“’"f with K > 1

n=1

&)

(upper panel of Fig. 4). We see indeed in |m? |* two peaks at
w+(N) =nm/t £ A(N)/2 whose separation A(N) is the gap
and exponentially decreases with N as A(N) ~ exp(—1.5N).
In the lower panel of Fig. 4 (main plot) we show |m§)|2
vs w in a case in which h; # h. We see that the same
peak at wp = m/t emerges: it marks the existence of the
time-translation symmetry-breaking phase. The persistence of
the oscillations for N — oo can be seen in the inset of the lower
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FIG. 4. (In all the plots T = 0.6, ¢ = m.) Upper panel: Power
spectrum of the Fourier transform of m; for different values of N;
notice the doublet of marked peaks around wg = 7/t (here h; = h =
0.32) which shrink into a single one as N increases. Lower panel, main
figure: Power spectrum of the Fourier transform of m? for different N,
h; = 0.7, h = 0.32. Notice the same peaks here. Lower panel, inset:
Plot of the height of the maximum peaks around w = 7/t vs N. It
converges to a constant for N — oo: this highlights the existence of
the time-crystal behavior in the thermodynamic limit. (The Fourier
transforms have been performed over 32 768 driving periods in the
main figures and over K = 65 536 periods in the insets.)

panel of Fig. 4. For different values of %;, we plot the height of
the main peaks |mfui(N)|2 vs N. |mfoi(N)|2 tends to a constant
for N — oo: in the same limit w4 (N) tend to wp. Indeed,
in the thermodynamic limit there are persistent oscillations
with period 7 = 27: the system breaks the time-translation
symmetry.

Conditions (I) and (IIT) for the existence of the time crystal
are indeed fulfilled. We are going to discuss condition (II)
concerning the rigidity in the next subsections.

B. Robustness of the time-crystal phase: ¢ # &

In this subsection we want to show that the time crystal
persists, with oscillations of m?, rigidly fixed at period 73 = 27,
for the phase ¢ of the kicking [see Eq. (2)] in a finite interval
around 7.

The upper panel of Fig. 5 shows that m} displays period-
doubling oscillations when the deviation of ¢ from 7 is small
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FIG. 5. Main figures (upper panel): m’ for N = 100 and different
values of ¢; if ¢ deviates too much from 7= we see that the oscillations
of period 2t die away. (Lower panel) Corresponding power spectrum
of the Fourier transform of the z magnetization: when there is period
doubling, two peaks around wp = 7/t appear. Insets (upper panel):
Dependence on N of the main peaks frequencies w.(¢,N) in the
Fourier power spectrum: whenever there is the time crystal, these
frequencies tend to w /7. (Lower panel) Dependence on 1/N of
the main peaks height |m;,_ N)lz in the Fourier power spectrum:
whenever there is the time crystal, this height tends to a constant for
N — 00, otherwise it tends to 0 as a power law (notice the logarithmic
scale on both axes). (Numerical parameters 7 = 0.32, T = 0.6. The
Fourier transforms in the insets are performed over K = 65536
driving periods, in the main figures over K = 32768 periods.)

enough (here h; = h, N = 100, and we consider different
values of ¢). In the lower panel there are the plots of the
corresponding Fourier power spectra |m? | vs @. Whenever
there are persisting oscillations in the time domain, the power
spectrum |m§)|2 shows two peaks at frequencies wi(¢,N)
symmetric around wg. The peaks are responsible for the
oscillations with period 2t in m? with superimposed beatings
occurring with a period 1/|w4(¢,N) — w_(¢,N)]|.

In order to convince us that the time-crystal behavior is
persistent in the thermodynamic limit [condition (IIT)] and
that the beatings disappear in this limit, we have to study
the behavior of the peaks at w1 (¢, N) when N is increased.
In the inset of the upper panel we show the dependence on N
of the frequencies w1 (¢, N) of the peaks, while in the inset of
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FIG. 6. (Upper panel) Dependence on ¢ of the main peaks height
Im,, x| for different N and initial conditions: we see a full region
around ¢ = m where itis different from 0. (Lower panel) Dependence
on ¢ of the main peaks frequencies: when |m,_ , v, |2 is different from
0 the frequencies equal wg up to terms exponentially small in N and
the system is a time crystal. (Numerical parameters 7 = 0.32, 7 =
0.6, the Fourier transforms have been performed over K = 65536
driving periods.)

the lower panel we show the dependence on 1/N of the height
Img,, . N)|2 of the peaks (notice the logarithmic scale on the
two axes). When the 2t oscillations die away (¢ = 0.84x),
we see that wi(¢p,N) tend to a limit different from wp when
N — o0 and the height of the peaks |mfoi(¢,N) |>tends to O as a
power law: in this case there is no time crystal. On the opposite,
for all those values of ¢ for which we phenomenologically see
persisting oscillations of period 27, wy(¢,N) approach 7/t
exponentially fast in N [51]. Moreover, for the same values
of ¢, |m2>i(¢,1v) | tends to a constant for N — oo (inset of the
lower panel of Fig. 5). We find indeed that there are persisting
oscillations at wp and in this case there is a time crystal.

In the upper panel of Fig. 6 we show how the main peaks
height |mfui(¢’ N)|2 depends on ¢ for different values of N
and of h;. We see a quite large region around ¢ = w where
the peaks height is different from 0: in all of this region the
system behaves as a time crystal because the peak frequencies
w+(¢,N) equal wp up to terms exponentially small in N
(lower panel of the same figure). We see that |m2&(¢’ N)|2
vanishes in a continuous way at the boundaries, while the
frequencies jump in a discontinuous way. We see moreover
that the region where the time-crystal behavior occurs depends
on the value of h;. Moving outside of this region, the peaks
height suddenly drops by two orders of magnitude.

In Sec. V we are going to show that the time-translation
symmetry-breaking transition in ¢ can be described in terms
of the properties of the phase space of the effective classical
Hamiltonian which describes the LMG model in the N — oo
limit.

C. Robustness of the time-crystal phase: Perturbations
in the kicking operator

We can probe the rigidity of the period doubling also
perturbing our kicking in a radical way: we choose a kicking
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capable to induce a quantum chaotic behavior of the system
[50,53]. Inspired by Ref. [50] we choose a time-evolution
operator over one period of the form

U, = exp[—i¢S*]explir(S9)?/Nlexpl—itH(h)].  (6)

We fix ¢ = m, fix also T and &, and we consider different
values of . Results are reported in Fig. 7. On the top panel
we show the evolution of m%: we phenomenologically see
that there are persistent oscillations for A small while there
are collapses and revivals for larger A. Looking at the power
spectrum of the Fourier transform of m? (lower panel) we see
two peaks at wy (A, N) around wp which, for A large, become
very small. Nevertheless, some discernible features around wp
still persist.

As before, in order to inquire the persistence of the time-
crystal behavior in the thermodynamic limit, we study how
those peaks depend on N. In the inset of the upper panel of
Fig. 7 we show their frequencies: we see that they tend to wp
only for some values A [S51]. Correspondingly, the height of
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FIG. 7. Main figures (upper panel): Evolution of m? for N = 100
and different values of L. (Lower panel) Power spectra |m§)|2 of the
corresponding Fourier transforms. Insets (upper panel): Dependence
on N of the frequencies w4 (A,N) of the main peaks in the power
spectrum. (Lower panel) Height |m{, | of the main peaks
versus 1/N (double logarithmic scale). (Numerical parameters:
h; = h = 0.32, T = 0.6. The Fourier transforms are performed over
K = 65536 driving periods in the insets and K = 32768 periods in
the main figures.)
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those peaks tends to a nonvanishing value for N — oo only
for some values of A; for others it tends to 0 as a power law
(lower panel of Fig. 7). We have a time crystal only when,
in the limit N — oo, there is a finite-amplitude response at
frequency wp. Among the cases we consider, only A = 0.1
and A = 1.0 meet this condition. In the case A = 5.0 we have
wi(A,N) — wp for N — oo but the height of the peak goes
to zero; when A = 18.5, instead, none of the two conditions is
met: the height goes to zero and the frequency does not tend to
7 /t.In Sec. V we better discuss how the time-crystal behavior
depends on A, also in connection with chaotic properties of the
model. In that section we also show how the presence of the
time-translation symmetry breaking depends on A (see the left
panel of Fig. 11).

D. Floquet states

References [12,13,15] state that in a time crystal the
eigenstates of the dynamics need to have very specific
properties. In order to understand these properties, we analyze
these eigenstates in our periodically driven setting. They
are the Floquet states |¢y), defined as the eigenstates of
the time-evolution operator over one period; the phases
of the corresponding eigenvalues are the quasienergies i,
[54],

U(r,00 =) e " Ighy) (hul- (7)

We can see that the Floquet states are eigenstates of the
stroboscopic dynamics and, after a time nt, they acquire a
phase factor e~ "™ Given these definitions, the authors of
Refs. [12,13,15] find that, in order to obtain a time crystal
with period doubling, one needs to have a Floquet spectrum
with a specific structure. In particular any Floquet state with
quasienergy (i, needs to have a partner with a quasienergy
Uq + m/T. Each of these pairs behaves as the even and the
odd superposition of two symmetry broken states. Preparing
the system in a symmetry broken state, it undergoes Rabi
oscillations between these two pairs with a frequency /7,
the difference of the eigenfrequencies of these two states. It is
crucial that all the Floquet spectrum, or at least an extensive
fraction of it, shows this doublet structure in order to see the
time-translation symmetry breaking in the observables [12,55].
We are indeed able to directly check that our system obeys
these properties in the special case of ¢ = m and 7 small (in
order to not have spectrum folding). In this case we can check
that each quasienergy has its partner shifted by an amount
m/t. We see this fact in the upper panel of Fig. 8: here we
plot three copies of the same spectrum vs ¢, horizontally
shifted with respect to each other by 1+ N/2 and divided
by m/t. We see that the three curves constantly differ by 1
along the vertical axis: for each quasienergy u, there is a
partner shifted by £/t (the sign is not important being the
Floquet spectrum periodic by 27t /7). The same periodicity in
the Floquet spectrum for an LMG model, with a different form
of driving, has been found in Ref. [40]. In the lower panel of
Fig. 8 we show two Floquet states whose quasienergies differ
by 7w/t (w-paired states). We see that these two m-paired
states are, respectively, even and odd superpositions of Z,
symmetry-breaking states: the situation is therefore strictly
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FIG. 8. (Upper panel) Three copies of the Floquet spectrum vs
o, horizontally shifted with respect to each other by 1 + N /2 and
divided by w/7. The three curves constantly differ from each other
by 1 along the vertical axis: each quasienergy has its own partner
shifted by = /7. (Lower panel) The corresponding Floquet states are
organized in pairs: in each pair the quasienergies differ by 7/t and
the two states are even and odd superpositions of symmetry broken
states [we plot the (real) amplitudes of the members of one of such
pairs in the basis of the eigenstates of $*]. Numerical parameters:
N =100, T = 0.006, hy =0.32, ¢ =, A = 0.

analogous to the one found in Refs. [12,13,15], which we have
reviewed above.

The direct check of the /T periodicity of the spectrum
(or at least of an extensive part of it) is possible only for
T very small. The reason is that, being the quasienergies
obtained as phases, they are defined up to translations of
2 /t. In particular, it is possible to fold all the spectrum in
the so-called first Brillouin zone [—m/7,7/t]: the numerical
algorithms evaluate the quasienergies folded in this interval.
If 7 is small enough, the bandwidth of the Floquet spectrum is
smaller than 27/t and there is no folding in the numerically
evaluated quasienergies. If instead there is folding, as in the
case T = 0.6 that we consider throughout the paper, we need a
different strategy to check if an extensive part of the spectrum
is organized in pairs shifted by /T (7-spectral pairing) in
the thermodynamic limit. As done in Ref. [20], we consider
the level spacings Ag") = [lg+1 — Mo > 0and the w-translated
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FIG. 9. (a) (Upper plot) Plot of (log,, Ao) and (log,, A) [see
Eq. (8)] vs ¢ fixing A = 0; (lower plot) plot of the corresponding
fitting exponents «(Ay) and a(A;) vs ¢ [see Eq. (10)]. (b) (Upper
plot) Plot of (log;, A¢) and (log,, A;) [see Eq. (8)] vs A fixing ¢ = m;
(lower plot) plot of the corresponding fitting exponents a(A() and
a(Ay) vs A [see Eq. (10)]. As expected, there is m-spectral pairing—
10%g10 20)  10%g10 A7) and w(A,) > a(Ag)—when there is time-
crystal behavior. (Numerical parameters: ¢ =0.6,h =032, N =
1600 in the upper plots.)

level spacings

A® = min
Bluwp>e+m/TN

(ug — (a + /711> 0.

The symbol (- - - ); means that we translate the argument by a
multiple of 27 /7, so that it falls inside the first Brillouin zone.
Now we perform the averages

N+1
_ (@)
(logjp Ao) = N1 T ;:1 log,y Ay,

N+1
(logiy Ar) = = > logiy AL (8)
a=1

If the system is a time crystal and there is 7-spectral pairing
in the thermodynamic limit, we expect 10(°21027) to be much
smaller than 10%°21020) even for N finite [20]. Moreover, in
order to have m-spectral pairing in the thermodynamic limit,
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FIG. 10. (Upper and central panels) Classical phase space for different values of the phase ¢ and A = O: the blue point corresponds to
the initial symmetry-breaking ground state with #; = h. (Lower panel) Dynamics of the classical m (left panel) and its Fourier transform
(right panel): we initialize with the point in the classical phase space corresponding to the ground state for #; = h. (Numerical parameters:
h =0.32, 7 = 0.6, A = 0. The Fourier transform is performed over K = 65 536 driving periods.)

we need that 1090210 2=) gcales to O faster than 10{°¢0 20) for
N — o0 [20], namely

where B(Ag/r) and a(Ag/;) are numerically found coeffi-
cients. We have therefore that both the gaps scale with N
as a power law. Therefore, in our system, checking Eq. (9) is

lim 1070z A=)~ logio A0) — equivalent to check that

N—o00

&)

From the numerical results, in this model we empirically verify
the relations

oy > Q.

Linearly fitting (log;q Ao/) vs log;y N with the minimum

(log1g Aojz) ~ B(Aojx) — a(Agjz)logy N, (10) square algorithm, we numerically obtain «(Ag) and ¢ (A, ). We
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(¢ = m). (Lower right panel) The same plot for the corresponding w,. (Numerical parameters: #; = h = 0.32, T = 0.6; the Fourier transform

has been performed over K = 65 536 driving periods.)

show our results in Fig. 9. On the upper plot of Fig. 9(b) we plot
(log,g Ax) and (log;q Ag) vs A for fixed ¢ = m and N = 1600;
on the lower plot the corresponding «,; and «g. We can see
that, for approximately A < 5, 10°¢02) is some orders of
magnitude smaller than 101921020 and o, > ag. Therefore, in
this range of A there is -spectral pairing: comparing with the
right panel of Fig. 11 we see that this range of A corresponds
to a clear time-crystal behavior, confirming our expectations.
In Fig. 9(a) we show the ¢ dependence of (log;, A;) and
(log,q Ag) for N = 1600 (upper plot) and o, and ag (lower
plot), fixing A = 0. We can see that 100°%104x) j5 smaller
than 10%°¢020) in some intervals around ¢ = 7; in these
same intervals we see also o, > «g: here we find m-spectral
pairing. The 7 -spectral pairing corresponds to time-translation
symmetry breaking: it is around ¢ = m that the time-crystal
behavior appears (compare with Fig. 6).

V. CLASSICAL LIMIT

The transition from time-translation symmetry breaking
to its absence can be better physically interpreted when N
is actually infinite and the system behaves classically: it is
effectively described by the Hamiltonian [30,45,49]

H(Q.P.1) = Ho(Q, P) + Hiie(Q. P) Y 8(t —nt), (11)

where
Ho(Q,P)=—1J0% —h /1 — Q? cos(2P) (12)
and

A 1
Hiiek(Q, P) = —ZQZ + §¢ V1 =02 cos(2P). (13)

[In this classical limit, the components of the magnetization

depend on Q and P as m* = %Q, m* = %\/1 — 0?%cos(2P)

and m> = %\/1 — Q%sin(2P).] The Z, symmetry of the
quantum spin model is reflected in the symmetry P — —P,
Q0 — —Q of the classical limit Hamiltonian Eq. (11).

Below we look at the Poincaré sections [56] of the dynamics
of this Hamiltonian, with the same kinds of kicking considered
above. Constructing a Poincaré section is very simple: we take
some initial values and we evolve them under the stroboscopic
dynamics reporting on a P, Q plot the sequence of the
positions. If the initial condition is in a regular region of
the phase space, our points will be over a one-dimensional
manifold. If instead the initial condition is in a chaotic region of
the phase space, our points will fill a two-dimensional portion
of phase space.

In Fig. 10 the different Poincaré sections are plotted, when
A =0, for different values of ¢: we see that the dynamics
is always regular and each trajectory is a closed curve. We
can moreover see that some curves are symmetric under the
symmetry of the Hamiltonian P - —P, Q — —(Q; while
others break this symmetry. Each of the symmetry-breaking
curves has a symmetric partner under P — —P, Q — —Q.
The light blue star in the graphs represents the initial condition
in the classical limit, while the small blue crosses represent
its stroboscopic evolution. We have put for clarity only the
representative point for the initial symmetry breaking ground
state with h; = h; in the cases with h; # h the argument runs
exactly the same.

On decreasing ¢ from 7, we move from time-translation
symmetry breaking to its absence (see Sec. IV B and Fig. 6).
In Fig. 10 we consider three values of ¢ for which there is
time-translation symmetry breaking and one for which there
is not (¢ = 0.84m). In the first three cases the representative
point of the initial state is on a curve breaking the symmetry
P - —P, Q0 — —Q:itis trapped on this curve until the kick
shifts it to the symmetric one with opposite sign of Q (the
two symmetric curves are highlighted in blue in the figures).
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In this way the sign of m* = %Q changes at any kick and the
time-crystal behavior arises. In the case ¢ = 0.847, on the
opposite, the representative point is on a curve invariant under
the P - —P, Q0 — —(Q symmetry (highlighted in blue in the
figure): there is no time crystal (central right panel of Fig. 10).
The situation for i # h; is very similar, the only difference is
that the initial point is in a different position in the phase space,
so it moves from a symmetry-breaking curve to a symmetric
one at a different value of ¢». The existence of 27 oscillations in
a driven Hamiltonian similar to Eq. (11) and their connection
with the Poincaré section properties have been also discussed
in Ref. [40].

From a quantitative point of view, we can also see a
clear transition from time-translation symmetry breaking to its
absence in the classical evolution of m’. We can see this in the
lower left panel of Fig. 10, where we show the time dynamics,
and in the lower right panel where we plot the power spectrum
of the Fourier transform: a marked peak at wp appears [52]
only when there is time-translation symmetry breaking (for
¢ = and ¢ = 0.947). We can have confirmation of this
looking at Fig. 11: here we plot the classical height |mfup|2
of the maximum peak in the z-magnetization transform and
its frequency w, vs ¢; we also plot the same quantities

in the N =400 case. We see an interval around ¢ =7
where w, = wp and the height depends continuously on
¢. This interval is consistent with the one where we see
time-translation symmetry breaking for N finite. We can see
that inside this interval the classical value and the N = 400
one are indistinguishable. At the boundaries of the interval, w,
jumps away from wp in a way which seems discontinuous in
both the finite N case and the classical one.

In Fig. 12 we present the results when ¢ = m and we
consider different values of A. We still plot in blue the points
which represent the evolution of the initial state, chosen
with h; = h. The dynamics is increasingly chaotic when we
consider larger A. For instance, when A = 1.0 (upper left
panel) the initial state is on a regular trajectory which has
a symmetric partner in the lower part of the graph: the
kicking swaps periodically one trajectory to the other and
there is the time crystal. For larger A, the initial state can
fall inside a chaotic region and there is no period doubling
(A = 5.0, upper right panel). In this case the destruction of
the time-translation symmetry breaking is related to chaos
[30,50]. In the lower left panel we can see a quite interesting
case: here A = 20.0 and almost all the phase space is chaotic
but two small regions: one is around the initial state and the
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other is the symmetric one under P - —P, Q — — Q. The
existence of these small regular regions between which the
dynamics swaps at each kick (see the blue line representing
the evolution of the initial state) is enough to give rise to
time-translation symmetry breaking. If we had chosen initial
conditions inside the chaotic region, instead, we would have
seen no time-crystal behavior. In the lower right panel we
can see the persistence of the period-doubling oscillations for
A =1 and A = 20; they instead decay when A = 5.0. This
reflects in the power spectrum of the Fourier transform (not
shown): there is a marked peak at w = wg for A = 1.0 and
A = 20.0 but not for A = 5.0.

In order to have a clearer picture, we are going to study how
the properties of this peak do depend on A. We plot the peak
|mfup|2 and its frequency w, versus A, both for the classical
and the quantum case with N = 700, in the right panel of
Fig. 11. We see that the system commutes some times from
the time-translation symmetry breaking to its absence, both in
the height of the peak and in its frequency being or not locked
to wg. We find that the time-crystal regions in the classical
case are slightly larger than those in the N = 700 case. The
reason is that the quantum finite-N initial state is not a point,
but a wave packet whose Wigner function has width ~1/+/N
in the Q and P directions [45,49]. Even if the center is on a
regular trajectory (giving rise to a time crystal in the classical
limit), part of the wave packet is on chaotic trajectories which
deviate exponentially fast from each other [57]. Eventually,
the Wigner function gets uniformly spread all over the phase
space and there is no time-translation symmetry breaking. That
is why there are values of A (for instance A = 20.0—see the
right panel of Fig. 11) where the classical system shows a time-
translation symmetry breaking, but the finite N one does not.
Inthe case A = 18.5 considered in Fig. 7, all the classical phase
space is chaotic and the time-translation symmetry breaking is
absent both for the quantum case with finite N and the classical
one with N infinite.

VI. EXPERIMENTAL REALIZATION
WITH TRAPPED IONS

The dynamics we are interested in is immediately available
in linear trap ion experiments [37]. In these settings, spin
degrees of freedom are represented by internal states of
individual ions, confined in one dimension in a Paul trap with
strong transverse confinement. The interactions between ions
are mediated via phonon modes, which are coupled to the
internal degrees of freedom via lasers. The resulting interaction
strength depends on the specifics of such coupling: in case of
off-resonant coupling, the effective ion-ion interaction decays
as a power of the interaction distance, with corresponding
nearest-neighbor strength of the order of 100 Hz. An even more
favorable situation is the one of infinite ranged couplings: in
this case, the detuning to the motional degrees of freedom can
be relatively small, thus guaranteeing stronger couplings of
order 1 kHz for systems of approximately 20 ions [37-39]. In
particular, ions hosting s = 1/2 degrees of freedom in optical
qubits, such as Ca™, are well suited to realizing spin models
with infinite range interactions. This is possible not only in
analog but also using a digital simulation approach, where
different interaction forms—including the ones corresponding
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to the LMG model—have already been realized (see, e.g.,
Ref. [58]). We refer the reader to recent works [38] and the
review in Refs. [59,60] for further details.

The kicking protocol can be easily implemented by control-
ling the laser fields coupling internal and motional modes. In
such a way, it is possible to engineer time periods where only
the transverse field is present, alternated to periods displaying
the full Hamiltonian dynamics, as was recently demonstrated
in Ref. [39]. In terms of time scales, the main limitations are
due (i) to decoherence, and (ii) to the fact that the switching
of the different Hamiltonian parts takes place on finite time
intervals, and thus on long time scales the effective dynamics
might differ with respect to the one we discuss here. The
estimates for both error sources can be directly inferred from
Ref. [39], where results were consistent with time-crystal
behavior up to several tens of periods. These estimated time
scales shall warrant a clear observability of the predicted
time-crystal behavior derived above.

VII. CONCLUSION

We have found a time-crystal behavior in a kicked infinite-
range-interacting spin chain. The fact of being infinite ranged
is crucial to have a full class of Z, symmetry-breaking initial
states giving rise to the time-translation symmetry breaking
in the ensuing evolution. We have checked the robustness of
our time crystal under changing of the kicking parameters and
given an interpretation in terms of the phase space properties
of the classical limit of this model, attained when the number
of spins goes to infinity. This analysis led us to map out
the dynamical phase diagram of this model. We have then
explored the properties of Floquet states and quasienergies,
showing that they have properties similar to those found for
the time crystal considered in Ref. [12]. We remark that our
findings are immediately relevant to experiments in trapped ion
systems.

One possibility of future work would be to further explore
what happens when interactions are long but not infinite
range. In Ref. [34] the authors consider disorder and power
law interactions decaying with exponent 3: they are enough
only for a quasi-time-crystal behavior which decays extremely
slowly. In our infinite range case the decay exponent is 0: we
aim to see what happens in absence of disorder in order to
understand if there is a transition or a crossover to a trivial
system when increasing the value of the exponent. Other
perspectives of future work would be to look for the existence
of time-crystal behavior in other infinite-range-interacting
models showing a standard symmetry breaking, for instance
the infinite-ranged Bose-Hubbard model [49] or the Dicke
model [61].
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