
PHYSICAL REVIEW B 95, 214306 (2017)

Acoustic properties of double-porosity granular polymers
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Using an extension of the full elastodynamic layer-multiple-scattering method to structures of fluid-saturated
poroelastic spherical bodies, a comprehensive theoretical study of the acoustic response of double-porosity
submerged liquid-saturated granular polymeric materials of specific morphology consisting of touching porous
polymer spheres arranged in a fcc lattice, beyond the long-wavelength effective-medium description, is presented.
Calculated transmission and absorption spectra of finite slabs of these materials are analyzed by reference to
the acoustic modes of the constituent porous spherical grains as well as to relevant dispersion diagrams of
corresponding infinite crystals, and a consistent interpretation of the results is provided. In particular, it is shown
that resonant modes with very long lifetime, localized in the spheres in the form of slow longitudinal waves, which
are peculiar to poroelastic materials, are formed when the viscous length is much shorter than the radius of the
inner pores of the spheres. These modes, which can be easily tuned in frequency by adjusting the intrinsic porosity
of the spheres, induce some remarkable features in the acoustic behavior of these double-porosity materials, such
as narrow dispersionless absorption bands and directional transmission gaps.
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I. INTRODUCTION

Hierarchically porous materials, which by definition con-
tain a network of interconnected pores with sizes at different
length scales, is a promising class of natural or synthetic
structures offering a large spectrum of functionalities in
various application domains [1] and also of interest for a
fundamental theoretical understanding. In particular, hierar-
chically porous polymeric materials synthesized by various
methods have attracted increasing interest in recent years
[2–8] because of their potential applications in different fields,
including catalysis, separation technology, gas storage, and
bioengineering. However, the acoustic properties of such
materials did not receive considerable attention so far.

Biot’s theory [9,10], though it is perfectly appropriate for
an effective description of poroelastic media with a more or
less uniform pore distribution, i.e., a single-porosity structure,
fails to describe hierarchically porous materials with pore
sizes at different length scales. A variety of homogenization
methods, beyond Biot’s theory, have been developed for a
macroscopic description of such media and, in particular,
of double-porosity deformable media characterized by two
interconnected networks of fluid-saturated pores of very dif-
ferent sizes that exhibit very different permeabilities (see, e.g.,
Ref. [11] and references therein). The validity of these methods
has been examined in a number of theoretical and experimental
works. Franklin et al. [12] studied acoustic wave propagation
in a water-saturated double-porosity medium, consisting of a
random array of parallel identical cylindrical holes of infinite
length, perpendicular to the direction of propagation, in an
otherwise single-porosity material described by Biot’s theory,
by means of two-dimensional (2D) multiple-scattering calcu-
lations in the long-wavelength approximation and compared
with the results of appropriate effective-medium descriptions.
Acoustic wave propagation has also been investigated in
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periodic mixtures of two different porous media which
occupy two disjoint subdomains at the mesoscopic scale,
in one and two dimensions, through numerical simulations
by the finite-elements method in conjunction with relevant
homogenization models in both high- and low-permeability-
contrast regimes [13]. The predictions of analytical and
semianalytical effective-medium methods for the acoustic
properties of double-porosity granular materials have been
experimentally confirmed on expanded perlite and activated
carbon, revealing stronger low-frequency sound absorption
at reduced weight (porous grains) compared to a solid-grain
granular material with similar mesoscopic characteristics [14].
Moreover, the observed macroscopic acoustic behavior of
mineral double-porosity foams was also explained by relevant
effective-medium modeling [15]. However, all local homoge-
nization methods break down if the size of the representative
elementary volume, which defines the scale of heterogeneity,
is not much smaller than the wavelength [11].

In the present paper we shall be concerned with the acoustic
properties of water-saturated double-porosity polymeric ma-
terials with a specific morphology, formed by close-packed
poroelastic spheres arranged in a face-centered cubic (fcc)
lattice. Our study will be restricted to wavelengths much longer
than the radius of the sphere’s pores and the distance between
them, so that Biot’s theory is applicable at this level [9,10], but
not long enough compared to the interstitial void structure, thus
requiring a rigorous description of acoustic multiple scattering
between the spheres beyond a homogenization theory. Thermal
losses are omitted in our study since the saturating fluid
is a liquid and thus, in contrast to the case of a gas, the
characteristic thermal skin depth is much shorter than the
corresponding viscous length, while viscosity is taken into
account only in the fluid that fills the pores of the spheres
[16]. It is worth noting that, though the open pores and the
solid skeletal frame of the individual spheres, as well as the
interstitial voids, have the percolating network topology, this
is not the case for the solid (polymer) material throughout
the structure because neighboring spheres are touching but
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not consolidated. Therefore, while according to Biot’s theory,
transverse, fast, and slow longitudinal waves subsist inside
the spheres, only the common longitudinal waves in the fluid
matrix (water) constitute propagating modes of the acoustic
field in the double-porosity medium under consideration [17].

The paper is structured as follows. In Sec. II we describe
in a detailed but concise manner the method of calculation,
namely our layer-multiple-scattering method [18,19], which
we recently extended to include porous fluid-saturated scatter-
ers [20], by adapting it in the case of interest, i.e., for acoustic
scattering. Next, we present, in Sec. III, its application on a
double-porosity polymer close-packed crystal, accompanying
the numerical calculations by a thorough physical analysis,
and we draw the major conclusions in Sec. IV.

II. METHOD OF CALCULATION

The displacement field associated with a time-harmonic,
monochromatic acoustic wave, of angular frequency ω, has
the form U(r,t) = Re[U(r) exp(−iωt)]. For a plane wave of
wave vector qh, propagating in a homogeneous inviscid fluid
medium characterized by mass density ρh and bulk modulus
Kh (we denote it by an index zero), we have

U0(r) = q̂hU0 exp(iqh · r), (1)

where qh = ω
√

ρh/Kh is the wave number and U0

is the field amplitude. Using the mathematical identi-
ties: qh exp(iqh · r) = −i∇ exp(iqh · r) and exp(iqh · r) =
4π

∑
�m i�j�(qhr)Y�m( r̂ )Y ∗

�m( q̂h), where j� are the spherical
Bessel functions and Y�m the spherical harmonics [21], the
plane wave of Eq. (1) can be readily expanded into vector
spherical waves as follows:

U0(r) =
∑
�m

a0
L�m

1

qh

∇[j�(qhr)Y�m(̂r)], (2)

where the amplitudes of the partial waves are given by a0
L�m =

4πi�+1(−1)m+1Y�−m (̂qh)U0.
When the above plane wave is incident on a submerged

fluid-saturated poroelastic sphere of radius S, centered at the
origin of coordinates, it is scattered by it, so that the total
displacement field outside the sphere consists of the incident
wave and a scattered wave, which can also be expanded into
longitudinal spherical waves as follows:

Usc(r) =
∑
�m

a+
L�m

1

qh

∇[h+
� (qhr)Y�m( r̂ )], (3)

where h+
� are the spherical Hankel functions appropriate

for outgoing spherical waves: h+
� � (−i)� exp(ix)/(ix) as

x → ∞ [21]. The amplitudes of the scattered spherical waves,
a+

L�m, are linearly related to their counterparts a0
L�m as follows:

a+
L�m =

∑
�′m′

TL�m;L�′m′a0
L�′m′ , (4)

where TL�m;L�′m′ , the elements of the so-called scattering T

matrix, are obtained by applying the appropriate boundary
conditions at the surface of the scatterer. Explicit equations
for the calculation of TL�m;L�′m′ in the case of a submerged
fluid-saturated poroelastic sphere have been derived elsewhere
[20]. We note that, in our case, as implied by spherical

symmetry, the T matrix is diagonal and does not depend on
m, i.e., TL�m;L�′m′ = TLL;�δ��′δmm′ .

With the help of the T matrix one can directly calculate the
change in the number of states of the acoustic field, up to an
angular frequency ω, induced by a single poroelastic sphere in
an infinite fluid host medium from [22]

�N (ω) = 1

π

∑
�

(2� + 1)Im ln[1 + TLL;�(ω)]. (5)

Of more interest is the corresponding change in the density of
states induced by the sphere and given by

�n(ω) = d�N (ω)

dω
. (6)

On the other hand, the total scattering and extinction cross
sections of the sphere, normalized to the geometric cross
section πS2, can also be expressed in terms of the T matrix as
follows [23]:

σsc(ω) = 4

(qhS)2

∑
�

(2� + 1)|TLL;�(ω)|2 (7)

and

σext(ω) = − 4

(qhS)2

∑
�

(2� + 1)Re[TLL;�(ω)], (8)

respectively, while the corresponding absorption cross section
is given by σabs = σext − σsc.

We now consider a plane of nonoverlapping submerged
water-saturated poroelastic spheres, at z = 0, which are cen-
tered on the sites Rn of a given 2D lattice. Let the plane
wave, described by Eq. (1), be incident on this layer. Because
of the 2D periodicity of the structure under consideration,
we write the component of the wave vector of the incident
wave parallel to the plane, q‖, as q‖ = k‖ + g′, where k‖,
the reduced wave vector in the surface Brillouin zone (SBZ),
is a conserved quantity in the scattering process and g′ is
a certain reciprocal vector of the given lattice. Therefore,
the wave vector of the incident wave has the form K±

g′ =
k‖ + g′ ± ẑ[q2

h − (k‖ + g′)2]1/2, where the + or − sign refers
to incidence from the left (z < 0) or from the right (z > 0).
The corresponding displacement field is written as

U±
in(r) = K̂±

g′ [Uin]±g′ exp(iK±
g′ · r) (9)

and the coefficients in the respective spherical wave expansion
[see Eq. (2)] are a0

L�m = 4πi�+1(−1)m+1Y�−m(K̂±
g′ )[Uin]±g′ .

Because of the 2D periodicity of the array of spheres, the
wave scattered by it, when the wave given by Eq. (9) is incident
upon it, has the following form:

Usc(r) =
∑
Rn

exp(ik‖ · Rn)
∑
�m

b+
L�m

1

qh

∇[h+
� (qhrn)Y�m(̂rn)],

(10)

where rn = r − Rn and the coefficients b+
L�m are obtained by

solving the following system of linear equations [18]:∑
�′m′

(
δ��′δmm′ − TLL;�Z

�m
�′m′

)
b+

L�′m′ = TLL;�a
0
L�m, (11)
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with

Z�′m′
�m = 4π

∑
Rn 
=0

exp(ik‖ · Rn)
∑
�′′m′′

(−1)(�−�′−�′′)/2

× (−1)m
′+m′′

h+
�′′(qhRn)Y�′′−m′′ (−R̂n)

×
∫

d r̂ Y�m( r̂ )Y�′−m′ ( r̂ )Y�′′m′′ ( r̂ ), (12)

which is a well-known quantity in the theory of low-energy
electron diffraction (LEED) with an efficient computer pro-
gram for its evaluation already available [24]. This program is
used in the numerical implementation of our layer-multiple-
scattering method [19]. Similar approaches for the calculation
of such lattice sums for chains and monolayers have also been
recently reported in the literature, discussing in some detail
novel numerical aspects [25,26].

Since ω and k‖ are conserved quantities in the scattering
process, the scattered field, given by Eq. (10), will consist of a
series of plane waves with wave vectors,

K±
g = k‖ + g ± ẑ

[
q2

h − (k‖ + g)2
]1/2

, ∀g. (13)

Indeed, with the help of the mathematical identity∑
Rn

exp(ik‖ · Rn)h+
� (qhrn)Y�m(̂rn)

=
∑

g

2π (−i)�

qhA0K
+
gz

Y�m

(
K̂s

g

)
exp

(
iKs

g · r
)
, (14)

where A0 is the area of the unit cell of the 2D lattice and
s = + or − corresponds to z > 0 or z < 0, respectively, it is
straightforward to show that

Usc(r) =
∑

g

K̂s
g[Usc]sg exp

(
iKs

g · r
)
, (15)

with

[Usc]sg =
∑
�m

�L�m

(
Ks

g

)
b+

L�m,

where

�L�m

(
Ks

g

) = 2π (−i)�−1

qhA0K
+
gz

Y�m

(
K̂s

g

)
.

It is worth noting that, though the scattered field consists, in
general, of a number of diffracted beams corresponding to
different 2D reciprocal lattice vectors g, only beams for which
Ks

gz is real constitute propagating waves. When (k‖ + g)2 > q2
h

the corresponding wave decays to the right for s = +, and to
the left for s = −. We also note that [Usc]sg depend on the
incident plane wave through the coefficients b+

L�m, which are
evaluated from Eqs. (11) for a given plane wave component
of wave vector Ks ′

g′ . For example, when a plane wave given by
Eq. (9) is incident on the plane of spheres from the left, the
transmitted wave (incident+scattered) on the right of the plane
is given by

U+
tr (r) =

∑
g

K̂+
g [Utr ]+g exp(iK+

g · r), z > 0, (16)

with

[Utr ]+g = [Uin]+g′δgg′ + [Usc]+g ≡ S++
gg′ [Uin]+g′ ,

and the reflected wave on the left of the plane by

U−
rf (r) =

∑
g

K̂−
g [Urf ]−g exp(iK−

g · r), z < 0, (17)

with

[Urf ]−g = [Usc]−g ≡ S−+
gg′ [Uin]+g′ .

Similarly we can define the transmission matrix elements S−−
gg′

and the reflection matrix elements S+−
gg′ for a plane wave

incident on the plane of spheres from the right. Using Eq. (15)
we obtain

Sss ′
gg′ = δss ′δgg′ +

∑
�m

�L�m

(
Ks

g

)
b+

L�m

(
Ks ′

g′
)(

[Uin]s
′

g′
)−1

, (18)

where we explicitly denoted the dependence of b+
L�m on Ks ′

g′ .

We note that the matrix elements Sss ′
gg′ obey the symmetry

relation S−s−s ′
gg′ = Sss ′

gg′ .
After calculating the transmitted and reflected waves, when

a plane wave given by Eq. (9) is incident on the given plane of
spheres, we can proceed to the calculation of the transmittance
T (ω,k‖ + g′) and the reflectance R(ω,k‖ + g′) of the plane.
These are defined as the ratio of the transmitted, respectively
the reflected, energy flux to the energy flux associated with
the incident wave. Assuming, e.g., incidence from the left we
obtain

T =
∑

g |[Utr ]+g |2K+
gz

|[Uin]+g′ |2K+
g′z

(19)

and

R =
∑

g |[Urf ]−g |2K+
gz

|[Uin]+g′ |2K+
g′z

. (20)

We remember that only propagating beams (those with K+
gz

real) enter the numerators of the above equations. Finally we
note that if absorption is present it can be calculated from the
requirement of energy conservation A = 1 − (T + R).

The difference in the number of states up to a given
frequency ω, between the system under consideration (a plane
of particles in a homogeneous medium) and that of the host
medium extending over all space, is given by

�N (ω) = N

A

∫∫
SBZ

d2k‖�N (ω,k‖), (21)

where N is the number of surface unit cells of the plane
particles and A the area of the SBZ. The k‖-resolved change
in the number of states is given, in the spherical-wave
representation, by [22]

�N (ω,k‖) = 1

π
Im ln det(I + T) − 1

π
Im ln det(I − TZ),

(22)
where I is the unit matrix, and in the plane wave representation
by

�N (ω,k‖) = 1

2π
Im ln detS. (23)

We note that the S matrix is defined in the basis of those
reciprocal-lattice vectors which correspond to propagating
beams and that the resulting �N (ω,k‖), contrary to that
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obtained through Eq. (22), does not include possible bound
states of the system. The corresponding k‖-resolved change
in the density of states is obtained through �n(ω,k‖) =
∂�N (ω,k‖)/∂ω.

In order to describe scattering by multilayers of particles
with the same 2D periodicity, it is convenient to express the
waves on the left of a given layer with respect to an origin, Al ,
on the left of the layer at −dl from its center and the waves
on the right of this layer with respect to an origin, Ar , on the
right of the layer at dr from its center, i.e., a plane wave on the
left of the layer will be written as K̂s

gU
s
g exp[iKs

g · (r − Al)]
and a plane wave on the right of the layer will be written
as K̂s

gU
s
g exp[iKs

g · (r − Ar )]. With the above choice of origins
the transmission (reflection) matrix elements of a layer become

QI
gg′ = S++

gg′ exp [i(K+
g · dr + K+

g′ · dl)],

QII
gg′ = S+−

gg′ exp [i(K+
g · dr − K−

g′ · dr )],
(24)

QIII
gg′ = S−+

gg′ exp [−i(K−
g · dl − K+

g′ · dl)],

QIV
gg′ = S−−

gg′ exp [−i(K−
g · dl + K−

g′ · dr )].

The transmission (reflection) matrices for a multilayer slab
are obtained from the corresponding matrices of the indi-
vidual layers, in the manner described in Ref. [18]. For
a plane wave K̂+

g′ [Uin]+g′ exp[iK+
g′ · (r − AL)], incident on

the slab from the left, we finally obtain a reflected wave∑
g K̂−

g [Urf ]−g exp[iK−
g · (r − AL)] on the left of the slab and

a transmitted wave
∑

g K̂+
g [Utr ]+g exp[iK+

g · (r − AR)] on the
right of the slab, where AL (AR) is the appropriate origin at
the left (right) interface of the slab. We have

[Utr ]+g = QI
gg′ [Uin]+g′ (25)

and

[Urf ]−g = QIII
gg′ [Uin]+g′ , (26)

where QI and QIII are the appropriate transmission and
reflection matrices of the slab. After calculating the transmitted
and reflected waves on the right and left of the slab, we can
obtain the corresponding transmittance T (ω,k‖ + g′) and the
reflectanceR(ω,k‖ + g′) from Eqs. (19) and (20), respectively.
On the other hand, the change in the number of states between
the slab and the homogeneous host medium extending all over
space can be calculated from Eqs. (21) and (23), where the
elements of the S matrix in the plane-wave representation are
given by

S++
gg′ = exp [−i(K+

g · AR − K+
g′ · AL)]QI

gg′ ,

S+−
gg′ = exp [−i(K+

g · AR − K−
g′ · AR)]QII

gg′ ,
(27)

S−+
gg′ = exp [−i(K−

g · AL − K+
g′ · AL)]QIII

gg′ ,

S−−
gg′ = exp [−i(K−

g · AL − K−
g′ · AR)]QIV

gg′ ,

for the given ω and k‖. The phase factors in Eq. (27) arise from
the need to refer all waves to a common origin. The possible
eigenmodes of the slab are obtained by requiring existence of
a wave field localized within the slab in the absence of incident
wave. Dividing the slab into a left and a right part, described by
reflection matrices QII

1 and QIII
2 , respectively, this requirement

leads to the secular equation

det
[
I − QII

1 QIII
2

] = 0. (28)

For a three-dimensional crystal consisting of an infinite
periodic sequence of layers stacked along the z direction, the
wave field in the host region between the nth and the (n + 1)th
unit slabs has the form U(r) = ∑

g{K̂+
g U+

gn exp[iK+
g · (r −

An)] + K̂−
g U−

gn exp[iK−
g · (r − An)]}, where An is an appro-

priate origin between the nth and the (n + 1)th unit slabs. The
coefficients U±

gn are obviously related to U±
gn+1 through the Q

matrices of the unit slab as follows:

U+
gn+1 =

∑
g′

[
QI

gg′U
+
g′n + QII

gg′U
−
g′n+1

]
,

(29)
U−

gn =
∑

g′

[
QIII

gg′U
+
g′n + QIV

gg′U
−
g′n+1

]
.

On the other hand, Bloch’s theorem implies that U±
gn+1 =

exp(ik · a3)U±
gn, where a3 is a vector which connects a point

in the nth slab to an equivalent point in the (n + 1)th slab and
k = (k‖,kz(ω,k‖)). For given ω and k‖ one can obtain kz from
the following eigenvalue equation:(

QI QII

−[QIV]−1QIIIQI [QIV]−1[I − QIIIQII]

)(
U+

n

U−
n+1

)

= exp(ik · a3)

(
U+

n

U−
n+1

)
, (30)

which follows directly from Eq. (29) and Bloch’s theorem.
Alternatively, one can formulate an eigenvalue equation for
the transfer matrix,(

QI − QII[QIV]−1QIII QII[QIV]−1

−[QIV]−1QIII [QIV]−1

)(
U+

n

U−
n

)

= exp(ik · a3)

(
U+

n

U−
n

)
. (31)

The solutions kz(ω,k‖) resulting from Eq. (30) or, equivalently,
Eq. (31), looked upon as functions of real ω, define for each k‖
lines in the complex kz plane, which all together constitute the
complex band structure of the infinite crystal associated with
the given crystallographic plane. A line of given k‖ may be real
(in the sense that kz is real) over certain frequency regions, and
be complex (in the sense that kz is complex) for ω outside these
regions. It turns out that, for given k‖ and ω, out of the solutions
kz(ω,k‖), none or, at best, a few are real and the corresponding
eigenvectors represent propagating modes of the acoustic field
in the given infinite crystal. The remaining solutions kz(ω,k‖)
are complex and the corresponding eigenvectors represent
evanescent waves. These have an amplitude which increases
exponentially in the positive or negative z direction and, unlike
the propagating waves, do not exist as physical entities in
the infinite crystal. However, they are an essential part of the
physical solutions of the acoustic field in the case of a surface
or a slab of finite thickness. A region of frequency where
propagating waves do not exist, for given k‖, constitutes a
frequency gap of the acoustic field for the given k‖. If over
a frequency region no propagating wave exists whatever the
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value of k‖, then this region constitutes an absolute frequency
gap.

Finally, for the sake of completeness, we note that the
transfer matrix on the left hand side of Eq. (31) can also
provide the reflection matrix, R∞, of the corresponding semi-
infinite crystal and, through R∞, one can find the surface
states of the crystal, if such exist. In order to obtain R∞,
the eigenvectors of the transfer matrix need to be arranged in
a matrix F which projects the space of forward and backward
Bloch eigenmodes, V+ and V−, onto the original plane-wave
basis, as follows [27,28]:(

U+
0

U−
0

)
=

(
F++ F+−
F−+ F−−

)(
V+
V−

)
. (32)

By definition, each eigenmode propagates through the crystal
without changing its state and, on the other hand, for a
semi-infinite crystal, there is no rear surface to reflect the for-
ward into backward Bloch waves. Therefore, the appropriate
boundary condition for the scattering problem of an acoustic
wave incident on a semi-infinite phononic crystal from the
homogeneous host material that extends to infinity is V− = 0
[28]. Therefore, Eq. (32) yields

U−
0 = F−+[F++]−1U+

0 ≡ R∞U+
0 . (33)

On the other hand, the condition for the occurrence of surface
states translates to the existence of nonzero forward Bloch
modes (V+ 
= 0) in the absence of incoming field (U+

0 = 0)
[29,30]. Then Eq. (32) gives F++V+ = U+

0 = 0, which is
satisfied when det[F++] = 0.

III. RESULTS AND DISCUSSION

In this work we report a thorough theoretical study of
the acoustic properties of a specific water-saturated double-
porosity granular polymeric structure consisting of close-
packed porous polystyrene spheres, with porosity f and
diameter D, in the [111] fcc stacking. In this geometry D =
a
√

2/2, where a is the fcc lattice constant, while consecutive
(111) fcc planes are separated by a distance d = D

√
6/3. The

values of the relevant parameters of the solid (denoted by an
index s) and fluid (denoted by an index f ), which coincides
with the host (denoted by an index h), materials involved are
as follows: mass density ρs = 1050 kg m−3, longitudinal wave
velocity csl = √

(Ks + 4μs/3)/ρs = 2350 ms−1, transverse
wave velocity cst = √

μs/ρs = 1200 ms−1, for polystyrene;
and mass density ρf = 1000 kg m−3 (longitudinal) wave
velocity cf = √

Kf /ρf = 1480 ms−1, and fluid viscosity η =
10−3 Pa s, for water. The elastic moduli of the bare skeletal
frame of the porous polystyrene spheres, Kb and μb, can
be experimentally measured independently. However, since
there are no experimental data available, following Kargl and
Lim [16], we evaluate them using Berryman’s self-consistent
effective medium theory for a polystyrene/void elastic com-
posite, assuming that the pores are modeled by randomly
distributed needles, as appropriate for the low-porosity limit
that will concern us here [31,32]. For example, for f = 10%
that we will consider in our study, we find Kb = 2.602 GPa
and μb = 1.186 GPa. Accordingly, the tortuosity is given
by α = f −2/3, for a random array of needles [33]. Our

FIG. 1. (Upper diagrams) Change in the density of states of the
acoustic field [Eq. (6)] induced by a submerged water-saturated
porous polystyrene sphere, with porosity f = 10%, (a) treated as
a lossless homogeneous sphere with elastic parameters evaluated
using self-consistent effective-medium theory for composite elastic
media [31,32] and (b) described by Biot’s theory, ignoring viscous
losses (η = 0). The peaks in (a) and (b) correspond to resonances of
given multipole order, �, denoted in the diagrams. (Lower diagrams)
Transmittance of an acoustic plane wave [Eq. (19)] incident normally
on a hexagonal array, i.e., a single fcc (111) plane, of the above
spheres. In (c) and (d) the spheres are described as in (a) and (b),
respectively.

numerical calculations are carried out by the layer-multiple-
scattering method described in Sec. II, where we truncated the
spherical-wave expansions at �max = 7 and took into account
43 2D reciprocal lattice vectors in the relevant plane-wave
expansions, thus ensuring good convergence in all cases
examined.

In Biot’s theory [9,10], by which we describe the individual
porous spheres, there are two distinct limits. When the viscous
skin depth, δ = √

2η/(ωρf ), is much larger than the radius, Rp,
of the (cylindrical) pores, viscous drag prevents the efficient
formation of slow longitudinal waves, which are associated
with an out-of-phase relative motion of the solid frame and
infiltrated liquid. In this so-called viscous-coupling limit, the
porous material behaves as an effective homogeneous medium,
the elastic parameters of which can be evaluated, e.g., by the
self-consistent homogenization method of Berryman [31,32],
while dissipative losses are quite small and can be neglected
[16]. On the other hand, when δ << Rp, we are in the so-called
inertial-coupling limit where all three bulk acoustic modes in
the porous material (transverse, fast, and slow longitudinal)
become nondispersive and attenuation free, as one would have
in the absence of viscous losses (η = 0).

The change in the density of states of the acoustic field
induced by a submerged water-saturated porous polystyrene
sphere and the acoustic transmission spectrum of a 2D
hexagonal array of such close-packed spheres, at normal
incidence, in the above two limits are depicted in Fig. 1.
Since in these lossless cases there is no characteristic length
scale in the problem, the results apply to different regions of
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frequency provided that the dimensions of the structural units
are scaled accordingly. Therefore, we choose to represent our
results using ωD/ch as dimensionless frequency.

The eigenmodes of the acoustic field in the case of a single
sphere, i.e., solutions of Eq. (4) in the absence of an incident
field, are obtained at the poles of the scattering T matrix.
Besides the torsional bound states with real eigenfrequencies,
which are confined in the sphere and cannot be excited by
an externally incident wave [34], there are resonant modes at
the poles of the T matrix in the lower complex frequency
half-plane, near the real axis, at z� = ω� − iγ�; ω� is the
eigenfrequency while γ� denotes the inverse of the lifetime
of the respective 2�-pole resonant mode. The corresponding
change in the density of states can be deduced from Eq. (5)
through a Laurent expansion in the vicinity of z� on the
real axis, which yields �n�(ω) � (2�+1)

π
γ�/[(ω − ω�)2 + γ 2

� ],
i.e., the change of the partial density of states, �n�(ω), is a
Lorentzian centered at ω� with a half width at half maximum
equal to γ�. These resonant modes, when the spheres are
assembled in a 2D lattice, form bands ων(k‖), ν = 1,2, . . .

of corresponding collective modes of the plane. In our case,
at k‖ = 0, the hexagonal symmetry of the structure implies
that there will be a partial lift of the (2� + 1) fold degeneracy
of the resonant modes of the individual spheres and the
corresponding modes of the plane will have the symmetry
of the irreducible representations of the C6v point group:
L1,L1′ ,L2,L2′ (one dimensional) and L3,L3′ (two dimen-
sional) [35]. Therefore, they will be either nondegenerate or
doubly degenerate, respectively. We note that only the L1

modes are acoustically active in the sense that they can be
excited by an acoustic plane wave with appropriate frequency
incident normally on the given plane, because they have the
proper symmetry [36] and manifest themselves as resonance
structures in the corresponding transmission spectrum. The
acoustically inactive, so-called deaf, modes are bound states
with infinite lifetime, confined in the plane, and cannot be
excited by an externally incident wave. However, for k‖ 
= 0,
a general non-high-symmetry point, all modes belong to the
identity representation of the trivial group and, therefore, are
acoustically active.

As shown in Figs. 1(a) and 1(c), in the viscous-coupling
limit, we obtain the typical acoustic response of nonporous
polymer spheres characterized by well-formed resonances,
which originate from the spheroidal modes of the individual
particles [36,37] and move to lower frequencies with increas-
ing porosity. On the contrary, in the inertial-coupling limit,
interestingly, additional very sharp resonances appear in the
transmission spectrum of a hexagonal array, i.e., a single
fcc (111) plane, of submerged water-saturated close-packed
porous polystyrene spheres, with porosity f = 10%, as can be
seen in Fig. 1(d). These resonances stem from corresponding
single-particle modes [see Fig. 1(b)] with a very long lifetime,
which are strongly localized in the spheres and have a
predominant character of slow longitudinal waves. Therefore,
these modes, which are pushed up to higher frequencies with
increasing porosity, should be unambiguously ascribed to
the existence of slow longitudinal waves in the poroelastic
particles. As expected from a group-theory analysis [35], each
sphere mode of � = 0,1,2,3 gives one acoustically active L1

mode of the given planar array for k‖ = 0, as can be seen

TABLE I. Compatibility relations between irreducible represen-
tations of the O(3), C6v , and C3v point symmetry groups.

O(3) � = 0 � = 1 � = 2 � = 3

C6v L1 L1 L3′ L1 L3 L3′ L1 L2 L2′ L3 L3′

C3v �1 �1 �3′ �1 �3 �3′ �1 �2 �2′ �3 �3′

in Fig. 1. In addition, there are acoustically inactive plane
modes of different symmetry, as implied from the appropriate
compatibility relations (see Table I).

In the case of a pair of two consecutive fcc (111) planes of
the spheres under consideration, for given k‖, each plane mode
gives rise to two modes due to interlayer coupling, by analogy
to the formation of bonding and antibonding orbitals of a
diatomic molecule from the corresponding electronic states of
the individual atoms, as depicted in Fig. 2 for k‖ = 0. By the
same token, by stacking consecutive hexagonal arrays so as
to grow an infinite fcc crystal of submerged water-saturated
close-packed porous polystyrene spheres, the modes of the
individual planes will form corresponding bands.

For k‖ = 0 the bands have the symmetry of the irreducible
representations of the C3v point group [35]. Therefore, they
are either nondegenerate, if they have the �1 or the �2

symmetry, or doubly degenerate if they have the �3 symmetry.
We note that only the �1 bands are acoustically active in
the sense that they can be excited by an acoustic plane
wave with appropriate frequency incident normally on a
(111) slab of the crystal, which is then transmitted through

FIG. 2. Transmittance of an acoustic plane wave incident nor-
mally on a bilayer of consecutive fcc (111) planes of submerged water-
saturated close-packed porous polystyrene spheres, with porosity
f = 10%, (a) treated as lossless homogeneous spheres with elastic
parameters calculated using self-consistent effective-medium theory
for composite elastic media [31,32] and (b) described by Biot’s theory,
ignoring viscous losses (η = 0). The dotted lines in (a) and (b) display
the corresponding transmission spectra for a single fcc (111) plane of
such spheres. The inset to (b) shows an enlarged view about the sharp
resonances in the low frequency part of the spectrum, in logarithmic
scale.
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FIG. 3. (Left-hand diagram) Phononic dispersion diagram of
an fcc crystal of submerged water-saturated close-packed porous
polystyrene spheres, with porosity f = 10%, described by Biot’s
theory without viscous losses (η = 0), along the [111] direction.
(Right-hand diagram) Transmittance of an acoustic plane wave
incident on a (111) slab of this crystal, eight layers thick, with k‖ along
the high-symmetry lines of the corresponding SBZ, shown in the in-
set. � : k‖ = 2π

D
(0,0); K : k‖ = 2π

D
( 2

3 ,0); M : k‖ = 2π

D
( 1

2 ,
√

3
6 ). The

direction of incidence is specified by the corresponding polar angle,

θ = arccos(
√

1 − c2
hk

2
‖/ω2), and azimuthal angle, φ = arctan(ky/kx),

respectively. Obviously, at given k‖, propagating incident waves exist
above an angular frequency threshold ωinf = ch|k‖| (hatched area).

the slab, because they have the proper symmetry [36]. In
addition to the above relatively narrow bands, there is an
extended acoustic band, of �1 symmetry, which would be
in a corresponding effective homogeneous medium, folded
within the first Brillouin zone because of structure periodicity,
with Bragg gaps appearing at the zone boundaries. Besides
the Bragg gaps, when the extended acoustic band crosses a
narrow band of the same symmetry, level repulsion leads,
also, to the opening of a frequency gap about the crossing
point, the so-called hybridization gap. Such a relatively wide
hybridization gap appears, e.g., in the dispersion diagram,
obtained by solving the eigenvalue problem (30), displayed in
Fig. 3 about ωD/ch = 2 for k‖ = 0. However, as can be seen in
Fig. 3, this gap is not omnidirectional. It progressively shrinks
as we deviate from k‖ = 0 and finally closes, thus allowing for
acoustic transmission through a finite slab of the crystal.

It is worth noting that specific features of the phononic band
structure depicted in Fig. 3, such as anisotropy, flat bands,
and frequency gaps driven by coherent multiple scattering,
cannot be accounted for by any local effective-medium theory
for double-porosity media. These theories are valid when the
wavelength is much longer than the size of the representative
elementary volume and describe the composite medium in
terms of effective quantities. For example, the model of Berry-
man and Wang [38,39], in the absence of viscous losses (η = 0)
as appropriate for the case under consideration in Fig. 3,
predicts the existence of one transverse and three longitudinal
acoustic waves with frequency-independent propagation ve-
locities. This model assumes a fluid-saturated double-porosity
medium consisting of a porous matrix with fractures, where
each of the three components, i.e., solid skeletal frame, matrix
pores, and adjacent fractures, forms a percolating network.
Therefore, there are indeed one transverse wave propagating

FIG. 4. Enlarged view of the left-hand diagram of Fig. 3 in the
long-wavelength limit (symbols). The solid line shows the linear
dispersion curve with slope c calculated by Eq. (A10).

in the solid frame and three hybrid longitudinal waves, which
arise from the corresponding propagating modes in the above
three components interacting between them. In our case of
unconsolidated porous polymer grains, the continuous network
topology of the solid frame and the matrix pores is broken,
and thus only the longitudinal acoustic wave propagating
in the fluid-filled fractures will survive. The propagation
velocity, c, of this wave in the particular morphology of the
granular double-porosity medium that concerns us here (and
corresponds to vanishing elastic moduli of the solid skeletal
frame [17]) can be deduced from the model of Berryman and
Wang [38,39] (see the Appendix). As shown in Fig. 4, c,
evaluated by Eq. (A10), is in excellent agreement with the
slope of the dispersion curve obtained by our layer-multiple-
scattering calculations in the long-wavelength limit.

Viscous losses are described by Biot’s theory [9,10], which
properly combines both mechanical and hydrodynamic prop-
erties of a composite comprising a porous elastic medium filled
with a viscous fluid. Strong absorption is expected in frequency
regions where resonant modes localized in the spheres exist,
especially if these modes have strong admixture of slow
longitudinal waves, which correspond to an out-of-phase
relative motion of the solid frame and infiltrated liquid in the
porous material. As a typical example, in Fig. 5 we display the
evolution of the absorption spectrum of a bilayer of consecutive
fcc (111) planes of submerged water-saturated close-packed
porous polystyrene spheres of diameter D = 5 mm, with
porosity f = 10%, for different pore sizes, in the frequency
region of the first resonant modes. For narrow pores (Rp =
500 nm), we are in the viscous-coupling regime where slow
longitudinal waves are not efficiently excited and thus a very
weak absorption band is observed at the resonance which
originates from the quadrupole spheroidal-like particle modes
[see Fig. 5(a)]. As the pore radius increases, the slow-wave
component of these modes is clearly manifested in a stronger
absorption peak, which becomes prominent at Rp = 5 μm [see
Fig. 5(b)]. By further increasing the pore radius well beyond
the viscous length, which is about 2 μm in the frequency region
under consideration, the losses associated with the spheroidal-
like particle modes are gradually suppressed. At the same time,
the sharp particle modes, which have an almost exclusively

214306-7



ALEVIZAKI, SAINIDOU, REMBERT, MORVAN, AND STEFANOU PHYSICAL REVIEW B 95, 214306 (2017)

FIG. 5. Transmittance and absorbance of an acoustic plane wave
incident normally on bilayer of consecutive fcc (111) planes of
submerged water-saturated close-packed porous polystyrene spheres
of diameter D = 5 mm, with porosity f = 10%, for different pore
sizes: Rp = 500 nm (a), Rp = 5 μm (b), Rp = 50 μm (c), and
Rp = 500 μm (d). The dotted lines in (a) and (d) display the
corresponding transmission spectra for homogeneous spheres with
elastic parameters calculated using self-consistent effective-medium
theory for (lossless) composite elastic media [31,32] and for water-
saturated porous spheres described by Biot’s theory, neglecting
viscous losses (η = 0), respectively.

slow-wave character in the spheres, are developed and manifest
themselves as strong peaks in the absorption spectrum, as
shown in Figs. 5(c) and 5(d) for the lowest monopole mode
of this type in the range of frequencies considered. For
wide pores, in the inertial-coupling regime, we obtain very
narrow and dispersionless bands of strong absorption at the
frequencies of these modes in the double-porosity polymeric
material under consideration, as shown in Fig. 6.

FIG. 6. Absorbance of an acoustic plane wave incident on a slab
consisting of eight fcc (111) planes of submerged water-saturated
close-packed porous polystyrene spheres (D = 5 mm, f = 10%,
and Rp = 500 μm) with k‖ along the high-symmetry lines of the
corresponding SBZ, shown in the inset. � : k‖ = 2π

D
(0,0); K : k‖ =

2π

D
( 2

3 ,0); M : k‖ = 2π

D
( 1

2 ,
√

3
6 ). The direction of incidence is specified

by the corresponding polar angle, θ = arccos(
√

1 − c2
hk

2
‖/ω2), and

azimuthal angle, φ = arctan(ky/kx), respectively. Obviously, at given
k‖, propagating incident waves exist above an angular frequency
threshold ωinf = ch|k‖| (hatched area).

IV. CONCLUSIONS

In summary, we reported a thorough theoretical study of
the acoustic response of a particular class of double-porosity
liquid-saturated granular polymeric material, formed by close-
packed porous polymer spheres assembled in an fcc lattice, by
means of numerical calculations using a proper generaliza-
tion of the layer-multiple-scattering method to structures of
poroelastic spherical bodies, which are described by Biot’s
theory [9,10]. Calculated transmission and absorption spectra
of finite slabs of these materials are analyzed by reference
to the acoustic modes of the constituent spheres as well as
to the dispersion diagrams of corresponding infinite crystals,
providing a consistent interpretation of the observed features.
In particular, our results reveal the existence of resonant
modes with very long lifetime, localized in the spheres, in the
inertial-coupling regime, i.e., when the radius of the spheres’
pores is much larger than the viscous length. These modes,
which can be easily tuned in frequency by adjusting the
intrinsic porosity of the spheres, induce narrow dispersionless
absorption bands as well as directional gaps in the transmission
spectrum of finite slabs of the double-porosity material.
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APPENDIX

The double-porosity water-saturated polymer structure
under study can be viewed as a special case of the model
presented in Refs. [38,39], whose terminology and notation we
adopt here to facilitate comparison. Our unconsolidated fluid-
saturated polymer spheres correspond to the porous matrix
(called “phase 1” in Ref. [38]) and the interstitial void space
filled by water corresponds to the water-filled fractures (called
“phase 2” in Ref. [38]), occupying, respectively, fractional
volumes v(1) ≡ v and v(2) ≡ 1 − v. We shall derive the
expression for the effective-medium velocity for such a crystal,
in the case where viscous losses are neglected. The condition
of perfect locking in the motion between the solid and the
two fluid components, valid in the long-wavelength regime
that interests us here, implies u = U(s) for the corresponding
displacement fields of the solid and two fluids (s = 1 for the
fluid in the matrix pores and s = 2 for the fluid in the fractures).
Thus the total kinetic energy of the system is written as
T = 1

2ρtotu̇ · u̇, where ρtot = v(1 − f )ρs + [1 − v(1 − f )]ρf

is the total inertia of the system, and use of Lagrange’s equation
leads to the following expression for the stress tensor (a e−iωt

dependence is assumed):

τij,j = ∂t∂u̇i
T = −ω2ρtotui. (A1)

On the other hand, the weak-frame approximation (K,μ → 0),
valid for unconsolidated grains, yields [see Eqs. (29) and (30)
of Ref. [39]]

τij,j = −pc,i , (A2)
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with pc being the confining pressure applied to the boundaries
of the whole structure. Combining Eqs. (A1) and (A2) and
since, by definition, the dilatational strain e = ui,i , and, pc,ii =
−k2pc, with k being the wave number, we obtain the effective-
medium velocity

c2 = lim
ω→0

(
ω

k

)2

= −pc

e

1

ρtot
. (A3)

The initial condition u = U(s), or, equivalently, ζ (s) = 0,
s = 1,2, for the two fluid contents, arising from the long-
wavelength regime, leads to a simplified form for the stress-
strain phenomenological linear system, described by Eq. (27)
of Ref. [39], which, in the general case of the unconsolidated-
grain limit, is written as⎛⎜⎝

−pc

−p
(1)
f

−p
(2)
f

⎞⎟⎠ =

⎛⎜⎝ã11 ã12 ã11

ã12 ã22 ã12

ã11 ã12 ã11

⎞⎟⎠
⎛⎜⎝ e

−ζ (1)

−ζ (2)

⎞⎟⎠. (A4)

In the above expression, ãij are the inverse-matrix elements
of the matrix defined in Eq. (27) of Ref. [39], and p

(s)
f are

the pressures in the fluids of each phase s. Indeed, Eq. (A4)
reduces to the form⎛⎜⎝

−pc

−p
(1)
f

−p
(2)
f

⎞⎟⎠ =

⎛⎜⎝ã11

ã12

ã11

⎞⎟⎠e, (A5)

from which pc = p
(2)
f = −ã11e (being naturally expected,

since, in the unconsolidated-grain limit, phase 2 completely
surrounds phase 1) and p

(1)
f = pc

ã12
ã11

. Explicit expressions
for ã11, ã12 can be found to be [see Eqs. (60)–(69) of
Ref. [38]]

ã11 ≡ D−1
(
a22a33 − a2

23

) = ã12

B(1)
, (A6)

ã12 ≡ D−1(a13a23−a12a33) = B(1)

[
1 − v

Kf

+ v

K
(1)
u

]−1

, (A7)

where D = a11a22a33 + 2a12a13a23 − a11a
2
23 − a22a

2
13 −

a33a
2
12,

1

K
(1)
u

= 1 − α(1)B(1)

K (1)
, (A8)

the inverse undrained modulus for phase 1 and, α(1) and B(1),
the corresponding Biot-Willis and Skempton coefficients,
respectively. Combining the above expressions (A5)–(A8) we
find p

(1)
f = pcB

(1) and

−pc

e
= ã11 =

[
1 − v

Kf

+ v

K
(1)
u

]−1

. (A9)

After substitution of Eq. (A9) in (A3) we finally obtain the
effective-medium velocity at the long wavelength regime for
the double-porosity medium in the unconsolidated-grain limit
as

c2 = lim
ω→0

(
ω

k

)2

= Keff

ρeff
, (A10)

where the effective elastic parameters are defined by

1

Keff
≡ 1 − v

Kf

+ v

K
(1)
u

, (A11)

ρeff ≡ ρtot. (A12)

The quantity K−1
eff has a clear physical meaning, being

an average-law contribution of the two phases: that of
the host fluid (fractures) and that of the porous water-
saturated undrained spheres (porous matrix). In the case
of close-packed (v = 0.74) polystyrene spheres immersed
in water we obtain ρeff = 1.0333ρf , Keff = 1.397Kf , and
c = 1721 ms−1, the latter being in excellent agreement with
the value deduced from our multiple-scattering calculations,
c = 1717 ms−1.
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