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Diffusely scattered and transmitted elastic waves by random rough solid-solid interfaces
using an elastodynamic Kirchhoff approximation
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Elastic waves scattered by random rough interfaces separating two distinct media play an important role
in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic
inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted
across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas
are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms
σ � λ/3, correlation length λ0 � wavelength λ), demonstrating a significant improvement over the widely used
small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the
theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of
the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission,
with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of
the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to
scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters,
showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh
parameter.
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I. INTRODUCTION

Interface and surface roughness is well known to signif-
icantly alter the elastic wave scattering field in solids [1],
and hence has considerable effects on ultrasonic applica-
tions [2–5], and on boundary phonon scattering to model
thermal transport in nanostructures [6–11]; on the atomic
scale, the phonon-interface interaction can still be modeled
by the macroscopic theory on elastic wave scattering in
the long-wavelength limit [12]. These important applications
have therefore motivated considerable work on rough surface
scattering, however, many studies are simply for acoustics
[6,9,12,13], that is, for solids omitting shear, and this is a
substantial simplification as elastic solids support both bulk
shear and compressional waves. Moreover, these bulk waves
have different wave speeds and undergo mode conversion upon
reflection/transmission at an interface. An elastic stress-free
surface also supports Rayleigh surface waves, and an interface
supports Stoneley interfacial waves, and acoustic models fail
to capture these: here we make no such simplification. There
are other natural limits based upon the ratio of the dominant
length scales in the problem, here the correlation length, the
wavelength, and the root-mean-squared (rms) height, and we
shall concentrate here upon the situation where the correlation
length is larger than the wavelength and then physically we
can use the Kirchhoff approximation, but we shall not invoke
any assumption of small rms values. As Maznev [10] notes,
there is a heavy reliance upon numerical simulation, a lack
of analytical results to draw upon, and open problems remain
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regarding scattering as a function of correlation length and/or
roughness height.

Typical previous approaches study the scattering from a
stress-free rough surface, rather than an interface separating
two media, in which case the expected scattering is modeled
from the knowledge of the statistics of the surface profile.
The expected scattering in the specular direction, defined
as the specularity, is a widely used parameter to model
the phonon transport through a rough interface, and this
specularity significantly affects the efficiency of terahertz
phonon devices [8,10–12]. Many of the previous studies rely
on using the coherent scattering intensity I c at the specular
direction [9,13–17] as proposed, for instance, by Ogilvy [1]:

I c = I flat exp(−gαβ), α,β = p,s

gαβ = (kα cos θi + kβ cos θs)
2σ 2, (1)

where I flat is the scattering intensity from a flat surface, and
ignore the diffuse scattered field. In Eq. (1), kα/β represents the
wave number for incident/scattered waves, which can be either
a compressional (P ) or shear (S) mode. The wave number kα/β

equals to ω
cα/β

, where cα/β refers to the wave speed and ω is
the angular frequency. The incidence and scattering angles are
denoted as θi and θs , and σ is the rms value of the surface
height. Many studies regarding phonon boundary scattering
have applied a simpler similar equation ascribed to Ziman [18],
although it does not include the elastic mode conversion and
oblique incidence/scattering angles as Eq. (1) does. Equation
(1) considers only the reflection case for a stress-free boundary
condition (i.e., solid-air interface); the transmission case needs
a different formula, which we derive in this article.

It is well established that Eq. (1) is only valid in the
specular direction for surfaces with a very small roughness
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(e.g., kσ � 1 and kλ0 � 1). Additional contributions to the
total scattering field from the diffuse waves, which sometimes
are comparable with, or even dominant over, the coherent field,
are not included in the formula. The importance of the diffuse
field has been highlighted by a number of reports [10,12,19].
Experiments [9,20] on the thermal transport in nanostructures
have indicated that the use of Eq. (1) is often inconclusive
and does not explain the experimental findings, requiring
alternative theories to account for the diffuse field. In addition
Maznev [10] has shown that using Eq. (1) to calculate the
specularity tends to overestimate the heat flux dissipation due
to loss of the diffuse field.

To model the diffuse scattering from rough boundaries,
it has been necessary to utilize sophisticated numerical
techniques that have been developed recently, based around
the finite-element (FE) method [4,21], the Green’s function
method [22], and molecular dynamic model [23]. These nu-
merical methods require considerable computation resources
and it is not easy to generalize conclusions of how the
surface statistics affect the scattering beyond the specific
cases simulated unless the statistics are gathered from many
multiples of such simulations. Hence there is substantial
motivation to develop analytical tools to tackle these problems.

Analytical methods have the advantage that they offer
physical insight into the scattering behavior, provided the
method is within their region of validity. A perturbation
approach, assuming the roughness amplitude is small relative
to wavelength, and surface slopes are also small, has been
applied recently [8,10], to study the effect of roughness
and material properties on the scattering of the diffuse
field. However, such a perturbation theory is only valid for
modeling scattering from weakly rough surfaces (σ � λ/10
for the first-order approximation [24]). One important question
posed by Maznev [10] concerns the possibility of finding a
complementary theoretical method to model the scattering
beyond the validity of the perturbation approximation, for
surfaces with median and high roughnesses: at high roughness
(large rms value) the diffuse field dominates and the scattering
is completely different from that with a weakly rough surface.

In this article we develop a theoretical method that is valid
for surfaces with a wide range of roughness by using the
elastodynamic Kirchhoff approximation (KA). The KA has
been found to be accurate in modeling the scattering from
surfaces with roughness up to σ = λ/3, when the correlation
length λ0 is comparable with or larger than one wavelength
[25,26]. Despite the early application of KA in acoustics
[25], it is only recently that the elastodynamic KA has been
developed to model theoretically the diffuse field from an
elastic rough surface including mode conversions [5]; there
are details in elasticity, the mode conversion at surfaces, two
types of bulk waves, that prevent a direct generalization. In [5]
only a single medium is considered and the rough surface is
assumed to be stress free, hence only allowing for reflection
and preventing application of the theory to cases where
transmission is important. In many situations, it is critical to
consider two media and include the rough solid-solid interface
between them, for instance in the study of the boundary
phonon scattering/transport at the Si/Ge interface commonly
seen for a phonon device [8]. The physics of solid-solid rough
interface scattering can be very different from that of a single

medium with a stress-free boundary condition. For instance,
a considerable portion of incident energy can be transmitted
through the interface, and the roughness could be expected
to have different effects on the reflection and transmission
depending on the materials; even the reflection itself would be
different from that with a stress-free rough surface.

This article is organized as follows. Section II describes
the derivation of the theoretical formulas representing the
diffuse scattering field using the KA. Numerical simulations
are performed in Sec. III to explore the accuracy of the
derived expressions. Section IV illustrates effects of roughness
and material properties on the diffuse field, for different
modes. Section V discusses implications for phonon boundary
scattering. Finally, we draw together concluding remarks in
Sec. V.

II. THEORETICAL FORMULAS WITH
KIRCHOFF APPROXIMATION

The scattering system in two dimensions (2D) is shown in
Fig. 1, with a rough interface, separating two elastic solids,
insonified by an incident P wave from Solid 1. A fraction
of the elastic waves transmit through the interface to Solid 2,
while the rest are reflected back into Solid 1. The unit incident
and scattering vectors for P or mode-converted S waves are
denoted as:

k̂in = (sin θi, − cos θi)

k̂sc =
{

(sin θs, cos θs), reflection
(sin θs, − cos θs), transmission, (2)

where θi and θs refer to the incidence and scattering angles
with respect to the normal of the surface mean plane.

The rms value σ of h(x1) is normally used as a measure of
the height scale of the surface. Besides, the lateral variation
of h(x1) is characterized by the correlation function, and it is
assumed to be a Gaussian in this article [1]:

W (�x1) = 〈h(x1)h(x1 + �x1)〉
σ 2

= exp

(
−�x2

1

λ2
0

)
, (3)

where λ0 is called the correlation length, as the distance over
which the correlation function falls by 1/e.

θs
Incident wave

Reflected wave

h = h(x1)

k̂in ˆksc
θi

θs

k̂sc

Transmitted waveMean plane

x2

x1

Solid (1)

Solid (2)

FIG. 1. Sketch for an incident Gaussian beam (P wave) scattered
from a 1D rough interface separating two elastic solids.
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Incident P

kin = d0

Reflected P
dp

(1)

Reflected S
ds

(1)

α0 αpp
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ˆ

dp
(2)βpp

βps

Transmitted P
Transmitted Sds

(2)

Solid (1)

Solid (2)

FIG. 2. Illustration of the elastodynamic Kirchhoff approximation.

A. Kirchhoff theory

We assume linear, isotropic and homogeneous elastic media
as described in textbooks in continuum mechanics [27–29]
among many others, and draw in particular on Ref. [29]. The
elastodynamic KA is illustrated in Fig. 2 at one local surface
point, insonified by a P wave. The KA assumes that the motion
of this local point is the same as if it were part of an infinite
tangential plane insonified by the incident wave [1]. Physically
this has an implicit limitation to having the correlation
length greater than the wavelength and furthermore, in this
limit, the excitation of Rayleigh surface waves will not be
relevant, as an incident plane wave on a flat surface does not
generate Rayleigh waves. In calculations where the correlation
length is allowed to vary [10], the Rayleigh wave contribu-
tion only becomes noticeable for small correlation lengths.

Following the continuity of displacement and traction on
the interface, the total surface displacement and traction are
expressed as the summation of the incident and reflection
fields, which also equals those of the transmission field:

u = d0 + Rppd(1)
p + Rps d(1)

s = Dppd(2)
p + Dps d(2)

s

t = t0 + t (1)
p + t (1)

s = t (2)
p + t (2)

s , (4)

where u and t are the displacements and tractions respectively
and Rpp, Rps , Dpp, and Dps are the Fresnel reflection and
transmission coefficients of P and mode-converted S waves
respectively [29]. The d0, d(1)

p , d(1)
s , d(2)

p , and d(2)
s are the

displacement polarization vectors for the incident P , reflected,
and transmitted P/S waves, as shown in Fig. 2, and the cor-
responding tractions from incident and reflected/transmitted
waves are denoted as t0, t (1)

p , t (1)
s , t (2)

p , and t (2)
s . These values of

tractions are obtained from the displacement field according
to Hooke’s law and the stress-strain relationship. In Fig. 2, the
local incident/scattering angles with respect to the normal of
the tangential plane are denoted as α0, αpp, αps , βpp, and βps ,
and they obey the Snell’s law.

By moving d0 and t0 to one side of Eq. (4) respectively,
Eq. (4) is conveniently recast as a matrix equation:

MX = b

X = [Rpp Rps Dpp Dps]
T , (5)

where M is a 4 × 4 matrix, and b is a 4 × 1 vector representing
the incident field. For the case with an incident P wave, the
expressions of M and b are:

M =

⎡
⎢⎢⎢⎢⎢⎣

− cos αpp sin αps − cos βpp sin βps

− sin αpp − cos αps sin βpp cos βps

− cos 2αps
c

(1)
s

c
(1)
p

sin 2αps
ρ(2)

ρ(1)
c

(2)
p

c
(1)
p

cos 2βps − ρ(2)

ρ(1)
c

(2)
s

c
(1)
p

sin 2βps

− sin 2αpp
c

(1)
p

c
(1)
s

cos 2αps
ρ(2)

ρ(1)
c

(1)
p

c
(2)
p

(
c

(2)
s

c
(1)
s

)2
sin 2βpp − ρ(2)

ρ(1)
c

(2)
s

c
(1)
s

c
(1)
p

c
(1)
s

cos 2βps

⎤
⎥⎥⎥⎥⎥⎦ (6)

and

b = [− cos α0 sin α0 cos 2αps − sin 2α0]T , (7)

where ρ(1) and ρ(2) refer to the density of Solid 1 and Solid 2.
c(1)
p , c(1)

s , c(2)
p , and c(2)

s are compressional or shear wave speed in
Solid 1 or 2. By solving for X in the linear system of Eq. (5),
one obtains the Fresnel reflection/transmission coefficients,
which are position-dependent along the interface; the total
displacement u and subsequently the traction t at one surface
point can then be calculated by substituting the solved Fresnel
coefficients into Eq. (4).

The elastodynamic Helmholtz integral formula [29] with
the integral taken along the rough interface S:

uk(r) =
∫
S

[
σG

ij ;k(|r − r0|)ui(r0)nj (r0)

− σij (r0)uG
i;k(|r − r0|)nj (r0)

]
dS(r0)

× where i,j,k = 1,2 (8)

is key and is used to calculate the scattered displacement
uk(r) where r is the vector indicating the position of the
observation point, and nj is the unit normal vector pointing
outside the surface. In Eq. (8) ui(r0) and σij (r0) represent
the displacement and stress at a point r0 on the interface;
also required are the elastodynamic Green’s functions in
the unbounded domain uG

i;k(|r − r0|) and σG
ij ;k(|r − r0|). The

Green’s function can be expressed explicitly as [29]:

uG
i;k(|r − r0|) = 1

μk2
s

[−G(kp|r − r0|) + G(ks |r − r0|)],ik
+G(ks |r − r0|)δik

σG
ij ;k(|r − r0|) = (

1 − 2k2
p/k2

s

)
G(kp|r − r0|),kδij

− 2

k2
s

[G(kp|r − r0|) − G(ks |r − r0|)],ijk

+G(ks |r − r0|),j δik + G(ks |r − r0|),iδjk,

(9)
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where kp and ks are the compressional and shear wave number,
and μ is the Lamé second parameter. The notation f,i = ∂f

∂xi
is

used here, and δ refers to the Dirac δ function. The function
G(kβ |r − r0|) is the acoustic Green’s function, which in 2D is
expressed as:

G(kβ |r − r0|) = − i

4
H

(1)
0 (kβ |r − r0|). (10)

Here H
(1)
0 (kβ |r − r0|) denotes the zero order Hankel function

of the first kind.
Our interest is in the far field and so we take the far

field approximation that |r − r0| ≈ r − r̂ · r0, and the Hankel
function can be approximated as:

H
(1)
0 (kβ |r − r0|) ≈

(
2

πkβ

)1/2

e−iπ/4(eikβr/
√

r)e−ikβ r̂·r0 .

(11)
In 2D Eq. (8) is then transferred into an integral along the mean
plane of the surface Sm:

uβ(r) = −ikβ

√
2πi

kβ

exp(ikβr)

4π
√

r

∫
Sm

(
Uβ + Tβ

ikβρc2
β

)

× exp(ikβφβ)dSm β = p,s, (12)

where kβ and cβ refer to the wave number and wave speed of
the scattered waves, and ρ is the density. They are different
for Solid 1 (reflection) and Solid 2 (transmission). The phase
term φβ = Aβx1 + Cβh(x1), and

Aβ = k(1)
p

kβ

sin θi − sin θs

Cβ =

⎧⎪⎨
⎪⎩

−( k
(1)
p

k
(1)
β

cos θi + cos θs

)
, reflection

−( k
(1)
p

k
(2)
β

cos θi − cos θs

)
, transmission

, (13)

where k(1)
p stands for the wave number of the incident

compressional waves from Solid 1. We emphasise that Cβ has
different expressions for reflection and transmission. The terms
Uβ and Tβ represent the decomposed boundary displacement
and traction for different wave modes and they are expressed
as:

Up =
[
(u · N)

(
1−2

(
cs

cp

)2)
+2

(
cs

cp

)2

(u · k̂sc)(N · k̂sc)

]
k̂sc

U s = (N · k̂sc)u + (u · k̂sc)N − 2(u · k̂sc)(N · k̂sc)k̂sc

Tp = (k̂sc · t)k̂sc

T s = t − (k̂sc · t)k̂sc (14)

in which N is the unnormalized vector normal to the surface,
and it equals (−∂h/∂x1,1). The interface displacement u and
traction t are obtained using the KA from Eqs. (4)–(7). We
assume an incident P wave in this article, and hence neglect
the subscript α denoting the incident mode. Note that the same
methodology can be equivalently applied to an incident S

wave. For shear wave incidence, one needs to revise Eq. (4)–(7)
to calculate the Fresnel reflection/transmission coefficients
representing a plane S wave reflected from the tangential plane.

n

Specular point 
for reflected P-S

ˆksc= dp
(1)

Reflected P

Reflected S

n

Incident P

kin = d0
ˆ

kin = d0
ˆ

Incident P

ˆksc ds
(1)

Incident P

Specular point for 
transmitted P-P

Specular point for 
transmitted P-S

kin = d0
ˆ

n

ˆksc= dp
(2) k̂sc ds

(2)

n

Transmitted S

Transmitted P

Solid (1)

Solid (2)

Solid (1)

Solid (2)

(a)

(b)

Specular point 
for reflected P-P

FIG. 3. Specular points for different modes. (a) Reflection P -P
and P -S modes. (b) Transmission P -P and P -S modes.

It is necessary to remove the surface slope from the integra-
tion in Eq. (12), for the analytical derivation of the ensemble
averaging 〈ukūj 〉 later (the overline denoting the complex
conjugate). Following the method described in Ref. [5], we
apply a stationary phase approach to Eq. (12) to approximate
Uβ and Tβ . The first-order derivatives of the phase term φβ

with respect to x1 is set to be zero to locate the stationary phase
points, and the following expression is obtained:

∂h

∂x1
= −Aβ

Cβ

. (15)

The underlying physics of this is that the varying slope
along the surface is approximated as constant for given
incidence/scattering angles, wave modes, and material prop-
erties; the stationary phase points are also called specular
points in the optical community [30]. At these points, the
scattering direction is viewed the same as the specular direction
(reflection or transmission) to the incidence angle with respect
to the local normal vector, as illustrated in Fig. 3 for both
the reflection and transmission modes. The boundary integral
Eq. (12) is therefore dominated by contributions from these
points where the phase term φβ is stationary.

By substituting the slope approximation in Eq. (15) into
Eqs. (12)–(14), the values of Uβ and Tβ at the specular points
are calculated. Here we assume that

Fβ = 1/2

(
Uβ + Tβ

ikβρc2
β

)
,

which is called the elastodynamic angular factor hereinafter.
The function Fβ depends on the incidence/scattering angle,
material properties in both media and wave modes, and
it is a vector containing two components corresponding to
the polarization of the displacement. By eliminating the
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dependence of the surface gradient, Eq. (12) is simplified as:

uβ(R) = −ikβ

√
2πi

kβ

exp(ikβr)

4π
√

r
2Fβ

∫
Sm

exp(ikβφβ)dS.

(16)

B. Expected scattering cross section

We are now in a position to derive the expression for
the scattering cross section, an important normalized met-
ric commonly used. The expected scattering cross section
(〈σsc,β〉) for waves scattered from a rough surface is expressed
as [29]:

〈σsc,β〉 = r〈P sc,β · k̂sc〉
Einc

, (17)

where 〈P sc,β · k̂sc〉 is the scattering power flux per unit area of
the plane perpendicular to the scattering vector. Einc refers to
the incident energy, which equals the incident power flux P inc

integrated over the surface mean plane, and it is expressed as:

Einc =
∫ ∞

−∞
P inc · x̂2dx1, (18)

where x̂2 denotes the unit vector in the x2 direction normal to
the surface. The ith component of the power flux P is defined
as:

〈Pi〉 =
〈
τij

∂uj

∂t

〉
= −iω[λikq〈uqūj 〉δij + μ(ikj 〈uiūj 〉 + iki〈uj ūj 〉)],

(19)

where τij is the stress, ki is the ith component of the wave
vector, ui is the displacement and ūi is its conjugate value.
λ and μ are Lamé first and second parameters, which are
different for Solid 1 and Solid 2.

The displacement of the incident wave is assumed to be a
Gaussian tapered plane wave with the form given as [31]:

�(x1,x2) = d0 exp
{
ik(1)

p (x1 sin θ0 − x2 cos θ0)[1 + η(x1,x2)]

− [(x1 cos θ0 + x2 sin θ0)/w]2
}

η(x1,x2) = c(1)2
p

ω2w2

[
2

w2
(x1 cos θ0 + x2 sin θ0)2 − 1

]
, (20)

where w is the half-width of the Gaussian beam, at which the
value of the incident amplitude falls by 1/e. c(1)

p and k(1)
p are

the compressional wave speed and wave number in Solid 1. By
substituting Eq. (20) into Eqs. (19), (18), the incident energy
Einc through the mean surface plane has been derived by [31]:

Einc =
√

πwω2

√
2c

(1)
p

PB

PB =
[

1 − c(1)2
p

ω2w2
(1 + 2 tan2 θ0)

]
[(λ(1) + 2μ(1)) cos2 θ0

+μ(1) sin2 θ0]

+
[(

1 + 1

2

c(1)2
p

w2ω2

)
tan θ0

]
(λ(1) + μ(1)) sin θ0 cos θ0.

(21)

From Eqs. (17) to (19), the calculation of the ensemble
averaging 〈σsc,β〉 is reduced to deriving the expression for
〈uiūj 〉. According to Eq. (16), 〈uiūj 〉 of the scattered waves
is:

〈uiūj 〉 = kβFi,βFj,β

2πr

∫
S

∫
S

�(x1)�(x ′
1)eikβAβ (x1−x ′

1)

〈eikβCβ (h−h′)〉dx1dx ′
1, (22)

where the function �(x1) represents the incident displacement
field along the mean surface calculated from the Gaussian
tapered plane wave in Eq. (20). Following the derivation
in [5], Eq. (22) is simplified via a change of variable that
�x1 = x ′

1 − x1

〈uiūj 〉 = kβFi,βFj,β

2πr

∫ ∞

−∞

∫ ∞

−∞
�(x1)�(�x1 + x1)dx1

× eikβAβ�x1χ2(kβCβ,�x1)d�x1, (23)

where χ2(kβCβ,�x1) is called the two-dimensional character-
istic function [1]. If the surface height follows the Gaussian
distribution, χ2(kβCβ,�x1) then has an analytical form:

χ2(kβCβ,�x1) = exp{−gβ[1 − W (�x1)]}, (24)

where the parameter gβ is different from Eq. (1), as it includes
both reflection and transmission, and nonspecular angles:

gβ = k2
βC2

βσ 2

=
{(

k(1)
p cos θi + k

(1)
β cos θs

)2
σ 2, reflection(

k(1)
p cos θi − k

(2)
β cos θs

)2
σ 2, transmission

. (25)

Now assuming the first integral of �(x1)�(�x1 + x1) is a
slowly varying function around the point �x1 = 0 as compared
with χ2(kβCβ,�x1); this is accurate provided the half-width
of the beam w is larger than 3λp. Equation (23) is then further
simplified as:

〈uiūj 〉 ≈ kβFi,βFj,β

2πr

∫ ∞

−∞
�(x1)2dx1

∫ ∞

−∞
eikβAβ�x1

×χ2(kβCβ,�x1)d�x1

= kβFi,βFj,β

2πr
Leff�

∞
n=0e

−gβ
gn

β

n!

∫ ∞

−∞
eikβAβ�x1

×Wn(�x1)d�x1. (26)

Here the parameter Leff = ∫ ∞
−∞ �2(x1)dx1, is the effective

insonified length. We now identify the coherent and diffuse
contributions: the first term in Eq. (26) when n = 0 corre-
sponds to the coherent component, while the diffuse field
contribution comes from higher-order terms. Substituting the
Gaussian correlation function Eq. (3) into Eq. (26), the diffuse
components of 〈uiūj 〉 are expressed as:

〈uiūj 〉d = kβFi,βFj,βλ0
√

πe−gβ

2πr
Leff�

∞
n=1

gn
β

n!
√

n

× exp

[
−k2

βA2
βλ2

0

4n

]
. (27)

In the low-frequency limit or when the rms value is very
small compared with the wavelength, the scattering cross
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section is approximated by only keeping the first term of the
Taylor series in Eq. (27) [1]:

〈uiūj 〉d ≈ kβFi,βFj,βλ0
√

πe−gβ

2πr
Leffgβ exp

[
−k2

βA2
βλ2

0

4

]

= k3
βFi,βFj,βe−gβ

r
C2

βLeffP (kβAβ), (28)

where P (kβAβ) is called the power spectrum of the surface
height [1].

In contrast to the low-frequency approximation, in the high-
frequency limit when kβ → ∞, we assume that kβCβ(h −
h′) ≈ kβCβ

∂h
∂x1

, and hence the ensemble averaging 〈uiūj 〉 is
derived as:

〈uiūj 〉d ≈ kβFi,βFj,β

2πr
Leff

×
∫ ∞

−∞

〈
eikβ [(Aβ+Cβ

∂h
∂x

)�x1]
〉
d�x1

= kβFi,βFj,β

2πr
Leff × 2π

kβCβ

〈
δ

(
∂h

∂x
+ Aβ

Cβ

,

)〉

= Fi,βFj,β

rCβ

Leff

∫ ∞

−∞
pg(γx)dγxδ

(
γx + Aβ

Cβ

)

= Fi,βFj,β

rCβ

Leff × pg

(
∂h

∂x
= −Aβ

Cβ

)
, (29)

where pg is the probability function of the surface slope,
defined as:

pg

(
∂h

∂x1

)
= λ0

2
√

πσ
exp

[
−

(
∂h
∂x1

)2
λ2

0

4σ 2

]
. (30)

The scattering cross section 〈σsc〉 is similarly decomposed
into the coherent and the diffuse fields:

〈σsc〉 = σ c
sc + σd

sc

= σ flat
sc exp(−gβ) + σd

sc. (31)

The coherent scattering cross section is a simple exponential
decay in terms of that from a flat surface. The diffuse scattering
cross section σd

sc is obtained by substituting the expression of
Eq. (27) into Eqs. (17)–(19).

III. NUMERICAL VERIFICATION

In this section, the predictions from the formulas for
〈σsc〉 are compared with full numerical Monte Carlo

simulations; these simulations use Gaussian surfaces from low
to high roughnesses (σ = λ(1)

p /20 ∼ λ(1)
p /2, λ0 = 2λ(1)

p ,λ(1)
p

being the compressional wavelength in Solid 1). For each
realization of the surface a purely numerical method, the finite
element boundary integral (FEBI) approach [21,26], is per-
formed to compute σsc. The FEBI method is highly efficient as
it computes the very local scattering field on the interface using
an explicit time domain FE scheme inside a small domain,
and then performs a boundary integral to globally calculate
the scattered waves. This approach significantly reduces the
computational burden for rough surface calculations.

For the local FE computation, to yet further optimise the
numerical simulations, we take advantage of the recently
developed GPU driven FE software POGO [32] and this
greatly accelerates the simulation. The local FE model also
takes advantage of developments in absorbing regions [33]
to prevent spurious reflections from the edges of the small
computational domain from contaminating the results.

Figure 4 shows a snapshot from a typical local FE
simulation of waves scattered from a rough interface. The two
bulk media we take as example materials are silicon (Solid 1)
and germanium (Solid 2), as they are typical media of interest,
with densities and wave speeds of 2329 kg/m3, 8320 m/s,
and 5246 m/s for silicon and 5323 kg/m3, 4866 m/s, and
2771 m/s for germanium. The FE model has a dimension
of 37λ(1)

p × 10λ(1)
p , including an absorbing region [33] with a

thickness of 3λ(1)
p . The rough interface separating two media

has a length of 29λ(1)
p . A source line is placed 1.2λ(1)

p above
the rough interface on the Si side. It excites a Gaussian tapered
plane P wave with a half beam width w of 5λ(1)

p insonifying
the interface, at an incidence angle of θi = 20◦; the use of
the Gaussian tapered incident wave eliminates the edge effects
[31]. The incident wave is assumed to be a five-cycle tone
burst.

After computing the displacement and the stress on the
interface, a boundary integral along the interface is performed
to calculate the scattered waves. The FEBI method is run
on each realization and the sample averaged scattering cross
section from all realizations is then used to approximate the
ensemble averaging against which we assess the accuracy of
the analytical formulas. Specifically, surfaces with the same
correlation length (λ0 = 2λ(1)

p ), and rms values ranging from
λ(1)

p /20 to λ(1)
p /2 are used to find the valid region of the

analytical solution. For each roughness, 400 realizations of
surfaces are generated [25] for simulations to obtain the mean
scattering cross section.

Absorbing region

Rough interface

Source line

Solid (1)

Solid (2)

Transmission

Reflection

FIG. 4. Snapshot of animation in the local FE box showing the waves reflected and transmitted by the rough interface. Details of the
simulation are given in the text.
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(a) (b)

(d)(c)

reflected P-P
θs = θi = 20o

transmitted P-P
θs = θi = 20o

reflection
θi = 20o

transmission
θi = 20o

FIG. 5. Comparison of the theoretical results with those from numerical simulations (θi = 20◦; Solid 1: Si; Solid 2: Ge). (a) Specular σsc

of the reflected P -P mode. (b) Specular σsc of the transmitted P -P mode. (c) Angular distribution of σsc of the reflected P -P and P -S modes
when σ = λ(1)

p /8, λ0 = 2λ(1)
p . (d) Angular distribution of σsc of the transmitted P -P and P -S modes when σ = λ(1)

p /8, λ0 = 2λ(1)
p .

Figures 5(a) and 5(b) show the total scattering cross sections
(i.e., coherent + diffuse) for both the reflected P -P mode
in Solid 1 and the transmitted P -P mode in Solid 2 at the
specular angles as a function of σ . Note that according to
Snell’s law, the specular angle is 20◦ for the reflection and
11.5◦ for the transmission; the comparison shows an excellent
match between the theoretical results and the sample averaged
numerical results, when σ � λ(1)

p /2, for both the reflection
and transmission. The agreement indicates that the developed
theoretical formulas using the Kirchhoff approximation is
accurate for surfaces with a much wider range of roughness,
as compared with the perturbation method [8]. In addition,
the coherent scattering cross section predicted from the
conventional Kirchhoff formula using Eq. (1) is plotted, and
it is always below the numerical benchmark curve due to
the lack of the diffuse component. It can also be observed
that the transmission cross section attenuates with increasing
roughness much more slowly than that for the reflection in the
specular direction.

The angular distributions of 〈σsc〉 are plotted in Figs. 5(c)
and 5(d) for both the reflection and transmission when σ =
λ(1)

p /8. The theoretical results again match very well with those
computed from numerical simulations for both P -P and P -S
modes, over a wide range of scattering angles. At grazing
angles (|θs | � 70◦), the Kirchhoff approximation is not reliable
according to previous studies [25,26]; here the errors at these
angles are not clearly seen in Figs. 5(c) and 5(d), due to the
very small values of 〈σsc〉. Clear peaks at specular angles for
different modes are found corresponding to the strong coherent
field. In particular, the coherent peak is more dominant for the

transmitted P -P mode in Fig. 5(d), than for the reflection in
Fig. 5(c).

According to Eq. (13), the value of Cβ is expressed
differently depending on whether it is a reflection or a
transmission event. This difference of Cβ results in the
divergence of the parameter gβ in Eq. (25), which determines
the attenuation rate of the coherent field in terms of the
roughness. For the Si/Ge interface simulated here, gβ for
the transmission is smaller than that for the reflection, hence
contributing to a much slower attenuation of the coherent field
for the transmission. Therefore, a more noticeable peak is
seen in Fig. 5(d), indicating that the coherent effects dictate
the transmission. Similar conclusions are found for waves
incident from liquid to solid using the phase screen method
to model the coherent field [34]. Note that opposite situations
exist where the transmitted coherent field decays quicker than
the reflection. Such cases occur when gβ for the transmission is
larger than the value for the reflection in the specular direction
in Eq. (25), indicating waves impinging from a hard material
to a comparably very soft material. In addition, the divergence
of Cβ in Eq. (13) also contributes to different behavior of the
reflected and transmitted diffuse field, which will be shown in
the next section.

IV. PHYSICAL ANALYSIS OF THE DIFFUSE FIELD

A. Angular distribution

The scattering patterns of the diffuse field when a P

wave is incident at 20◦ from the side of Solid 1(Si) are
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ρ(2)/ ρ(1)(a) (b)

(c) (d)

ρ(2)/ ρ(1)

ρ(2)/ ρ(1)

ρ(2)/ ρ(1)

reflected P-P
σ = λp

(1)/16
reflected P-P
σ = λp

(1)/3

reflected P-S
σ = λp

(1)/16

reflected P-S
σ = λp

(1)/3

FIG. 6. Diffuse scattering cross section (σd
sc, reflection) from rough interfaces (Solid 1 is Si; Solid 2 has the same wave speed as Ge but

various values of the density.) by a 20◦ incident P wave as a function of scattering angles. (a) Reflected P -P mode, σ = λ(1)
p /16. (b) Reflected

P -P mode, σ = λ(1)
p /3. (c) Reflected P -S mode, σ = λ(1)

p /16. (d) Reflected P -S mode, σ = λ(1)
p /3. The correlation length λ0 = 2λ(1)

p .

shown in Fig. 6 for reflection and Fig. 7 for transmission.
To explore the effect of material variation, Solid 2 is assumed
to have the same wave speed as Ge, but with various values
of the density (hence altering the elastic wave impedance);
by changing the density, while keeping the wave speed of
Solid 2, we are implicitly changing the Young’s modulus. In
each figure, we show results from a low (σ = λ(1)

p /16) and
a high roughness (σ = λ(1)

p /3) case. The correlation length is
assumed to be λ0 = 2λ(1)

p for both cases. As seen in Figs. 6, 7,
altering the density mainly changes the amplitude of σd

sc for
both reflected and transmitted waves, while having limited
influence on the overall shape of the scattering pattern. From
Eq. (27) we know that varying the density only affects the
angular factor Fβ , and hence it weakly affects the shape of
scattering patterns. A perfect match of the compressional wave
impedance of the two solids (e.g., ρ(2)/ρ(1) = 1.7) results
in a zero reflection of the P -P mode denoted as the black
curve in Figs. 6(a) and 6(b), and correspondingly a maximum
transmission amplitude in Figs. 7(a) and 7(b). In addition, the
peaks of the scattering patterns in the low-roughness cases
are all located in the specular angles. This is because, in
the small-roughness approximation, the peak of the scattering
pattern occurs when Aβ is zero from Eq. (28), corresponding
to the specular angle.

The diffuse energy rises as the rms value increases from
λ(1)

p /10 to λ(1)
p /3, altering the scattering patterns as shown in

Figs. 6 and 7; the effect of the roughness is different depending
on whether reflection and transmission is considered. In
general the diffuse energy becomes more widely spread,
and this trend is more apparent for the reflection than the

transmission. In addition, the peaks of the reflection patterns
are moving away from the specular direction in Fig. 6, while
these peaks almost stay around the specular direction for the
transmission shown in Fig. 7, especially for the transmitted
P -P mode. The different behavior of the reflection and
transmission patterns is explained using the high-frequency
asymptotic solution in Eq. (29). Recall that the specular points
for the reflection differ from those for the transmission as
shown in Fig. 2, corresponding to different values of the
surface slopes (∂h/∂x1 = −Aβ/Cβ). For the Si/Ge interface
analysed here, the probability function pg(∂h/∂x1) evaluated
at the specular points for the transmission has a much narrower
angular distribution around the specular direction than it does
for the reflection. As a consequence, the shape and also the
peaks of the transmission pattern appear to be weakly affected
by increasing σ , although the amplitude has been significantly
changed.

We also investigate cases where we vary the wave speed
(c(2)

p ) of Solid 2 as shown in Fig. 8, while the density of Solid
2 is the same as Ge. Both the amplitude and the shape of the
scattering pattern for the P -P mode are affected by the change
of c(2)

p , which is more apparent for the transmission case. It
is also noticeable that the diffuse field for the transmitted
P -P mode vanishes when c(1)

p = c(2)
p as shown in Fig. 8(c).

At this specific ratio of wave speed, from Eq. (13) we know
that the parameter Cβ for the transmitted P -P mode is zero
at the specular direction; the exponential decaying factor gβ

becomes zero from Eq. (25), indicating that the transmission is
completely occupied by the same coherent effect as that from
a flat surface. Therefore the diffuse field for the transmission
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ρ(2)/ ρ(1)
(a) ρ(2)/ ρ(1)

(b)

(c)
ρ(2)/ ρ(1) ρ(2)/ ρ(1)

transmitted P-P
σ = λp

(1)/16 transmitted P-P
σ = λp

(1)/3

transmitted P-S
σ = λp

(1)/16

transmitted P-S
σ = λp

(1)/3

(d)

FIG. 7. Diffuse scattering cross section (σd
sc, transmission) from rough interfaces (Solid 1 is Si; Solid 2 has the same wave speed as Ge

but various values of the density) by a 20◦ incident P wave as a function of scattering angles (θs). (a) Transmitted P -P mode, σ = λ(1)
p /16.

(b) Transmitted P -P mode, σ = λ(1)
p /3. (c) Transmitted P -S mode, σ = λ(1)

p /16. (d) Transmitted P -S mode, σ = λ(1)
p /3. The correlation length

λ0 = 2λ(1)
p .

cp
(2)/cp

(1)
(a)

cp
(2)/cp

(1)

(b)

cp
(2)/cp

(1)

(c) cp
(2)/cp

(1)(d)

reflected P-P
σ = λp

(1)/16

reflected P-P
σ = λp

(1)/3

transmitted P-P
σ = λp

(1)/16
transmitted P-P
σ = λp

(1)/3

FIG. 8. Diffuse scattering cross section (σd
sc) from rough interfaces (Solid 1 is Si; Solid 2 has the same density as Ge but various values of

the wave speed) by a 20◦ incident P wave as a function of scattering angles. (a) Reflected P -P mode, σ = λ(1)
p /16. (b) Reflected P -P mode,

σ = λ(1)
p /3. (c) Transmitted P -P mode, σ = λ(1)

p /16. (d) Transmitted P -P mode, σ = λ(1)
p /3. The correlation length λ0 = 2λ(1)

p .
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ρ(2)/ ρ(1)(a) (b)

(c) (d)

ρ(2)/ ρ(1)

ρ(2)/ ρ(1)

ρ(2)/ ρ(1)

reflected P-P
reflected P-S

transmitted P-P

transmitted P-S

FIG. 9. Diffuse scattering cross section (σd
sc) at the specular direction from an interface (Solid 1 is Si; Solid 2 has the same wave speed

as Ge but various values of the density) by a 20◦ incident P wave as a function of rms values (σ ) when the correlation length λ0 = 2λ(1)
p .

(a) Reflected P -P . (b) Reflected P -S. (c) Transmitted P -P . (d) Transmitted P -S.

vanishes when c(1)
p = c(2)

p , in other words, the waves travel
through the interface as if the roughness did not exist if there
is a perfect match of the wave speed.

B. Specular scattering

In many applications specific interest focuses on the
interface scattering around the specular direction. For example,
in the study of the phonon transport the specularity is a key
parameter to calculate the thermal conductivity [9,10]. Figure 9
shows the specular scattering cross section 〈σd

sc〉 as a function
of σ when varying the density ρ(2). Clear peaks are observed
at intermediate values of roughness σmed, and for each mode
the locations of these peaks are independent of the density
ρ(2). It is noticeable that the peak for the transmitted P -P
mode appears at a much higher roughness (σ = λ(1)

p /4) than
for other modes (σ = λ(1)

p /8).
To understand σmed and the corresponding peaks, the

Rayleigh parameter is quoted here [1]:

Ra =
√

gβ

2
, (32)

where gβ is from Eq. (25). The expression for Ra differs
from that in Ref. [1], as we now include mode conversion
and transmission. The Rayleigh criterion states that if Ra is
smaller than π/4, the surface is relatively smooth, otherwise it
is rough. Here we let Ra equal π/4 and calculate the critical σ

values and find that they are almost the same as σmed observed
from Fig. 9 for all the modes. The underlying physics in this
are that the peak appears at the intermediate σmed, at which the

surface starts to transit from smooth to rough according to the
Rayleigh criterion.

In addition, we plot the specular transmission in Fig. 10
when only varying the wave speed c(2)

p of Solid 2. The trends as
increasing σ are somewhat different from those when varying
the density ρ(2) shown in Fig. 8. For instance, the value of
σmed increases when c(2)

p /c(1)
p becomes larger, and it can still

be accurately estimated by the Rayleigh criterion.
The role of the correlation length λ0 on the specular

scattering is also studied as shown in Fig. 11. The rms value
is fixed as σ = λ(1)

p /10 in this case. As can be seen there
exists a linear dependence of the specular scattering on λ0. In
the specular direction the parameter Aβ is zero and hence the
exponential terms in Eq. (27) vanish, which clearly leads to the
linear relationship between λ0 and σd

sc. It should be noted that
the simple linear dependence is found within the valid region
of the Kirchhoff approximation [26]. For weakly correlated
surfaces (λ0 is very small) the linearity might break down, and
it is argued to be caused by the energy converted from the
surface waves [10].

V. IMPLICATIONS FOR BOUNDARY
PHONON TRANSPORT

The phonons transmitted through the interface between two
media are impeded by roughness and the reflections result
in a thermal boundary resistance to heat flow. The thermal
boundary conductance is defined as the ratio of the heat current
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cp
(2)/cp

(1)
(a)

cp
(2)/cp

(1)(b)

transmitted P-P

transmitted P-S

FIG. 10. Diffuse scattering cross section (σd
sc) at the specular direction from an interface (Solid 1 is Si; Solid 2 has the same density

as Ge but various values of wave speed) by a 20◦ incident P wave as a function of rms values (σ ) when the correlation length λ0 = 2λ(1)
p .

(a) Transmitted P -P . (b) Transmitted P -S.

density and the temperature differential [35]:

G = 1

4π

∫ 2π

0
dφ

∫ π/2

0
dθ

∫ ωD1

0
v1 cos θ sin θh̄ω

∂f (ω,T )

∂T

× τ12(ω,φ,θ )D(ω)dω

= 1

2

∫ 1

0

[ ∫ ωD1

0
v1h̄ωD(ω)

∂f (ω,T )

∂T
τ12(ω, cos θ )dω

]
× cos θd cos θ, (33)

where v1 is the wave speed in Solid 1, D(ω) is the density
of states for phonons, and f (ω,T ) is the Bose-Einstein
distribution for phonons at the temperature T . The second
expression in Eq. (33) is obtained by assuming an isotropic
medium. The accuracy of Eq. (33) depends on how the
transmissivity is modeled, and this is significantly affected
by the interface roughness.

Historically, the acoustic mismatch model (AMM) [35] has
been widely used, which simply models the reflection and
transmission according to the acoustic impedance contrast
using the Fresnel coefficient from a flat surface, and hence
it gives the transmissivity at the specular angle. We define the
transmissivity from Solid 1 to Solid 2 as τ12, and using AMM

reflected P-P

ρ(2)/ ρ(1)

FIG. 11. Diffuse scattering cross section (σd
sc) for the reflected

P -P mode at the specular direction from an interface (Solid 1 is Si;
Solid 2 has the same wave speed as Ge but various values of the
density) by a 20◦ incident P wave as a function of correlation length
(λ0) when the rms value σ = λ(1)

p /10.

it is given by

τ12 = 4Z1Z2

(Z1 + Z2)2
, (34)

where Z1 and Z2 refer to the acoustic impedance in Solid 1
and 2, which are v1ρ1/ cos θi and v2ρ2/ cos θs respectively.
Another crude method is called the diffuse mismatch model
(DMM), which assumes that the phonons incident at the
interface lose memory of their original state and hence one
cannot tell from which side they have come [35,36]. In
other words, the transmission probabilities are the same for
all phonon states corresponding to the same frequency; this
implies that the transmissivity from Solid 2 to Solid 1,
τ21, equals 1 − τ12. By further assuming a linear dispersion
relationship, the transmissivity τ12 using DMM is obtained by
Swartz and Pohl [37] as:

τ12 = 1/v2
2

1/v2
1 + 1/v2

2

. (35)

The linear assumption implies that the phase velocity equals
the group velocity, and it is approximately valid at low
temperatures for wave vectors close to the zone center of
the dispersion relationship [35]. Neither of these two models
depends on the roughness nor the frequency, because AMM
is obtained from limits of purely specular reflections from
a flat interface, while DMM is approximated from limits of
completely diffuse waves based on a perfectly rough interface;
in addition, DMM is also independent of angles.

However, roughness plays a critical role in determining
the transmissivity or the specularity parameters [38], and in
Fig. 12(a) we show a comparison of the calculated specular
transmissivity for the Si/Ge interface using four methods,
namely, AMM, DMM, our method using the KA, and Ziman’s
formulas. The specular transmissivity is plotted with respect to
a sub-THz range of frequencies (100 GHz to 600 GHz), when
rms σ = 4.2 nm, and correlation length λ0 = 42 nm. Note
that the specular transmissivity using the KA is calculated
as an integral of the scattering cross section within a narrow
angular range around the specular angle. From Fig. 12(a), the
curve calculated by the Kirchhoff approximation lies between
the two dotted lines representing AMM and DMM. At low
frequencies, the KA tends to the AMM result, and as the
frequency increases KA tends to approach DMM when the
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(a)

(b)

FIG. 12. (a) Comparison of the specular transmissivity using AMM, DMM, Ziman’s formula, and the elastodynamic Kirchhoff theory as
a function of frequency, when σ = 4.2nm, and λ0 = 42 nm. (b) Comparison of the specular scattering cross section using the elastodynamic
Kirchhoff theory and the numerical method when λ0 = λp/4, λp/2, λp , and 2λp .

diffuse field is significant. Hence, as seen in Fig. 12(a),
the Kirchhoff method connects the results between the two
limiting cases of AMM and DMM. The result using the
Ziman’s formula Eq. (1) is also plotted for comparison,
which is accurate only in the range of low frequencies,
but dramatically underestimates the transmissivity at higher
frequencies as it ignores the diffuse field. Although it still relies
upon linear dispersion, the KA can be considered superior to
AMM, DMM, and Ziman’s formulas, which only give rough
estimates of the phonon scattering. Therefore, the method
developed could improve the agreement of Eq. (33) with
experimental results, by modeling the transmissivity more
accurately. It is also worth noting that the elastodynamic
Kirchhoff method developed here does have limitations as
it is based on the assumption of a linear, homogeneous, and
isotropic bulk medium, unlike more sophisticated numerical
full atomistic simulation methods that include crystallographic
orientations and surface structures.

The region of validity for KA has been evaluated [26]
for surfaces with stress-free boundary conditions, hence only
including reflections. Here we show the validity of the KA for
modeling transmission through a rough interface by comparing
the theoretical results and the mean results from Monte Carlo
simulations as deployed in Sec. III. The difference here is that
we now reduce the correlation length λ0 from 2λp to λp/4.
Figure 12(b) shows the specular scattering cross section for
different correlation lengths with both low and high rms values.
As can be seen, the Kirchoff method is very accurate when
λ0 is larger or equal than λp/2, below which the KA breaks
down. The criteria here show when the use of KA for rough
interface transmission is valid, which also has implications for
the use of Eq. (33) to model the thermal boundary conductance
with KA.

VI. CONCLUSIONS

In this article, we have derived theoretical formulas to
predict the diffuse field of elastic waves scattered and
transmitted by rough solid-solid interfaces, by using the

Kirchhoff approximation. Theoretical solutions are evaluated
by comparison with numerical Monte Carlo simulations, and
the theory is shown to be accurate for surfaces with rms value
σ up to λ/3. The new capability to model the diffuse field
over a much wider range of roughness, beyond the limit of
the small perturbation theory, enables the investigation of how
interface roughness affects scattering when the rms value is
large. Generally speaking, the reflection and transmission are
found to have different dependence on the interface roughness,
and also a strong dependence on the material properties. As
expected, the impedance mismatch plays an important role
in determining the diffuse scattering, while it is found that
the effects from the mismatch of density and wave speed
are different. For the Si/Ge interface evaluated here, the
transmission of waves from Si to Ge is much less affected
by the interface roughness than the reflection. As a result, the
reflection diffuse energy tends to be more widely spread, and
a shift of the peak of the reflection pattern away from the
specular direction can be observed for interfaces with high
roughness. In the extreme case when the two solids have the
same wave speed, the transmission is only coherent and it is
the same as that traveling through a flat interface. In addition,
there exists an intermediate value of rms at which the diffuse
energy in the specular direction reaches its maximum, and
this rms value coincides with that estimated by the Rayleigh
criterion, indicating that the conventional Rayleigh criterion
is a precise measure of the transition point when the interface
becomes rough. It is also found that at the specular direction
the scattering energy linearly depends on the correlation length
within the valid region of the Kirchhoff approximation.

Most current studies in phonon transport are based either
on Ziman’s formulas only modeling the coherent field, or the
diffuse mismatch model, assuming a perfect rough surface that
scatters waves to any direction with an equal probability, for
the diffuse field. Implications for the phonon transport through
rough interfaces are discussed in Sec. V, and a comparison
among different methods in terms of the transmissivity is
shown. The method developed in this paper provides a strong
analytical tool that connects these hypotheses in limiting cases.
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The new theory could be potentially useful for calculating the
thermal boundary conductance, and may assist interpreting ex-
perimental phenomena of thermal transport in nanostructures
[9,13], which are not well understood.
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