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Accurate interatomic force fields via machine learning with covariant kernels
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We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar
components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we
impose the requirements that the predicted force rotates with the target configuration and is independent of any
rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained
by integration over the elements of the rotation group SO(d) for the relevant dimensionality d . Remarkably, in
specific cases the integration can be carried out analytically and yields a conservative force field that can be recast
into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements
of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our
kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective
Ni, Fe, and Si crystalline systems.
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I. INTRODUCTION

Recent decades have witnessed an exponential growth
of computer processing power (Moore’s law [1]) and an
equally fast progress in storage technology (Kryder’s law
[2,3]). Atomistic modeling methods based on computation and
data-intensive quantum-mechanical methods, such as density
functional theory (DFT) [4–6], have correspondingly evolved
in both feasibility and scope. Moreover, the possibility of
retaining at low cost very large amounts of data generated by
quantum-mechanical (QM) codes has prompted novel efforts
to make the data openly accessible [7].

The information contained in the data can thus be harnessed
and reused indefinitely, in various ways. High-throughput
techniques are routinely used to identify new correlations
between physical properties, with the aim of designing new
high-performance materials [8–10]. Inference techniques can
meanwhile also be used as a boost or substitute for QM tech-
niques. This typically involves predicting a physical property
for a new system configuration, on the basis of its values
for an existing database of configurations. If the database
is sufficiently large and representative, the new property
values can be quickly inferred, rather than calculated anew
by expensive QM procedures, with controllable accuracy.

Machine learning techniques have been successfully used
to predict properties as diverse as atomization energies [11],
density functionals [12], Green’s functions [13], electronic
transport coefficients [14], potential energy surfaces [15–17],
and free-energy landscapes [18]. The high configuration space
complexity of real chemical systems has also inspired learning
molecular dynamics schemes that never assume database
completeness, but rather combine inference with on-the-fly
QM calculations [learning on the fly (LOTF)] [19–21] carried
out when inference is infeasible or not deemed sufficiently
accurate.

A well-established general concept within the machine
learning community is that functional invariance properties
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under some known transformation can be used to improve
prediction, whether this is carried out by, e.g., Gaussian process
(GP) regression [22,23] or neural networks [24]. Exploiting
in similar ways properties other than invariance has received
more limited attention [25]. In the same spirit, materials model-
ers have been successful in exploiting the invariance of energy
under rotation or translation to improve the performance of
energy prediction techniques [15,16]. In LOTF molecular
dynamics applications the high-accuracy target and local
interpolation character of force prediction makes it appealing
to learn forces directly rather than learning a potential energy
scalar field first and then deriving forces by differentiation. In
previous works [26–28] this was accomplished by using GP
regression to separately learn individual force components.

Here, we show how vectorial Gaussian process (VGP)
[29,30] regression provides a more natural framework for
force learning, where the correct vector behavior of forces
under symmetry transformations can be obtained by using
a new family of vector kernels of covariant nature. These
kernels prove particularly efficient at exploiting the informa-
tion contained in QM force databases, however constructed,
together with any prior knowledge of the symmetry properties
of the physical system under investigation. The next section
provides a brief overview of the notion of a VGP, where
we pay particular attention to the problem of force learning.
Then we define a covariant kernel, explain its symmetry
properties, and give a general recipe to generate such kernels.
The procedure is best exemplified by looking at one- and two-
dimensional (2D) systems, where the relevant symmetry force
transformation groups are D1 and O(2). Finally, we address
the full three-dimensional case, where covariant kernels are
tested by examining their performance in learning QM forces
in realistic physical systems [31].

II. VECTORIAL GAUSSIAN PROCESS REGRESSION

We wish to model by a VGP the force f acting on an atom
whose chemical environment is in a configuration ρ that en-
codes the positions of all neighbors of the atom, up to a suitable
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cutoff radius, in an arbitrary Cartesian reference frame. In the
absence of long-range ionic interactions, the existence of such
a local map is guaranteed for all finite-temperature systems by
the nearsightedness principle of electronic matter [32,33].

In a Bayesian setting, before any data is considered, f is
treated as a Gaussian process, i.e., it is assumed that for
any finite set of configurations {ρi, i = 1, . . . N} the values
f(ρi) taken by the vector function f are well described by a
multivariate Gaussian distribution [23]. We write:

f(ρ) ∼ GP(m(ρ),K(ρ,ρ ′)), (1)

where m(ρ) is a vector-valued mean function and K(ρ,ρ ′) is a
matrix-valued kernel function. Before any data is considered,
m is usually assumed to be zero as all prior information on f is
encoded into the kernel function K(ρ,ρ ′). The latter represents
the correlation of the vectors f(ρ) and f(ρ ′) as a function of
the two configurations (input space points) ρ and ρ ′:

K(ρ,ρ ′) = 〈f(ρ)fT(ρ ′)〉, (2)

where angular brackets here signify the expected value over
the multivariate Gaussian distribution. Any kernel K consistent
with this definition must be a positive semidefinite matrix
function, since for any collection of vectors {vi}

∑
ij

vT
i K(ρi,ρj )vj =

〈(∑
i

vT
i f(ρi)

)2〉
� 0. (3)

To train the prediction model we need to access a database of
atomic configurations and reference forces D = {(ρ,fr )i , i =
1, . . . ,N}. Using Bayes’ theorem [34] the distribution (1) is
modified to take the data D into account [23]. If the likelihood
function [24] is also Gaussian (which effectively assumes that
the observed forces fr

i are the true forces subject to Gaussian
noise of variance σ 2

n ) then the resulting posterior distribution
f(ρ|D), conditional on the data, will also be a Gaussian process

f(ρ|D) ∼ GP(f̂(ρ|D),Ĉ(ρ,ρ ′)). (4)

The mean function of the posterior distribution, f̂(ρ|D), is at
this point the best estimate for the true underlying function:

f̂(ρ|D) =
N∑
ij

K(ρ,ρi)
[
K + Iσ 2

n

]−1
ij

fr
j . (5)

Here σ 2
n , formally the noise affecting the observed forces fr ,

serves in practice as a regularizer for the matrix inverse. In the
following, blackboard bold characters such as K or I indicate
N × N block matrices [for instance, the Gram matrix K is
defined as (K)ij = K(ρi,ρj )]. Similarly, we denote by [K +
Iσ 2

n ]−1
ij the ij block of the inverse matrix.

We next examine how to incorporate the vector behavior
of forces into the learning algorithm. The relevant symmetry
transformations in the input space are: rigid translation
of all atoms, permutation of atoms of the same chemical
species, rotations and reflections of atomic configurations.
Forces are invariant with respect to translations and atomic
permutations, and covariant with respect to rotations and
reflections. Assuming that the representation of the atomic
configuration is local, i.e., the atom subject to the force fi is at
the origin of the reference frame used for ρi , translations are

automatically taken into account. The remaining symmetries
must be addressed in the construction of covariant kernels.

III. COVARIANT KERNELS

From now on we will define S to be any symmetry operator
(rotation or reflection) acting on an atomistic configuration of
a d-dimensional system. Rotations will be denoted by R and
reflections by Q.

We require two properties to apply to the predicted force
f̂(ρ|D), once configurations are transformed by an operator S
(represented by a matrix S):

Property 1. If the target configuration ρ is transformed to
Sρ, the predicted force must transform accordingly:

f̂(Sρ|D) = Sf̂(ρ|D). (6)

Property 2. The predicted force must not change if we
arbitrarily transform the configurations in the database (D →
D̃ = {(Siρi,Sifr

i )}) with any chosen set of rotoreflections {Si}.
We next introduce a special class of kernel functions that

automatically guarantees these two properties: a covariant
kernel has the defining property

K(Sρ,S ′ρ ′) = SK(ρ,ρ ′)S′T. (7)

That a covariant kernel imposes Property 1 follows straight-
forwardly from Eq. (5):

f̂(Sρ|D) =
N∑
ij

K(Sρ,ρi)
[
K + Iσ 2

n

]−1
ij

fr
j

=
N∑
ij

SK(ρ,ρi)
[
K + Iσ 2

n

]−1
ij

fr
j

= Sf̂(ρ|D). (8)

To prove Property 2 we note that, if the kernel function
is covariant, the transformed database D̃ has Gram ma-
trix (K̃)ij = K(Siρi,Sj ρj ) = SiK(ρi,ρj )ST

j . If we define the
block-diagonal matrix Sij = δij Si , this can be written in the
simple block-matrix form K̃ = SKST. Using kernel covari-
ance again to write K(ρ,Siρi) = K(ρ,ρi)ST

ii the prediction
associated with the transformed database D̃ can be written as

f̂(ρ|D̃) =
N∑
ij

K(ρ,ρi)S
T
ii

[
SKST + Iσ 2

n

]−1
ij
Sjj fr

j . (9)

By simple matrix manipulations it is now possible to show that
in the above expression the symmetry transformations cancel
out; indeed

ST[
SKST + Iσ 2

n

]−1
S = ST[

S
(
K + Iσ 2

n

)
ST]−1

S

= ST(ST)−1
[
K + Iσ 2

n

]−1
S−1S

= [
K + Iσ 2

n

]−1
. (10)

Equation (10) along with (9) implies f̂(ρ|D̃) = f̂(ρ|D), that is,
Property 2. It is easy to check that standard kernels such as
the squared exponential [24] or the overlap integral of atomic
configuration [35] do not possess the covariance property (7).
Designing, entirely by feature engineering, a covariant kernel

214302-2



ACCURATE INTERATOMIC FORCE FIELDS VIA MACHINE . . . PHYSICAL REVIEW B 95, 214302 (2017)

is in principle possible but can require complex tuning and
is likely to be highly system dependent (see, e.g., Ref. [26]).
We note that noncovariant kernels can be used and avoid these
difficulties, and some have been successfully implemented
[28,36]. This leaves space for improvement as prediction
efficiency will generally be enhanced by increased exploitation
of symmetry (see, e.g., Fig. 3 below for a simple test of this).

We next present a general method for transforming a
standard matrix kernel into a covariant one, followed by
numerical tests suggesting that the resulting kernel improves
very significantly on the force-learning properties of the initial
one, its error converging with just a fraction of the training
data. This proceeds along the lines of previous techniques
for generating scalar invariants, namely the transformation
integration procedure developed in Ref. [22] and the smooth
overlap of atomic orbitals (SOAP) representation for learning
potential energy surfaces of atomic systems [37,38].

Given a group S and a base kernel Kb, a covariant kernel
Kc can be constructed by

Kc(ρ,ρ ′) =
∫

dS1dS2 ST
1 Kb(S1ρ,S2ρ

′)S2, (11)

where dS is the normalized Haar measure for the symmetry
group we are integrating over [39].

The covariance of Kc as given by (11) is easily checked as

Kc(Sρ,S ′ρ ′) =
∫

dS1dS2 ST
1 Kb(S1Sρ,S2S ′ρ ′)S2

=
∫

dS̃1dS̃2 SS̃T
1 Kb(S̃1ρ,S̃2ρ

′)S̃2S′T

= SKc(ρ,ρ ′)S′T, (12)

where the second line follows from the substitutions S̃1 =
S1S and S̃2 = S2S ′. Note that these transformations have unit
Jacobian because of the translational invariance (within the
group) of any Haar measure [39,40].

It can be shown that the positive semidefiniteness of the
base kernel is preserved under the operation (11) of covariant
integration. In particular, a kernel is positive semidefinite if
and only if it is a scalar product in some (possibly infinite
dimensional) vector space [23,41]. Hence the base kernel can
be written as Kb(ρ,ρ ′) = ∫

dα φα(ρ)φT
α(ρ ′). It is then possible

to show that its covariant counterpart Kc [Eq. (11)] will also
be a scalar product in a new function space. Indeed

Kc(ρ,ρ ′) =
∫

dS1dS2 ST
1 Kb(S1ρ,S2ρ

′)S2

=
∫

dα dS1dS2 ST
1 φα(S1ρ)φT

α(S2ρ
′)S2

=
∫

dα ψα(ρ)ψT
α(ρ ′), (13)

where the new basis vectors were defined as ψα(ρ) =∫
dS STφα(Sρ). Hence, Kc will also be positive definite.
The completely general procedure above can be cumber-

some to apply in practice, because of the double integration

over group elements in (11) and the dependence on the design
of the base kernel matrix Kb. As a simplification, we assume
the base kernel to be of diagonal form; assuming equivalence
of all space directions, we can then write

Kb(ρ,ρ ′) = Ikb(ρ,ρ ′), (14)

where the scalar base kernel kb is independent on the reference
frame in which the configurations are expressed. This requires
that

kb(Sρ,Sρ ′) = kb(ρ,ρ ′), (15)

that is, scalar invariance of the base kernel (a property very
commonly found in standard kernels). The double integration
in (11) reduces at this point to a single one

Kc(ρ,ρ ′) =
∫

dS1dS2 ST
1 S2k

b(S1ρ,S2ρ
′)

=
∫

dS1dS2 ST
1 S2k

b
(
ρ,S−1

1 S2ρ
′)

=
∫

dS S kb(ρ,Sρ ′), (16)

where the second line follows from property (15) and the third
line is obtained by the substitution S = S−1

1 S2.
In the next section we show that some base kernels allow

analytical integration of (16). Here we note that incorporating
our prior knowledge of the correct behavior of forces in the
kernel enables us to learn and predict forces associated with
any configuration, regardless of its orientation. However, being
able to do this for completely generic orientations is not always
necessary. In many systems (e.g., crystalline solids where the
orientation is known) all relevant configurations cluster around
particular discrete symmetries. For these systems the relevant
physics can be captured by restricting Eq. (11) to a discrete
sum over the relevant group elements:

Kc(ρ,ρ ′) = 1

|G|
∑
G∈G

Gk(ρ,Gρ ′), (17)

and since there are 48 distinct group elements at most (the order
of the full O48 group), the procedure remains computationally
feasible. In the particular case of one-dimensional systems,
where the only available symmetry operation other than the
identity is the inversion, Eqs. (16) and (17) are formally
equivalent.

IV. COVARIANT KERNELS FROM ONE TO THREE
DIMENSIONS

In the following we will assume that a single chemical
species is present, so that permutation invariance will be simply
enforced by representing configurations as linear combinations
of n Gaussian functions each centered on one atom, all having
the same width σ , and suitably normalized depending on the
dimension d considered:

ρ(r,{ri}) = 1

(2πσ 2)d/2

n∑
i

e
− ‖r−ri ‖2

2σ2 . (18)
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From (18), a linear base kernel kb
L can be defined as the overlap

integral of two configurations [15,35]

kb
L(ρ,ρ ′) =

∫
dr ρ(r,{ri})ρ ′(r,{r′

j })

= 1

(2πσ 2)d

nn′∑
ij

∫
dr e

− ‖r−ri ‖2

2σ2 e
− ‖r−r′

j
‖2

2σ2

= 1

(2
√

πσ 2)d

∑
ij

e
− ‖ri−r′

j
‖2

4σ2 , (19)

where the integration yielding the third line is performed by
standard completion of the square.

We can interpret the linear kernel kb
L in (19) as a scalar

product in function space, so that kb
L(ρ,ρ) = ‖ρ‖2 can be

thought of as the squared norm of the ρ configuration function.
A permutation invariant distance is also readily obtained as
d(ρ,ρ ′) = ‖ρ − ρ ′‖, which can be used within a squared
exponential kernel to give

kb
SE(ρ,ρ ′) = e−‖ρ−ρ ′‖2/2θ

= e−(kb
L(ρ,ρ)+kb

L(ρ ′,ρ ′)−2kb
L(ρ,ρ ′))/2θ . (20)

The representation described above is by construction trans-
lation (and atomic permutation) invariant. We next address
the transformations for which the atomic force is covariant,
i.e., rotations and reflections, using the approach described in
the previous section. Systems with dimensions d = 1,2,3 are
considered in the following three subsections. The first two
provide a useful conceptual playground where the features of
covariant learning can be more easily visualized. The third one
benchmarks the method in real physical systems, simulated at
the DFT level of accuracy.

A. 1D systems

A key feature of covariant kernels is the ability to enable
learning of the entire set of configurations that are equivalent
by symmetry to those actually provided in the database. For
instance, the force acting on the (central) atom at the origin of
configuration ρ can be predicted even if only configurations
ρ ′ of different symmetry are contained in the database. The
only relevant symmetry transformation in one dimension is
the reflection Q of a configuration about its center. In the
simplest possible system, a dimer, this maps configurations
where the central atom has a right neighbor (i.e., those for
which the central atom is the left atom in the dimer) onto
configurations where the central atom has a left neighbor. The
covariant symmetrisation discussed in the previous section
[Eq. (17)] takes the very simple form

kc(ρ,ρ ′) = 1
2

[
kb
L(ρ,ρ ′) − kb

L(ρ,Qρ ′)
]
. (21)

Note that kc is identically zero for inversion-symmetric
configurations ρ or ρ ′ whose associated forces must vanish.

The force field associated with a 1D Lennard Jones dimer
is plotted in Fig. 1 (dotted curve) as a function of a single
signed number—the 1D vector going from the central atom
to its neighbor. The figure also shows the predictions of the
unsymmetrized base kernel using training data coming from
configurations centered on the left atom only (solid blue curve).

FIG. 1. Lennard-Jones dimer force field, learned with data from
one atom only. The base kernel (C1) does not learn the symmetric
counterpart (reaction force), while the covariant (D1) does. The
kernels are labeled by the symmetry group used to make them
covariant; see main text for details.

This closely reproduces the true LJ forces in the region where
the data are available, and predicts the pure prior mean (i.e.,
zero) in the symmetry-related region, i.e., the left half of
the figure. Meanwhile, because of the covariant constraint
(prior information) the GP based on the covariant kernel
learns the left part of the field by just reflecting the right part
appropriately.

To further check the performance of the covariant kernel
(21) we extended the comparison above to predicting the
forces associated with a 1D Lennard Jones 50-atom chain
system, in periodic boundary conditions. A database of
training configurations and an independent test set of local
configurations and forces were sampled from a constant
temperature molecular dynamics simulation using a Langevin
thermostat.

Before presenting the results, it is necessary to introduce
some conventions that will apply throughout the rest of this
work. As a measure of error between reference force fr (ρ) and
predicted force f̂(ρ), we will take the absolute value of their
vector difference |�f| = |fr (ρ) − f̂(ρ)|. Relative errors are
obtained by dividing this absolute error by the time-ensemble
average of the force modulus ¯|f|. Average errors are found by
randomly sampling N training configurations and 1000 test
configurations. Repeating this operation provides the standard
deviation and hence the error bars on absolute and relative
errors. We furthermore denote by Cn the cyclic group of order
n and by Dn the dihedral group (containing also reflections)
of order 2n (C1 hence indicates the trivial group).

With the above clarifications, we can proceed with the
analysis of Fig. 2, which reports the average relative force
error made by the GP regression on the test set as a function of
training set size. It is immediately apparent that the covariant
kernel performance is comparable to that of the base kernel
with double the number of data points for training. We will
observe the same effect also in two and three dimensions:
symmetrizing over a relevant finite group of order |G| gives rise
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FIG. 2. Learning curves for a 1D chain of LJ atoms. The covariant
kernel (D1) learns twice as fast as the base one (C1).

to an error drop approximately equivalent to a |G|-fold increase
in the number of training points. Since the computational
complexity of training a GP is O(N3), this can obviously
lead to significant computer time savings.

B. 2D systems

In two dimensions all rotations and reflections, as well as
any combination of these, are elements of O(2). Moreover, the
O(2) group can be represented by the following set of matri-
ces O(2) = {R(θ ), θ ∈ (0,2π ]} ∪ {R(θ )Q, θ ∈ (0,2π ]} where
R(θ ) = ( cos(θ) sin(θ)

− sin(θ) cos(θ)) and Q is any 2 × 2 reflection matrix.
This makes the covariant integration (16) over O(2) trivial

once the matrix elements resulting from the integration over
SO(2) have been calculated. We next carry out the integration
for the linear base kernel of Eq. (19). This can be expressed as
a sum of pair contributions, where the first atom in each pair
belongs to ρ and the second to ρ ′ :

Kc
SO(2)(ρ,ρ ′) = 1

L

nn′∑
ij

∫
SO(2)

dRR e
− ‖ri−Rr′

j
‖2

4σ2 . (22)

Consistent with Eq. (16), only one atom of the pair is rotated
during the integration, with L being the normalization factor
[cf. Eq. (19)]. The pairwise integrals in (22) are calculated in
two steps. We first define Rij to be the rotation matrix which
aligns r′

j onto ri , and then perform the change of variable

R̃ = RRT
ij (and analogously R̃ = RR−1

ij ) yielding

Kc
SO(2)(ρ,ρ ′) = 1

L

∑
ij

(∫
SO(2)

dR̃ R̃ e
− ‖ri−R̃Rij r′

j
‖2

4σ2

)
Rij . (23)

Since the two vectors ri and Rij r′
j are now aligned, the integral

in Eq. (23) can only depend on the two moduli ri and r ′
j . The

final result takes a very simple analytic form (cf. Supplemental
Material [42]):

Kc
SO(2)(ρ,ρ ′) = 1

L

∑
ij

e
− r2

i
+r′2

j

4σ2 I1

(
rir

′
j

2σ 2

)
Rij , (24)

where I1(·) is a modified Bessel function of the first kind. The
kernel in (24) is rotation-covariant by construction as can be
seen immediately by comparison with Eq. (7).

By exploiting the internal structure of the orthogonal
group discussed above, it is straightforward to show that the
rotoreflection covariant kernel is given by

Kc
O(2)(ρ,ρ ′) = 1

2

[
Kc

SO(2)(ρ,ρ ′) + Kc
SO(2)(ρ,Qρ ′)Q

]
, (25)

which is the two-dimensional analog of Eq. (21). Interestingly,
the resulting kernel can be also cast in the more intuitive form

Kc
O(2)(ρ,ρ ′) = 1

L

∑
ij

e
− r2

i
+r′2

j

4σ2 I1

(
rir

′
j

2σ 2

)
r̂i r̂′T

j , (26)

where the hat denotes a normalized vector. Equation (26)
implies that the predicted force on an atom at the center of
a configuration ρ will be a sum of pairwise forces oriented
along the directions r̂i connecting the central atom with
each of its neighbors (while each neighbor will experience a
corresponding reaction force). The modulus of these forces
will be a function of the interatomic distance completely
determined by the training database, whose integral can be
thought of as a pairwise energy potential. Clearly then,
the resulting force field will be conservative: for any fixed
database, the forces predicted by GP inference using this kernel
will do zero work if integrated along any closed trajectory loop
in configuration space.

To test the relative performance of the learning models
discussed above, we constructed training and test databases for
a two-dimensional triangular lattice, sampled from a constant
temperature molecular dynamics simulation of a 48-particle
system interacting via standard Lennard-Jones forces, once
more using periodic boundary conditions and a Langevin
thermostat. As the chosen lattice has threefold and sixfold
symmetry, we can also examine the performance of covariant
kernels that obey the two properties described above restricted
to appropriate finite groups; these kernels are constructed as
in Eq. (17). In this way we can monitor how imposing a
progressively higher degree of symmetry on the kernel changes
the rate at which forces in this system can be learned.

Our results are reported in Fig. 3. As anticipated, we find
that the discrete covariant summation over the elements of a
group G is approximately equivalent to a |G|-fold increase
in the number of data points. This can be seen, e.g., from
the results for the C3 kernel (threefold rotations) and the C6

kernel (sixfold rotations), by comparing the error incurred in
the two cases using 20 and 10 data points, respectively. More
generally, we observe that the larger the group, the faster the
learning. Note, however, that for the covariant summation (17)
to extract content from the database that is actually useful
for predicting forces in the test configurations at hand, the
group used must describe a true underlying point symmetry
of the system. Hence, for instance, the C4 kernel gives rise to
much slower learning than the C3 kernel for the 2D triangular
lattice examined. Consistently, for this lattice the full point
group D6 performs almost as well as the continuous symmetry
kernels, suggesting that not much more is to be gained once
the full (finite-group) symmetry of a system has been captured.
This finding enables accurate force prediction in a crystalline
system when base kernels are used for which the covariant
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FIG. 3. Learning curves for 2D triangular grid of LJ atoms. The
larger the symmetry group used to construct the kernel, the faster the
learning, provided that the lattice symmetry is captured.

integration cannot be performed analytically, because the
summation over a discrete symmetry group is available as
a viable alternative.

C. 3D systems

We next benchmark the accuracy of our kernels in pre-
dicting DFT forces in three-dimensional bulk metal systems.
As in the 2D case, starting from the linear base kernel we
proceed to carry out the covariant integration analytically.
After expressing the integration as a sum of pairwise integrals,
the position vectors ri and r′

j of two atoms in each pair are
aligned onto each other. A convenient way to achieve this is
by making both vectors parallel to the z axis with appropriate
rotations Rz

i and Rz
j . As before, the covariant integration will

yield a matrix whose elements are scalar functions of the radii
ri and r ′

j only. The integration can be carried out analytically
over the standard three Euler angle variables (cf. Supplemental
Material [42] for further details). Due to the z-axis orientation,
the kernel matrix elements turn out to be all zero except for
the zz one. The result reads

Kc
SO(3)(ρ,ρ ′) = 1

L

∑
ij

RzT
i

⎛
⎝0 0 0

0 0 0
0 0 φ(ri,r

′
j )

⎞
⎠Rz

j ,

φ(ri,rj ) = e−αij

γ 2
ij

(γij cosh γij − sinh γij ),

(27)

αij = r2
i + r ′2

j

4σ 2
,

γij = rir
′
j

2σ 2
.

As in the 2D case, this covariant kernel matrix can be rewritten
in terms of the unit vectors r̂i and r̂′

j associated with the atoms
of the configurations ρ,ρ ′ as

Kc
SO(3)(ρ,ρ ′) = 1

L

∑
ij

φ(ri,r
′
j )r̂i r̂′T

j , (28)

making it apparent that the kernel models a pairwise con-
servative force field. However, while in 2D we needed to
impose the full rotoreflection symmetry in order to obtain
Eq. (26), rotations alone are sufficient to arrive at the fully
covariant kernel in (28). This is a consequence of the fact
that, in three dimensions, the covariant integral over rotations
already imposes that the predicted force any atom will exert on
any other is aligned along the vector connecting the pair: by
symmetry there can be no preferred direction for an orthogonal
force component after integrating over all rotations around
the connecting vector, so that Kc

O(3) = Kc
SO(3). This is not

the case in two dimensions where covariant integration is
over rotations around the z axis orthogonal to all connecting
vectors lying in the xy plane, so that nonaligned predicted force
components associated with a nonzero torque are not forbidden
by symmetry in Kc

SO(2), and only the fully symmetrized kernel
(25) will reduce to the pairwise form (26). More generally
we may conjecture that the rotationally covariant kernel Kc

O(d)
derived from a linear base kernel predicts pairwise central
forces, and hence is conservative, in any dimension d.

We note that energy conserving kernels have previously
been obtained as double derivatives (Hessian matrices) of
scalar energy kernels (as originally described in Refs. [43,44]
and used for atomistic systems in Ref. [38] to learn energies
and more recently in Ref. [45] to learn forces). However, no
closed-form expressions exist for the energy kernels that would
yield our O(d) energy conserving kernels through this route,
since the required double integration of the kernels (21), (26),
(28) cannot be carried out analytically.

To test our models, we performed DFT-accurate dynamical
simulation with exchange and correlation energy modeled via
the PBE/GGA approximation [46]. The systems considered
were 4 × 4 × 4 supercells of fcc nickel and bcc iron in periodic
boundary conditions. A weakly coupled Langevin thermostat
was used to control the temperature. We first examine bulk
nickel at the target temperatures of 500 K and 1700 K, i.e.,
for an intermediate temperature where anharmonic behavior is
already significant, and at a temperature close to the melting
point where the strong thermal fluctuations make the system
explore a more complex target configuration space. Figure 4
illustrates the performance of the kernel in Eq. (27) on this
system.

The effect of adding symmetry information on the learning
curve is very significant for both temperatures. In particular,
the SO(3) covariant kernel achieves a force error average lower
than the 0.1 eV/Å threshold using remarkably few training
points: 10 and 80 for the lower and higher temperatures
in this test, respectively. The errors of the most accurate
models (achieved with a N = 320 database) are particularly
low: 0.0435(±0.0006) eV/Å and 0.095(±0.003) eV/Å re-
spectively. Moreover, we note that the error on each force
component (often reported in the literature, and different from
the error on the full force vector used here) will be lower by a
factor

√
3. This yields errors of 0.025 eV/Å and 0.052 eV/Å in

the two cases, the former comparing well with the 0.09 eV/Å
value obtained by using a state-of-the-art embedded atom
model (EAM) interatomic potential for nickel [47,48].

Figure 5 allows one to assess the accuracy of the GP
predictions in a complementary way: here we plot the
probability distribution of the atomic forces as a function
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FIG. 4. Learning curves for crystalline nickel at two target
temperatures. The SO(3) covariant kernel (full lines) outperforms
the base one (dashed lines).

of the force modulus (blue histogram) and the associated
relative error density (gray histogram). We define the latter as
RED(f ) = |�f|

f
p(f ), which is normalized to 0.055, reflecting

the 5.5% average relative error incurred by force prediction.
The fact that RED(f ) is everywhere a small fraction of p(f )
demonstrates that a reasonable accuracy is achieved for the
whole range of forces predicted.

The results presented so far indicate that fully exploit-
ing symmetry significantly improves the accuracy of force
prediction. Covariance is thus always used in the following
analysis, where we compare the performance of different
symmetry-aware kernels. We start by choosing iron systems
for these tests as many properties of iron-based systems
remain out of modeling reach. This is mostly due to technical
limitations. On the one hand, full DFT calculations on large
systems are too computationally expensive and even hybrid
quantum-classical (QM/MM) simulations of iron systems are

FIG. 5. Density of relative error made by the GP algorithm (N =
320) for bulk nickel at 500 K. The inset shows the scatter plot of real
vs. predicted cartesian components for the same data.

FIG. 6. Learning curves associated with force prediction by
the linear (L, dashed lines) and squared exponential (SE, solid
lines) covariant kernels in bulk iron systems. Red and blue colors
indicate undefected systems and model systems containing a vacancy,
respectively.

typically overwhelmingly costly, as they require large QM-
zone buffered clusters to fully converge the forces [49]. On the
other hand, in many situations even the best available state-of-
the-art classical force fields may not guarantee accurate force
prediction, as they may incur systematic errors [48,49], or may
be hard to extend to complex chemical compositions [50], so
that a technique that can indefinitely reuse all computed QM
forces via GP inference and produce results that are traceably
aligned with DFT-accurate forces could be very useful [26,51].

We carried out constant temperature (500 K) molecular
dynamics simulations of two bcc iron systems: a 64-atom
crystalline system and a 63-atom system derived from this and
containing a single vacancy. In the latter, only the atoms within
the first two neighbor shells of the vacancy were used to test
the algorithm, to better resolve the performance of our kernels
in a defective system. Figure 6 shows the learning curves
for the two symmetrized kernels: the linear kernel covariant
over O(3) and the squared exponential kernel (20) covariant
over the full cubic point group of the crystal. The figure
also reports the performance of a high-quality EAM potential
[52]. Both kernels perform better than the EAM potentials in
this test. However, the error rate of the linear kernel (dashed
lines) levels off to some constant nonzero value that might
or might not be satisfactory (depending on the application),
and will generally depend on the system being examined. In
bulk iron the error floor value is about 0.09 eV/Å while in the
vicinity of a vacancy it is considerably higher (0.15 eV/Å),
suggesting that in spite of its many attractive properties (e.g.,
fast evaluation, fast convergence, energy conservation), the
linear class of kernels of the form (28) is by no means
complete, that is, it sometimes cannot capture and reproduce
the entirety of the reference QM physical interaction. In
many situations, kernels capable of reproducing higher-order
interactions could be needed to reach the target accuracy. This
is exemplified by the much better performance of the squared
exponential kernel (full lines in the figure), which yields higher
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FIG. 7. Learning curves obtained for crystalline silicon using
the linear kernel (dashed lines) or the quadratic kernel (solid lines).
Different colors indicate different temperatures.

accuracy, particularly for the more complex vacancy system
(about 0.05 eV/Å and 0.075 eV/Å for atoms in the bulk
and near the vacancy respectively). It is worth noting here
that, in general, conserving energy exactly by construction
provides no guarantee of higher force accuracy. For instance,
in the case above, the squared exponential kernel delivers
much more precise forces even though it conserves energy
only approximately. As the approximation will in any case
improve with the accuracy of the predicted forces, while no
SO(3)-invariant energy conserving equivalent of this kernel has
been proposed or appears viable, whether it is preferable to use
this kernel or a less accurate but energy conserving alternative
one, will generally depend on both the target system and the
application at hand.

For target systems with no clear point symmetry, a full
covariant integration would always be desirable. This cannot
be carried out analytically for the squared exponential kernel,
where symmetrizing by a discrete summation is the only
option. However, interactions beyond pairwise can be still
captured by the quadratic kernel obtained by taking the square
of the linear kernel (19). In contrast to the squared exponential
kernel, this is analytically tractable (for instance, an SO(3)-
invariant scalar quadratic kernel was obtained in Ref. [37]),
and our analysis reveals that a matrix-valued quadratic kernel
covariant over O(3) can be derived analytically (details of
the calculation are a subject for future work [53]). The
resulting model generates a rotoreflection symmetric three-
body force field that can be expected to properly describe
non-close-packed bonding, such as found in covalent systems,
for example.

Figure 7 illustrates the errors incurred by the linear and
the quadratic kernel while attempting to reproduce the forces
obtained during Langevin dynamics of a 64-atom crystalline
silicon system using density functional tight binding (DFTB)
[54]. Both linear and quadratic kernels are significantly more
accurate than a classical Stillinger-Weber (SW) potential [55]
fitted to reproduce the DFTB lattice parameter and bulk
modulus [26]. Due to its more restricted associated function

space, the linear kernel is the one that learns faster, and would
be the more accurate if only very restricted databases had to be
used. However, the quadratic kernel eventually performs much
better than the (effective two-body) linear one for both of the
temperatures, 500 K and 1000 K, that we investigated in this
covalent system. We obtain errors of 0.05 eV/Å and 0.1 eV/Å
in the two cases, corresponding, respectively, to approximately
4% and 6% of the mean force. These are very close to the
minimum baseline locality error [56] associated with the finite
cutoff radius used for the Gaussian expansion in (18).

V. CONCLUSION

In this work we presented a new method to learn quantum
forces on local configurations. This method is based on a
vectorial Gaussian process that encodes prior knowledge in
a matrix-valued kernel function. We showed how to include
rotation and reflection symmetry of the force in the GP process
via the notion and use of covariant kernels. A general recipe
was provided to impose this property on otherwise nonsym-
metric kernels. The essence of this recipe lies in a special
integration step, which we call covariant integration, over the
full rotoreflection group associated with the relevant number
of system dimensions. This calculation can be performed
analytically starting from a linear base kernel, and the resulting
O(d) covariant kernels can be shown to generate conservative
force fields.

We furthermore tested covariant kernels on standard phys-
ical systems in one, two, and three dimensions. The one- and
two-dimensional scenarios served as playgrounds to better
understand and illustrate the essential features of such learning.
The 3D systems allowed some practical benchmarking of
the methodology in real systems. In agreement with what
physical intuition would suggest, we consistently found that
incorporating symmetry gives rise to more efficient learning.
In particular, if both database and target configurations belong
to a system with a definite underlying symmetry, restricting
kernel covariance to the corresponding finite symmetry group
will deliver the full speed-up of error convergence with respect
to database size. At the same time this approach lifts the
requirement of analytical integrability over the full SO(d)
manifold, as the restricted integration becomes a simple
discrete sum over the relevant finite set of group elements.
Testing on nickel, silicon, and iron (the latter both pure
and defective) reveals that the present recipes can improve
significantly on available classical potentials. In general,
nonlinear kernels may be needed for accurate force predictions
in the presence of complicated interactions, e.g., in the study
of plasticity or embrittlement/fracture behavior of covalent or
metallic systems. In particular, a quadratic base kernel yields
a fully O(3) covariant effective three-body force field, and
our tests suggest that this can be used successfully to improve
the accuracy of force prediction in covalent materials. Current
work is focusing on amorphous Si systems, where the lack of
a clear point symmetry makes the full O(3) covariance strictly
necessary.

Our results reveal that force covariance is achievable
without imposing energy conservation to the kernel form.
While both are desirable properties, we find that lifting the
exact energy conservation constraint can sometimes yield
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higher force accuracy. For instance, no invariant local energy
based kernel has been proposed for the squared exponential
(universal approximator) kernel, since the analytic integration
over SO(3) is not viable. However, we find that covariance
limited to the O48 point group is very effective for force
predictions in crystalline Fe systems using this kernel (see
Fig. 6).

In general, while predicting forces with high accuracy is the
main motivation for machine learning-based work in this field,
the best compromise between accuracy, energy conservation
and covariance will depend on the specific target application.
For instance, kernels built from a covariant integration (or
summation) that do not conserve energy exactly should not be
used as substitutes for conventional interatomic potentials to
perform long NVE simulations, since they might in principle
lead to non-negligible spurious energy drifts. This is not a
problem in NVT simulations, where a thermostat exchanges
energy with the system to achieve and conserve the target
temperature, which will be able to compensate for any such
drift if appropriately chosen [57]. Furthermore, the same
kernels will be particularly suited for schemes that are in
all cases incompatible with strict energy conservation. These
include the LOTF approach and any online learning scheme
similarly involving a dynamically updated force model. They
also include any highly accurate and transferable scheme based
on a fixed, very large database where, to maximize efficiency,
each force prediction only uses its corresponding most relevant
database subset.

On the other hand, any usage style is possible for covariant
kernels conserving energy exactly, such as the covariant linear
kernels of Eqs. (21), (26), and (28). In fact, the conservative

pairwise interaction forces generated by these covariant linear
kernels can be easily integrated to provide effective optimal
standard pairwise potentials for any application needing a
total energy expression. We also note that while the pair
interaction form would still ensure very fast evaluation of
the predicted forces, its accuracy for complex systems could
be improved by dropping the transferability requirement of a
single pairwise function. In such a scheme, different system
regions could conceivably be modeled by locally optimized
forces/potentials, where the local tuning could be simply
achieved by restricting the inference process to subsets of the
database pertinent to each target region.
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