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Absorption spectrum of a two-level system subjected to a periodic pulse sequence
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We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and
tune the TLS’s photon absorption spectrum. Tuning and controlling the emission and the absorption are of
great interest, e.g., for the development of efficient interfaces between stationary and flying qubits in modern
architectures for quantum computation and quantum communication. We consider periodic pulse control, where
the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing
a 180◦ rotation. For small interpulse delays, the absorption spectrum features a pronounced peak of stimulated
emission at the pulse frequency, similar satellite peaks with smaller spectral weights, and the net absorption
peaks on the sides. As long as the detuning between the carrier frequency of the driving and the TLS transition
frequency remains moderate, this spectral shape shows little change. Therefore, the pulse control allows shifting
the absorption peak to a desired position and locks the overall absorption spectrum to the carrier frequency of the
driving pulses. A detailed description of the spectrum and its evolution as a function time, the interpulse spacing,
and the detuning is presented.
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I. INTRODUCTION

An interface between stationary and flying qubits that
enables long-range entanglement between different quantum
network nodes is essential for quantum information processing
[1]. It is of particular importance for the solid-state qubits,
such as quantum dots or color centers [2–15], which can be
efficiently coupled to each other via photons and thus em-
ployed for quantum communications and distributed quantum
information processing. However, the slow fluctuations in the
environment of the solid-state qubits (e.g., the local strain
and/or the local electric fields) constitute a lingering chal-
lenge because they unpredictably shift the optical transition
frequency of the qubits [16,17]. This slow drift of the transition
frequency (spectral diffusion) makes it difficult to achieve
the precise matching between the photons originating from
different qubits that is required for efficient entanglement.
To mitigate the spectral diffusion problem, various methods
have been proposed and successfully used [5–9,16,18–23],
focusing primarily on the tuning of the emission spectrum
and on improving the indistinguishability of the photons
emitted from different qubits. In particular, it has been recently
suggested [23] that application of a periodic sequence of
the optical control pulses to a quantum emitter (a two-level
system coupled to the electromagnetic radiation bath) can
redirect most of the emission into a peak located at a preset
target frequency (determined by the carrier frequency of the
pulse driving field) and therefore can greatly improve the
indistinguishability of the photons coming from different
emitters.

At the same time, there is growing interest, accompanied
by impressive progress [24–26], in long-range entanglement
schemes based on the photon absorption, and theoretical
developments that allow control and tuning of the absorption
spectra have become timely and interesting. Correspondingly,
a question arises whether the absorption-based entanglement

can also be improved using the pulse control of the emitters,
i.e., whether the absorption spectrum of a two-level system
(TLS) coupled to the radiation bath can be modified and tuned
by the control pulses. In addition, the studies of absorption
of a TLS subjected to an external control are of fundamental
interest due to the intimate connection between emission and
absorption [27]. For instance, if the TLS is continuously
driven by a strong coherent laser field, then the TLS emission
spectrum has an interesting three-peak structure, with two
additional side peaks located at the frequencies ±�R (where
�R is the laser Rabi driving frequency), and the absorption
spectrum of the same system also acquires additional structure,
displaying regions of gain, corresponding to an amplification
of the probing weak field instead of attenuation [28,29].

The emission spectrum of the pulse-controlled TLS exhibits
similarities with the continuously driven TLS emission [23]: it
has a central peak at the carrier frequency of the pulses ω0, as
well as the satellite peaks at ω0 ± π/τ, ± 2π/τ, . . . , where
τ is the interpulse distance. Thus, it is reasonable to expect
that absorption also can be controlled with the periodic pulses
and that the resulting absorption spectrum also has nontrivial
features. In this work we study the absorption spectrum of a
TLS driven by a periodic sequence of optical π pulses and
examine its dependence on the pulse sequence period and the
detuning of the emitter with respect to the pulse frequency
(Fig. 1). We show that both expectations above are correct,
and therefore, the pulse control indeed can be a useful tool
for controlling and tuning the absorption spectrum of a TLS.
Specifically, the absorption spectrum has a well-defined central
feature that includes a pronounced dip (which corresponds to
stimulated emission at the carrier frequency of the pulses)
and two absorption peaks on the sides. The spectrum also
exhibits satellite features, with smaller spectral weights. The
overall shape of the absorption spectrum does not change much
as long as the detuning � between the carrier frequency of
the driving pulses and the TLS transition frequency remains
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FIG. 1. (a) Schematic representation of the two-level system with
ground state |g〉 and excited state |e〉 separated in the rotating frame by
the detuning �. It is probed by measuring the energy absorbed from a
weak field as a function of frequency. (b) The absorption spectrum in
the absence of any driving field has a Lorentzian line shape centered
around �. (c) We will evaluate the absorption spectrum when the
system is driven by a periodic sequence of π pulses with interpulse
time τ .

moderate (� � 1/τ ) and as long as the value of τ is small in
comparison with the spontaneous emission time. Therefore,
we show that the optical control enables creation of pairs
of quantum nodes (one node working as an emitter and the
other as an absorber) with precisely matching frequencies
and therefore greatly increased entanglement efficiency. This
approach can also be used to improve the coupling of the
emitters and the absorbers to optical cavities since the laser
pulses can tune both the emission and the absorption lines
of the respective quantum nodes, bringing them in resonance
with the respective cavities and stabilizing both the emission
and the absorption peaks at the desired location.

The rest of this paper is organized as follows. In Sec. II
we describe the model of the two-level system coupled to
the photon bath and controlled by the pulses, the master
equations governing the system dynamics, and the two
methods, analytical and numerical, used for calculating the
absorption spectrum. In Sec. III we present analytical and
numerical results demonstrating the control and tunability of
the absorption spectrum. In Sec. IV we present conclusions.

II. MODEL OF THE TWO-LEVEL SYSTEM COUPLED TO
THE ELECTROMAGNETIC RADIATION BATH

We model the quantum emitter as a TLS with the ground
state |g〉 and the excited state |e〉, separated in energy by
Ee − Eg = h̄ω1; below we set h̄ = 1. Initially, at time t = 0,
the excited state is occupied, and the ground state is empty.
The TLS is coupled to a photon bath and is periodically
driven by pulses of the laser field with the Rabi frequency
�. Within the rotating-wave approximation (RWA) [30], in
the reference frame rotating at frequency ω0, the system in

question is described by the Hamiltonian

H =
∑

k

ωka
†
kak + �

2
σz − i

∑
k

gk(a†
kσ− − akσ+)

+ �x(t)

2
(σ+ + σ−), (1)

where � = ω1 − ω0 is the detuning of the TLS’s transition
frequency from the carrier frequency of the pulses; here we
introduced the standard pseudospin Pauli operators for the
TLS, namely, σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, and σ− =
|g〉〈e| = (σ+)†. Furthermore, a

†
k and ak are, respectively, the

creation and annihilation operators for a photon of mode k with
frequency ωk , and gk is the strength of coupling to the TLS.
Note that in the rotating frame all frequencies are measured
from the pulse carrier frequency ω0, so that the zero frequency
in the rotating frame corresponds to ω0 in the laboratory frame;
we take it as the target frequency for our TLS. The detuning
� is assumed to be static on the time scale of interest, as is the
case for stable emitters, but the value of � is not known to an
experimentalist because of the slow spectral diffusion, so the
goal is to make the absorption spectrum independent of �.

The time-dependent driving �x(t) in Eq. (1) represents
the control pulses; here we consider the simple situation of
square-shaped pulses, with �x(t) = � during the pulses and
zero otherwise. In fact, below we assume that the pulses
are almost instantaneous, i.e., that � is much larger than all
other relevant energy scales, and that each pulse performs
an almost instantaneous 180◦ rotation of the TLS around the
x axis, interchanging |e〉 and |g〉; this assumption will be
discussed further below. In the absence of control (�x(t) ≡ 0),
the system exhibits spontaneous decay, and the corresponding
emission rate is � = 2π

∫
g2

k δ(ωk − �) dk; we normalize our
energy and time units so that � = 2, and the corresponding
spontaneous emission line has a simple Lorentzian shape
1/(1 + ω2), with the half width equal to 1. In other words,
frequencies and times below are measured in units of �/2 and
(�/2)−1, respectively.

The absorption spectrum is defined here as the energy
absorbed by the TLS during the time interval 0 � t � T from
a weak probing field of frequency ω. The probing field is
assumed to be weak enough that it does not significantly affect
the population of each state [28,31]; our goal is to calculate the
absorption as a function of frequency and time T . Note that
the shape of spectra calculated below is established on a time
scale of one to two spontaneous emission times, and after that
the spectral features increase in amplitude almost linearly with
time, so that at longer times T the spectra can be reinterpreted
in a standard way via the rate of the energy absorption
(absorbed power). In order to be able to describe the absorption
(emission) process at earlier times, we calculate the absorbed
(emitted) energy, following the standard idealized approach
[32]. In general, definition and analysis of the time-dependent
spectrum is a nontrivial task [33–35], especially at very short
times, where the non-Markovian effects may play a role; that
is beyond the scope of our work.

To understand the dynamics of the system, we analyze the
time evolution of the density matrix of the emitter, which is
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written as

ρ(t) = ρee(t)|e〉〈e| + ρeg(t)|e〉〈g|
+ ρge(t)|g〉〈e| + ρgg(t)|g〉〈g|, (2)

with ρ∗
ge = ρeg . For the TLS described by the above Hamil-

tonian (1), within the Markovian approximation, the density-
matrix operator is governed by the master equations [30] in
the rotating-wave approximation:

ρ̇ee = i
�x(t)

2
(ρeg − ρge) − �ρee,

ρ̇gg = −i
�x(t)

2
(ρeg − ρge) + �ρee,

ρ̇ge =
(

i� − �

2

)
ρge − i

�x(t)

2
(ρee − ρgg),

ρ̇eg =
(

−i� − �

2

)
ρeg + i

�x(t)

2
(ρee − ρgg).

(3)

Since the pulse driving is assumed to be strong and short (� �
�,�), the pulses can be considered instantaneous; our previous
studies [23] have shown that even moderate driving strength
[of the order of 1 GHz for nitrogen-vacancy (NV) centers] is
already satisfactory. Each pulse inverts the populations of the
excited and ground states and swaps the values of ρeg and ρge,
i.e.,

ρ(nτ + 0) = σxρ(nτ − 0)σx, (4)

where ρ(nτ − 0) and ρ(nτ + 0) are the density matrices
immediately before and after the pulse, respectively, with n

being an integer and τ being the period of the pulse sequence;
in other words, the pulses interchange ρee with ρgg and ρeg

with ρge.
We want to determine the energy absorbed from a weak

probing field by the TLS subjected to the periodic sequence
of the π pulses. Since the effect of the probing field is small,
the absorption spectrum can be calculated within the linear
response theory, so that the absorbed energy Q(ω) is given by
[28,31]

Q(ω) = 2A2Re

{ ∫ T

0
dt

∫ T −t

0
dθ

×〈[σ−(t),σ+(t + θ )]〉e−iωθ

}
, (5)

where [O1,O2] is the commutator of operators O1 and O2 and
the angle brackets represent the expectation values evaluated in
the absence of the probing field. Here σ−(t) and σ+(t + θ ) are
the time-dependent operators in the Heisenberg representation,
and the expectation values are taken with respect to the initial
state of the two-level system (in our case, fully occupied
excited state and empty ground state). The constant A is
independent of the pulse parameters and does not affect the
spectral shape, determining only the absolute scale of the
absorbed energy. Expression (5) can be rewritten as

Q(ω) = 2A2Re{P2(ω) − P1(ω)}
= P2(ω) − P1(ω), (6)

where

P2(ω) =
∫ T

0
dt

∫ T −t

0
dθ 〈σ−(t)σ+(t + θ )〉e−iωθ (7)

and

P1(ω) =
∫ T

0
dt

∫ T −t

0
dθ 〈σ+(t + θ )σ−(t)〉e−iωθ . (8)

The term P1(ω) = 2A2Re{P1(ω)} can be viewed as the direct
emission of the two-level system, and P2(ω) = 2A2Re{P2(ω)}
can be viewed as the direct absorption, so that the difference
yields the net absorption [36]. We evaluate the terms P1(ω)
and P2(ω) separately and obtain the total absorption spectrum
Q(ω) by taking the difference.

To evaluate the emission spectrum, it is convenient to
reexpress the two-time correlation function 〈σ+(t + θ )σ−(t)〉
as a single-time expectation value [32,36–40], according to

〈σ+(t + θ )σ−(t)〉
= Tr[ρ(0)U−1(0,t + θ )σ+U (0,t + θ )U−1(0,t)σ−U (0,t)]

= Tr[σ−ρ(t)U−1(t,t + θ )σ+U (t,t + θ )]

= Tr[ρ ′(t,t + θ )σ+], (9)

where σ+ and σ− are the time-independent Pauli operators in
the Schrödinger representation and U (t1,t2) is the evolution
operator of the emitter from time t1 to time t2, as determined
by the master equation (3). The calculations are simplified
by introducing the matrix ρ ′(t,s); its initial value at s = t

is ρ ′(t,t) = σ−ρ(t), and its further evolution from s = t to
s = t + θ is governed by the emitter’s evolution operator
U (t,t + θ ), so that ρ ′(t,t + θ ) = U (t,t + θ )ρ ′(t,t)U−1(t,t +
θ ). In this way the evaluation of the two-time correlators
becomes rather straightforward (but lengthy; see the Appendix
for details), and the function P1(ω) can be obtained analytically
and/or numerically. In order to calculate the function P2(ω), we
use the same procedure, simplifying the two-time correlation
function as

〈σ−(t)σ+(t + θ )〉 = Tr[σ+ρ ′′(t,t + θ )] (10)

by introducing the matrix ρ ′′(t) = ρ(t)σ−, whose time evo-
lution is also governed by U (t,t + θ ), i.e., ρ ′′(t,t + θ ) =
U (t,t + θ )ρ ′′(t,t)U−1(t,t + θ ). Note that ρ ′ and ρ ′′ are not
density matrices, and the symmetries of the proper density
matrix ρ(t) (such as ρgg = 1 − ρee and/or ρ∗

ge = ρeg) are not
applicable to ρ ′ and ρ ′′.

In the absence of the pulses, the absorption spectrum has a
Lorentzian-shaped profile centered at the emitter’s frequency
that equals the detuning � (Fig. 1). In the presence of the
pulses, we calculated the absorption spectrum both analytically
and numerically by iteratively evolving the density-matrix
operator between successive pulses on a discrete time grid,
using the equations of motion (3), with the initial conditions
ρee = 1, ρeg = ρge = ρgg = 0, and then making use of (9) and
(10) to calculate the two-time correlation functions.

A. Numerical solution

To find the solution numerically, we divide the time axis in
intervals of length τ (equal to the interpulse separation), and
each interval between the pulses is further discretized into
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smaller steps of length �t . The goal is to find the two-time
correlators 〈σ−(t)σ+(t + θ )〉 and 〈σ−(t)σ+(t + θ )〉 for each
value of t and θ on this time grid and use Fourier transform to
find P1(ω) and P2(ω), whose difference gives the absorption
spectrum Q(ω).

We start at t = 0 with the known initial conditions for ρ(t)
and use Eq. (3) to evolve all elements of the density matrix
ρ(t) from time t to t + �t , and we repeat this integration up to
t = τ . Then the π pulse is applied to the system, transforming
the density matrix in accordance with Eq. (4), and the iterative
integration is resumed to propagate the density matrix from
t = τ to t = 2τ , until another pulse is applied at 2τ . The
process is repeated until time T = Npτ is reached, where Np

is the total number of pulses. In this way we can obtain the
elements of ρ ′(t,t) and ρ ′′(t,t) for every t ∈ [0,Npτ ]. Then, for
each time t we propagate the matrices ρ ′ and ρ ′′ from time t to
time t + θ by solving the master equation (3); the values ρ ′(t,t)
and ρ ′′(t,t) serve as initial conditions. As a result, we obtain
ρ ′(t,t + θ ) and ρ ′′(t,t + θ ) for all values of θ ∈ [0,T − t]. This
procedure produces the two-time correlators 〈σ+(t + θ )σ−(t)〉
and 〈σ−(t)σ+(t + θ )〉 [see Eqs. (9) and (10)]. Finally, Fourier
transform with respect to θ and integration over t give usP1(ω)
and P2(ω), thus determining the absorption spectrum Q(ω).

B. Analytical solution

The analytical solution for the density-matrix evolution
between the pulses can be obtained directly from Eq. (3) and
combined with the analytically calculated transformation of
the density matrix by pulses as described by Eq. (4), thus
providing a fully analytical solution to the problem. The
corresponding calculation is quite lengthy and is presented
in detail in the Appendix. In the limit of long T (i.e., large
number of pulses Np), the resulting expression for P1(ω) is

P1(ω) = 1

(1 + e−�τ )γ0

[(
1 − e−�τ

�
− e−γ0τ

eγ2τ − 1

γ2

+ eγ2τ − 1

γ2

1 − e−γ0τ

e2γ1τ − 1

)(
Np + e−�τ

1 + e−�τ

)

− eγ2τ − 1

γ2

1 − e−γ0τ

e2γ1τ − 1

(
2

e−Npγ1τ − 1

e−2γ1τ − 1

+ (e−�τ − e−2�τ )
e−Npγ1τ

e−2γ1τ − e−2�τ

)]
. (11)

We have also performed a similar calculation for P2(ω),
expressing it as P2(ω) = P3(ω) − P1(ω), and the resulting
expression for P3(ω) in the long-time limit is

P3 = Npτ

γ0
− Np

γ 2
0

(1 − e−γ0τ )

+ eγ0τ + e−γ0τ − 2

γ 2
0 (e2γ1τ − 1)

[
Np − 2

1 − e−2γ1τ

]
, (12)

where γ0 = i(ω − �) + �/2, γ1 = iω + �/2, and γ2 =
i(ω − �) − �/2.

FIG. 2. Absorption spectrum of a two-level system with detuning
� = 3.0 driven by a periodic sequence of π pulses of period τ = 0.2
after Np = 8 pulses. Panels (a) and (b) show the terms P1(ω) (direct
emission) and P2(ω) (direct absorption), correspondingly, and panel
(c) shows the difference between the two terms, which is the total
absorption Q(ω). The results are obtained by solving the master
equation numerically (blue solid line) and analytically in the limit
of a large number of pulses (red dashed line). The two approaches
give very close results despite the assumed limit Np � 1 in the
analytical result and finite time step used in the Fourier transform
of the numerical results.

III. RESULTS

Figure 2 shows the absorption spectrum obtained using
both analytical and numerical approaches for a two-level
system with � = 3.0 and a pulse sequence with τ = 0.2 after
Np = 8 pulses. Figures 2(a) and 2(b) show P1(ω) and P2(ω),
respectively, while Fig. 2(c) shows the absorption spectrum
obtained by taking their difference according to Eq. (6). In the
presence of the pulse control we see the central feature in both
spectra P1(ω) and P2(ω): the peak in the absorption spectrum
at the carrier frequency of the pulses (ω = 0 in the rotating
frame) and the satellite peaks at the multiples of ±π/τ . These
features produce the net absorption spectrum Q(ω).

Good agreement between numerics and analytics is clearly
seen, despite the limit Np � 1 used in the analytical result and
the numerical Fourier transform of the finite-time-step data in
the numerical result. The agreement is further improved by
considering the spectrum at longer times (see the Appendix).
These results provide clear validation of the tools used in
these studies. Moreover, note that the absorption spectrum, as
given by Eq. (5), is the difference of two terms of comparable
magnitude in a broad frequency range. As a result, it is
influenced by numerical errors, but the small discrepancy
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FIG. 3. Absorption spectrum of a two-level system with detuning
� = 3.0, driven by a periodic sequence of π pulses with period
τ = 0.2, after Np = 8 (black), Np = 12 (red), Np = 16 (green), and
Np = 20 (blue) pulses. The curves present analytical results; the
arrows indicate the increasing number of pulses (increasing total
time of the sequence). The overall spectral shape is established early,
within one to two spontaneous emission times, and at later times the
peaks/dips increase in amplitude.

between the analytical and numerical results shows that this
kind of error is not critical. Thus, the numerical solution can
be used in future studies of more complex driving protocols,
which may not be amenable to an analytical solution.

Figure 3 shows analytical results for the time evolution
of the absorption spectrum for � = 3.0 and τ = 0.2. The
snapshots of the spectrum are presented after Np = 8 (black),
Np = 12 (red), Np = 16 (green), and Np = 20 (blue) pulses.
The absorption spectra feature a positive part and a negative
part. The former corresponds to the “true absorption” [28,41],
while the latter corresponds to the stimulated emission, when
a photon is absorbed from the driving optical field and another
photon is emitted at the probing field frequency. The central
dip at ω = 0 corresponds to the stimulated emission at the
pulse frequency, and the satellite dips at multiples of ±π/τ ,
with amplitudes that decrease away from the central frequency.
Also, the net absorption peaks are clearly seen on the sides.
The overall shape of the spectrum is established early, on a time
scale of one to two spontaneous emission times, and later, the
amplitude of the peaks/dips just increases with time.

In Fig. 4 we present the dependence of the absorption
spectrum for � = 3.0 on the period τ of the pulse sequence.
The absorption spectrum is shown after eight pulses for
τ = 0.2, τ = 0.3, τ = 0.4, and τ = 0.5. The satellites move
closer to the central dip, and their relative amplitude increases
as τ becomes longer. Also note the increase in the positive
fraction of spectral weight with increasing τ .

Finally, we study the dependence of the absorption spec-
trum on the detuning � in order to demonstrate that the pulse
protocol stabilizes the positions of different spectral features,
making them independent of �, and thus suppresses spectral
diffusion. The corresponding results are shown in Fig. 5, which
presents the spectrum under a pulse sequence of period τ = 0.2
for the detuning values of � = 3.0 (black), � = 4.0 (red),
� = 5.0 (green), and � = 6.0 (blue) after eight pulses. The
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FIG. 4. Absorption spectrum of a two-level system with detuning
� = 3.0 driven by a periodic sequence of π pulses with the periods
τ = 0.2, τ = 0.3, τ = 0.4, and τ = 0.5 after Np = 8 pulses. The
curves present analytical results.

shape of the spectrum remains almost the same for all four
values of the detuning parameter when τ is kept constant. In
fact, we observe that the line shape of the absorption spectrum
shows little dependence on � as long as τ� � 1. Figure 5
shows that the fraction of the spectral weight contained in the
positive-frequency satellites (with ω > ω0) slightly increases
with �, while the spectral weight of the negative-frequency
satellites (ω < ω0) correspondingly decreases.

The effect of the control pulses on the spectra can be
understood qualitatively by noticing that the shape of the
emission/absorption spectra is governed by the rate of the
phase accumulation between the ground and excited states of
the emitter. Without pulses, in the coordinate frame rotating
with the carrier frequency of the driving field ω0, the phase
between the two states accumulates over the time interval T

-40 -20 0 20 40
ω

-0.06

-0.04

-0.02

0

0.02

Q
(ω

)

Δ = 3.0
Δ = 4.0
Δ = 5.0
Δ = 6.0τ = 0.2, 8 pulses

FIG. 5. Absorption spectrum of the TLS with detunings � = 3.0
(black), � = 4.0 (red), � = 5.0 (green), and � = 6.0 (blue) driven
by a periodic sequence of π pulses of period τ = 0.2 after Np = 8
pulses. The curves present analytical results.
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and is equal to T �, thus giving rise to a spectral peak at the
relative frequency ω = �. But the control pulses periodically
invert this phase, preventing its accumulation [23]. As a result,
when the phase is inverted sufficiently frequently (small τ ),
the absorption/emission spectra are controlled primarily by
the value of τ and become practically independent of � (see
the Appendix for theoretical details).

The spectrum created by the control pulses has similarities
with the situation of strong continuous driving. The use of
short, strong pulses instead of strong continuous driving can
minimize some undesirable side effects of strong driving, e.g.,
ionization of a NV center or a quantum dot by the strong
driving field, excitation of the emitter to other (nonresonant)
levels, possible ionization of other photosensitive entities in the
sample, increased background photon count due to coherent
scattering of the driving laser light, etc. Even if the side effects
cannot be suppressed completely, the use of the pulses instead
of continuous driving restricts these effects to the narrow time
windows in the immediate vicinity of the pulses, which could
make it easier to detect and control them. Moreover, control of
the pulse period gives experimentalists an alternative way to
change the system’s evolution, which can facilitate engineering
of the emission/absorption spectra.

IV. CONCLUSIONS

We have studied the absorption spectrum of a two-level
system driven by a periodic sequence of the π pulses. This
absorption spectrum is determined by the energy absorbed
by the emitter from a probing field weak enough to not
significantly affect the population of the excited and ground
states. We have solved the problem by integrating the master
equation analytically and numerically and obtained from
both methods results that are in excellent agreement. The
absorption spectrum has a pronounced dip at the pulse carrier
frequency (which corresponds to stimulated emission), the net
absorption peaks on the sides, and the satellite peaks/dips
at multiples of ±π/τ ; the spectral weights of the satellites
are suppressed away from the central peak. Our results show
that for reasonably small τ (say, smaller than half of the
spontaneous emission time, �τ < 1/2) and for moderate
detunings, �τ � 1, the absorption spectrum has a shape with
little dependence on �, so that all features (stimulated emission
dips and the net absorption peaks) are stabilized by the control
pulses.

By using the optical control considered in this work (with,
possibly, more complex pulse protocols), it is possible to
create pairs of quantum nodes, with one node working as an
emitter and the other as an absorber, with precisely matching
frequencies, and therefore greatly increased entanglement
efficiency. In a similar manner, one can use it to improve the
coupling of the emitters and absorbers to optical cavities, using
the laser pulses to tune both the emission and the absorption
lines of the respective quantum nodes, bringing them in
resonance with the respective cavities and stabilizing both the
emission and absorption features at the desired location.

ACKNOWLEDGMENTS

We thank D. D. Awschalom and M. E. Flatté for helpful
discussions. Work at the Ames Laboratory was supported

by the U.S. Department of Energy, Office of Science,
Basic Energy Sciences, Division of Materials Sciences and
Engineering. The Ames Laboratory is operated for the U.S.
Department of Energy by Iowa State University under Contract
No. DE-AC02-07CH11358. This work was partially supported
by the Air Force Office of Scientific Research MURI program.

APPENDIX

Here we present the details of the analytical calculation of
the absorption spectrum for a two-level system subjected to a
periodic sequence of control pulses. As shown in Refs. [28,41],
the absorption spectrum can be determined from the two-time
correlation functions of the TLS:

Q(ω) = 2A2×Re

{∫ T

0
dt

∫ T −t

0
dθ

×〈[σ−(t),σ+(t + θ )]〉e−iωθ

}
, (A1)

where [ ,] is the commutator of the two enclosed operators and
the angle brackets represent the expectation values evaluated
in the absence of the probing field. A is a proportionality
constant. This can be rewritten as

Q(ω) = 2A2Re{P2(ω) − P1(ω)}
= P2(ω) − P1(ω), (A2)

with

P2(ω) =
∫ T

0
dt

∫ T −t

0
dθ 〈σ−(t)σ+(t + θ )〉e−iωθ (A3)

and

P1(ω) =
∫ T

0
dt

∫ T −t

0
dθ 〈σ+(t + θ )σ−(t)〉e−iωθ . (A4)

The terms P1(ω)=2A2Re{P1(ω)} and P2(ω)=2A2Re{P2(ω)}
can be evaluated separately, and the absorption spectrum can
be obtained by taking the difference. To findP2(ω), we express
the correlation function as

〈σ−(t)σ+(t + θ )〉
= Tr[ρ(0)U−1(0,t)σ−U (0,t)U−1(0,t + θ )

× σ+U (0,t + θ )]

= Tr[σ+U (t,t + θ )U (0,t)ρ(0)U−1(0,t)

× σ−U (0,t)U−1(0,t)U †(t,t + θ )]

= Tr[σ+U (t,t + θ )ρ(t)σ−U−1(t,t + θ )]

= Tr[σ+U (t,t + θ )ρ ′′(t,t)U−1(t,t + θ )]

= Tr[σ+ρ ′′(t,t + θ )], (A5)

where σ+ and σ− are the Pauli operators and U (t1,t2) is the
operator of the emitter’s evolution from t1 to t2, as determined
by the master equation (3). The subsequent calculations
are facilitated by introducing the matrix ρ ′′(t,s); its initial
value at s = t is defined as ρ ′′(t,t) = ρ(t)σ−, and its further
evolution from s = t to s = t + θ is governed by the emitter’s
evolution operator U (t,t + θ ), so that ρ ′′(t,t + θ ) = U (t,t +
θ )ρ ′′(t,t)U−1(t,t + θ ).
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It is informative to write ρ ′′(t,s) explicitly as

ρ ′′(t,s) =
(

ρ ′′
ee(t,s) ρ ′′

eg(t,s)
ρ ′′

ge(t,s) ρ ′′
gg(t,s)

)
, (A6)

so that

σ+ρ ′′(t + θ ) =
(

ρ ′′
ge(t,t + θ ) ρ ′′

gg(t,t + θ )
0 0

)
, (A7)

and the corresponding two-time correlation function is ob-
tained directly as

〈σ−(t)σ+(t + θ )〉 = Tr[σ+ρ ′′(t,t + θ )]

= ρ ′′
ge(t,t + θ ). (A8)

The initial condition for ρ ′′, corresponding to s = t , has the
form

ρ ′′(t,t) = ρ(t)σ− =
(

ρeg(t) 0
ρgg(t) 0

)
, (A9)

which is determined by the elements of the “true” density ma-
trix ρeg(t) = 〈e|ρ(t)|g〉 and ρgg(t) = 〈g|ρ(t)|g〉 [see Eq. (2)].
Similarly, for ρ ′(t,s) the initial conditions at s = t are

ρ ′
ee(t,t) = ρ ′

eg(t,t) = 0,

ρ ′
gg(t,t) = ρeg(t), ρ ′

ge(t,t) = ρee(t), (A10)

and the corresponding two-time correlator is

〈σ+(t + θ )σ−(t)〉 = Tr[ρ ′(t,t + θ )σ+] = ρ ′
ge(t,t + θ ). (A11)

Therefore, our task is reduced to determining ρ ′′
ge(t,t + θ ) and

ρ ′
ge(t,t + θ ).

The master equations characterizing the time evolution of
the TLS density matrix are given by Eqs. (3) and (4); the time
development of the matrices ρ ′′(t,s) and ρ ′(t,s) also obeys
these equations of motion as s increases from t to t + θ .
Specifically, when s corresponds to the time interval between
the pulses, we have

d

ds
ρ ′′

ee(t,s) = −� ρ ′′
ee(t,s), (A12)

d

ds
ρ ′′

gg(t,s) = � ρ ′′
ee(t,s), (A13)

d

ds
ρ ′′

ge(t,s) =
(

i� − �

2

)
ρ ′′

ge(t,s), (A14)

d

ds
ρ ′′

eg(t,s) =
(

−i� − �

2

)
ρ ′′

eg(t,s) (A15)

for any value of the parameter t ; the same equations govern
the dynamics of ρ ′. The effect of the pulses on ρ ′′ and ρ ′ is
also easily derived from Eq. (4): when t + s coincides with
the time of the pulse application, i.e., when s = nτ for some
integer n, the matrix transforms as

ρ ′′(t,nτ + 0) = σxρ
′′(t,nτ − 0)σx, (A16)

where ρ ′′(t,nτ − 0) and ρ ′′(t,nτ + 0) are the matrices imme-
diately before and after the pulse, respectively; in other words,
each pulse interchanges ρ ′′

ee with ρ ′′
gg and ρ ′′

eg with ρ ′′
ge; the

transformation of ρ ′ is the same.

FIG. 6. Schematic of the mutual positions of the time instants t

and t + θ with respect to the pulses.

Let us start with establishing the initial condition for
ρ ′′(t,s) at s = t , which is determined by ρgg(t) and ρeg(t) [see
Eq. (A9)]. First, we note that ρeg(t) ≡ 0. Indeed, the initial
conditions at t = 0 for the density matrix ρ are

ρee(0) = 1, ρgg(0) = ρge(0) = ρeg(0) = 0. (A17)

As the master equation (3) show, both quantities ρeg and ρge

remain zero before the first pulse [when �x(t) ≡ 0]. The effect
of the pulse is to interchange these two values; that is, they
both remain zero after the pulse. The same considerations can
be applied for the second pulse, third pulse, etc., showing that
ρeg(t) = ρge(t) = 0 for all t . Thus, to determine ρ ′′(t,t) we
only need to find ρgg(t). We assume that the time instant t is
between the Mth and the (M + 1)th pulses, i.e., t = Mτ +
(τ − τ1) for some τ1 ∈ [0,τ ], as shown in Fig. 6. Immediately
before the first pulse, at the time moment τ − 0, we have

ρee(τ ) = e−�τ ,
(A18)

ρgg(τ ) = 1 − e−�τ .

Then at time 2τ − 0 we have

ρee(2τ ) = (1 − e−�τ )e−�τ

(A19)
ρgg(2τ ) = 1 − e−�τ + e−2�τ ,

and at time 3τ − 0 we have

ρee(3τ ) = e−�τ − e−2�τ + e−3�τ

ρgg(3τ ) = 1 − e−�τ + e−2�τ − e−3�τ , (A20)

...

so that eventually, right before the Mth pulse, at time Mτ − 0

ρee(Mτ − 0) =
M∑

k=1

(−1)k−1e−k�τ = −
M∑

k=1

(−1)ke−k�τ ,

(A21)

and right after the Mth pulse, which interchanges ρee and ρgg ,

ρee(Mτ + 0) = 1 − ρee(Mτ − 0) = 1 +
M∑

k=1

(−1)ke−k�τ .

(A22)
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Thus, at the time instant t = Mτ + (τ − τ1), we have

ρee(t) =
(

1 +
M∑

k=1

(−1)ke−k�τ

)
e−�(τ−τ1)

=
(

M∑
k=0

(−1)ke−k�τ

)
e−�(τ−τ1)

= 1 − (−1)M+1e−(M+1)�τ

1 + e−�τ
e−�(τ−τ1), (A23)

and since ρgg(t) = 1 − ρee(t), we obtain

ρgg(t) = 1 − 1 − (−1)M+1e−(M+1)�τ

1 + e−�τ
e−�(τ−τ1). (A24)

Having established the explicit initial value of ρ ′′(t,t), now
we can proceed with evaluating the value of ρ ′′

ge(t,t + θ ).
Between the pulses both ρ ′′

ge and ρ ′′
eg evolve according to

Eqs. (A14) and (A15).
Thus, if t and t + θ belong to the same interpulse interval

(i.e., when Mτ < t + θ < (M + 1)τ ), we have

ρ ′′
ge(t,t + θ ) = e(i�− �

2 )θρgg(t), ρ ′′
eg = 0. (A25)

With increasing θ , at some point it will become equal to τ1,
and then the instant t + θ will coincide with the instant when a
pulse is applied: t + θ = (M + 1)τ + 0. At this point the time
instants t and t + θ will become separated by one pulse, and
the value of ρ ′′

eg will be interchanged with ρ ′′
ge; that is, when

θ = τ1 + 0, we will have already

ρ ′′
ge(t,t + θ ) = 0,

(A26)
ρ ′′

eg(t,t + θ ) = e(i�− �
2 )τ1ρgg(t).

At this point, the accumulation rate of the phase in ρ ′′
ge and ρ ′′

eg

changes sign: note that the factors on the right-hand sides of
Eqs. (A14) and (A15) have opposite imaginary parts, i� and
−i�, respectively. Thus, right before the next pulse, when t +
θ = (M + 2)τ − 0 (i.e., when θ = τ + τ1 − 0), we will have

ρ ′′
ge(t,t + θ ) = 0,

(A27)
ρ ′′

eg(t,t + θ ) = e(i�− �
2 )τ1e(−i�− �

2 )τ ρgg(t),

and right after the pulse, when t + θ = (M + 2)τ + 0 (i.e.,
when θ = τ + τ1 + 0), the values will be interchanged again:

ρ ′′
ge(t,t + θ ) = e(i�− �

2 )τ1e(−i�− �
2 )τ ρgg(t),

(A28)
ρ ′′

eg(t,t + θ ) = 0.

Proceeding further in this way, right before the next pulse, at
θ = τ1 + 2τ − 0, we get

ρ ′′
ge(t,t + θ ) = e(i�− �

2 )τ1e−�τρgg(t),
(A29)

ρ ′′
eg(t,t + θ ) = 0.

Note that the phase of ρ ′′
ge still equals to i�τ1 because after

each pulse the phase accumulation rate changes sign. Further,
at θ = τ1 + 3τ − 0,

ρ ′′
ge(t,t + θ ) = 0,

(A30)
ρ ′′

eg(t,t + θ ) = e(i�− �
2 )τ1−i�τ− 3�

2 τ ρgg(t).

Thus, we obtain that for θ = τ1 + (m − 1)τ − 0 with even m,
as shown in Fig. 6,

ρ ′′
ge(t,t + θ ) = 0,

(A31)
ρ ′′

eg(t,t + θ ) = e(i�− �
2 )τ1−i�τ− (m−1)�

2 τ ρgg(t),

and for θ = τ1 + (m − 1)τ + τ2 with even m and τ2 < τ ,

ρ ′′
ge(t,t + θ ) = e(i�− �

2 )τ1−i�τ− (m−1)�
2 τ ei�τ2− �

2 τ2ρgg(t)

= e−�θ/2ei�(τ1+τ2−τ )ρgg(t),

ρ ′′
eg(t,t + θ ) = 0. (A32)

Altogether, we can write

ρ ′′
ge(t,t + θ ) = f (t,θ )ρgg(t), (A33)

with ρgg(t) given above by Eq. (A24), and
(i) for t and t + θ in the same pulse interval,

f (t,θ ) = e(i�− �
2 )θ , (A34)

(ii) for t and t + θ separated by an odd number of pulses,

f (t,θ ) = 0, (A35)

(iii) for t and t + θ separated by an even number m of
pulses, i.e., when θ = τ1 + (m − 1)τ + τ2 with even m and
τ2 < τ (Fig. 6),

f (t,θ ) = e−�θ/2ei�(τ1+τ2−τ ) = e−�θ/2ei�(θ−mτ ). (A36)

Note that, due to the pulses, the phase of the function f (t,θ )
does not grow linearly with θ , being confined to the interval
[−τ�,τ�] at all values of t and θ . This is the reason why, for
small interpulse delay τ 
 �−1, both emission and absorption
are concentrated in the vicinity of ω = 0 instead of ω = �.

With this result, we can now rewrite the direct absorption
integral P2(ω) in the form

P2(ω) =
∫ T

0
dt ρgg(t)

∫ T −t

0
dθf (t,θ )e−iωθ . (A37)

First, let us evaluate the inner integral, which we will denote
as Iθ , using the explicit form of f (t,θ ) above:

Iθ =
∫ τ1

0
dθ e−iωθ e(i�−�/2)θ

+
∫ τ1+2τ

τ1+τ

dθ e−iωθ e−i2�τ+(i�−�/2)θ

+
∫ τ1+4τ

τ1+3τ

dθ e−iωθ e−i4�τ+(i�−�/2)θ + · · ·

+
∫ τ1+mτ

τ1+(m−1)τ
even m

dθ e−iωθ e−im�τ+(i�−�/2)θ + · · ·

= e[i(�−ω)−�/2]τ1 − 1

i(� − ω) − �/2

+
mmax∑
m=2

even m

∫ τ1+mτ

τ1+(m−1)τ
dθ e−iωθ e[−im�τ+(i�−�/2)θ], (A38)

where the summation is over even values of m and mmax is the
maximum value of m; since it has to be even, its specific value
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depends on whether M is odd or even (see below for details).
Defining γ0 = i(ω − �) + �/2, we can write

Iθ = 1 − e−γ0τ1

γ0
+

mmax∑
m=2

even m

e−im�τ e−γ0(τ1+(m−1)τ ) − e−γ0(τ1+mτ )

γ0

= 1 − e−γ0τ1

γ0
+ e−γ0τ1

γ0
(eγ0τ − 1)

1 − e−mmaxγ1τ

e2γ1τ − 1
, (A39)

where we have introduced γ1 = �/2 + iω. Note that this result
correctly reproduces the situation of mmax < 2, i.e., when
mmax = 0; this happens when t belongs to the last interpulse
interval of the sequence and θ varies only from zero to τ1.
Then the value of Iθ is given by the first integral in Eq. (A38),
while the remaining sum over m is zero. Thus, we do not need
to worry about this special case in the calculations below.

Now we need to evaluate the outer integral:

P2(ω) =
∫ T

0
dt ρgg(t)Iθ , (A40)

with the quantity ρgg calculated earlier,

ρgg(t) = 1 − ρ0(M)e−�(τ−τ1)

= 1 − 1 − (−1)M+1e−(M+1)�τ

1 + e−�τ
e−�(τ−τ1), (A41)

where we introduced the shorthand notation ρ0(M) for the
awkward fraction appearing on the second line. In this way,
we represent P2 as

P2 =
∫ T

0
dt Iθ −

∫ τ

0
dt ρ0(0)e−�(τ−τ1)Iθ (A42)

−
∫ 2τ

τ

dt ρ0(1)e−�(τ−τ1)Iθ

− · · · −
∫ Npτ

(Np−1)τ
dt ρ0(Np − 1)e−�(τ−τ1)Iθ (A43)

=
∫ T

0
dt Iθ

−
Np−1∑
M=0

ρ0(M)
∫ τ

0
dt1 e−�t1

(
1

γ0
+ e−γ0τ1I

(1)
θ

)
,

(A44)

where we have defined t1 = t − Mτ = τ − τ1 and

Iθ = 1

γ0
+ e−γ0τ1I

(1)
θ ,

I
(1)
θ = − 1

γ0
+ eγ0τ − 1

γ0

1 − e−mmaxγ1τ

e2γ1τ − 1

= −1/γ0 + I
(2)
θ , (A45)

where we introduced the shorthand notation I
(2)
θ for another

awkward fraction, the second summand on the second line
above.

Now we have

P2 = −
Np−1∑
M=0

ρ0(M)
∫ τ

0
dt1 e−�t1

(
1

γ0
+ e−γ0(τ−t1)I

(1)
θ

)

+
∫ T

0
dt Iθ

= −
Np−1∑
M=0

ρ0(M)

[
1 − e−�τ

γ0�
+ I

(1)
θ e−γ0τ

eγ2τ − 1

γ2

]

+ P3, (A46)

with P3 = ∫ T

0 dt Iθ and γ2 = γ0 − � = i(ω − �) − �
2 .

Below we will show that the first sum gives exactly
the contribution from the stimulated emission P1(ω). It is
convenient to calculate the simpler term P3 first. We can
rewrite P3 as

P3 =
∫ T

0

dt

γ0
+

∫ τ

0
dt e−γ0τ1I

(1)
θ

+ · · · +
∫ Npτ

(Np−1)τ
dt e−γ0τ1I

(1)
θ

= Npτ

γ0
+ e−γ0τ

Np−1∑
M=0

I
(1)
θ

∫ τ

0
dt1 eγ0t1

= Npτ

γ0
+

Np−1∑
M=0

I
(1)
θ

1 − e−γ0τ

γ0
. (A47)

With the explicit form of I
(1)
θ given above, we have

P3 = Npτ

γ0
−

Np−1∑
M=0

1 − e−γ0τ

γ 2
0

+
Np−1∑
M=0

1 − e−γ0τ

γ 2
0

I
(2)
θ

= Npτ

γ0
− Np

γ 2
0

(1 − e−γ0τ ) + P4, (A48)

where

P4 = 1 − e−γ0τ

γ0

eγ0τ − 1

γ0

Np−1∑
M=0

1 − e−γ1τmmax

e2γ1τ − 1

= eγ0τ + e−γ0τ − 2

γ 2
0 (e2γ1τ − 1)

⎡
⎣Np −

Np−1∑
M=0

e−γ1τmmax

⎤
⎦.

(A49)

In order to calculate the last sum in the equation above, we
need to determine mmax. To do this let us consider the case
of Np = 2K , i.e., when the number K of the full cycles of
the sequence has been applied to the TLS. Let us recall that
we represent t = Mτ + (τ − τ1); that is, M is the number of
pulses between zero and t . The number of pulses separating t

and t + θ is m, and the maximum value of θ is θmax = T − t ,
which limits the maximum value of m; however, f (t,θ ) is zero
if m is odd, so that mmax should be even. Therefore, starting
from larger values of t , we obtain the following:

(i) If t ∈ [T − τ,T ], then θmax = (T − t) ∈ [0,τ ], so that if
M = 2K − 1, then mmax = 0.
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(ii) If t ∈ [T − 2τ,T − τ ], then θmax = (T − t) ∈ [τ,2τ ],
so that if M = 2K − 2, then mmax = 0 because mmax should
be even.

(iii) If t ∈ [T − 3τ,T − 2τ ], then θmax = (T − t) ∈
[2τ,3τ ], so that if M = 2K − 3, then mmax = 2.

(iv) If t ∈ [T − 4τ,T − 3τ ], then θmax = (T − t) ∈
[3τ,4τ ], so that if M = 2K − 4, then mmax = 2 (should be
even).

(v) If t ∈ [T − 5τ,T − 4τ ], then θmax = (T − t) ∈
[4τ,5τ ], so that if M = 2K − 5, then mmax = 4.

(vi) If t ∈ [T − 6τ,T − 5τ ], then θmax = (T − t) ∈
[5τ,6τ ], so that if M = 2K − 6, then mmax = 4 (should be
even).

(vii) etc.
(viii) If t ∈ [τ,2τ ], then θmax = (T − t) ∈ [T − 2τ,T − τ ],

so that if M = 1, then mmax = 2K − 2.
(ix) If t ∈ [0,τ ], then θmax = (T − t) ∈ [T − τ,T ], so that

if M = 0, then mmax = 2K − 2 (should be even).
To summarize, if we parametrize M = 2n for even M and

M = 2n + 1 for odd M , where n varies from 0 to K − 1, then
mmax = 2(K − n − 1) for both M = 2n and M = 2n + 1.

Thus, the last sum in Eq. (A49) is calculated as

Np−1∑
M=0

e−γ1τmmax = 2
K−1∑
n=0

e−2γ1τ (K−n−1)

= 2
1 − e−γ1τNp

1 − e−2γ1τ
, (A50)

where the factor 2 appears because mmax is the same for both
M = 2n and M = 2n + 1, so that the sums over odd M and
even M are combined. Putting all terms together, we obtain

P3 = Npτ

γ0
− Np

γ 2
0

(1 − e−γ0τ ) + eγ0τ + e−γ0τ − 2

γ 2
0 (e2γ1τ − 1)

×
[
Np − 2

1 − e−γ1τNp

1 − e−2γ1τ

]
. (A51)

Now, the calculation of the emission term P1 can be
simplified if we notice that ρ ′(t,s) obeys the same equations
of motion as ρ ′′(t,s) and is transformed by the pulses in
exactly the same way. Therefore, the quantity ρ ′

ge(t,s) (which
determines P1) evolves in exactly the same way as ρ ′′

ge(t,s),
and the difference between them is only in the initial condition:
at s = t we have ρ ′

ge(t,t) = ρee(t), while ρ ′′
ge(t,t) = ρgg(t) =

1 − ρee(t). Thus, the reasoning that was used in deriving
Eqs. (A25)–(A32) can be directly applied to ρ ′

ge(t,s) if ρgg(t)
is substituted by ρee(t) due to the linearity of the master
equations. As a result, we immediately see that ρ ′

ge(t,t + θ )
has the form

ρ ′
ge(t,t + θ ) = f (t,θ )ρee(t) (A52)

with the same function f (t,θ ). Thus, the integral Iθ can be
used without modifications in the calculation of P1, and since
ρgg(t) = 1 − ρee(t), we immediately obtain

P1(ω) =
∫ T

0
ρee(t)Iθdt =

∫ T

0
[1 − ρgg(t)]Iθ dt = P3 − P2.

(A53)

FIG. 7. Absorption spectrum of a two-level system with detuning
� = 3.0 driven by a periodic sequence of π pulses of period τ =
0.2 after 20 pulses. The results are obtained by solving the master
equation numerically (blue solid line) or analytically in the limit of
a large number of pulses (red dashed line). We see that indeed the
agreement between the numerical and analytical results is better at
longer times (for a large number of pulses).

Comparing this expression with Eq. (A46) above, we obtain
an explicit expression,

P1 =
Np−1∑
M=0

ρ0(M)
∫ τ

0
dt1 e−�t1

(
1

γ0
+ e−γ0(τ−t1)I

(1)
θ

)

=
Np−1∑
M=0

ρ0(M)

[
1 − e−�τ

γ0�
+ I

(1)
θ e−γ0τ

eγ2τ − 1

γ2

]
.

(A54)

Now let us evaluate the sums appearing in this expression.
First, we need the sum

Np−1∑
M=0

ρ0(M) = 1

1 + e−�τ

Np−1∑
M=0

[1 + e−�τ (−e−�τ )M ]

= Np

1 + e−�τ
+ e−�τ

1 + e−�τ

1 − (−e−�τ )Np

1 + e−�τ
,

(A55)
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and for sufficiently large Np, when the exponentially small
terms can be omitted, this yields

Np−1∑
M=0

ρ0(M) ≈ Np

1 + e−�τ
+ e−�τ

(1 + e−�τ )2
. (A56)

The second required sum is

Np−1∑
M=0

ρ0(M)e−γ1τmmax, (A57)

and in order to evaluate it we use the same parametrization as
above, M = 2n for even M and M = 2n + 1 for odd M , with
n = 0, . . . ,K − 1. We pair the neighboring terms, i.e.,

Np−1∑
M=0

ρ0(M)e−γ1τmmax

=
[ ∑

evenM

+
∑
oddM

]
ρ0(M)e−γ1τmmax

=
K−1∑
n=0

[ρ0(2n) + ρ0(2n + 1)]e−2γ1τ (K−n−1). (A58)

Since

ρ0(2n) + ρ0(2n + 1) = 2 + e−�τ (2n+1) − e−�τ (2n+2)

1 + e−�τ
, (A59)

we obtain
Np−1∑
M=0

ρ0(M)e−γ1τmmax

=
K−1∑
n=0

2 − e−�τ (2n+1) + e−�τ (2n+2)

1 + e−�τ
e−2γ1(K−n−1)τ

= e−2γ1(K−1)τ

1 + e−�τ

[
2
e2Kγ1τ − 1

e2γ1τ − 1

+e−�τ (1 − e−�τ )
e2K(γ1−�)τ − 1

e2(γ1−�)τ − 1

]
. (A60)

Substituting these results into Eq. (A54) for P1, we obtain
Eq. (A62) in the limit of large Np, and the net absorption
spectrum is obtained as

Q(ω) = 2A2Re{P2(ω) − P1(ω)}
= 2A2Re{P3(ω) − 2P1(ω)}, (A61)

with the explicit analytical expressions for P1 and P3 given by
Eqs. (A62) and (A51).

In the limit of large Np (long times), the net absorption
spectrum is simply proportional to Np, in a way similar to
Eq. (A51). Numerical calculations show that this limit is
achieved within one to two spontaneous emission times, so
that the further evolution of the spectrum is mostly limited
to a linear increase of the amplitude with time, so that the
spectrum can be characterized by the energy absorption rate
per unit time. At shorter times, when the shape of the spectrum
is still forming, the energy itself should be considered.

P1(ω) = 1

(1 + e−�τ )γ0

[(
1 − e−�τ

�
− e−γ0τ

eγ2τ − 1

γ2
+ eγ2τ − 1

γ2

1 − e−γ0τ

e2γ1τ − 1

)(
Np + e−�τ

1 + e−�τ

)

− eγ2τ − 1

γ2

1 − e−γ0τ

e2γ1τ − 1

(
2

e−Npγ1τ − 1

e−2γ1τ − 1
+ (e−�τ − e−2�τ )

e−Npγ1τ

e−2γ1τ − e−2�τ

)]
. (A62)

In Fig. 7 we show a comparison of the numerical result and the analytical result described above for the absorption spectrum of
a two-level system with detuning � = 3.0 driven by a periodic pulse sequence of period τ = 0.2 after 20 pulses. The comparison
reveals very good agreement between the solutions, and the agreement indeed improves as the number of pulses increases.
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