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We theoretically study the conductivity in arrays of metallic grains due to the variable-range multiple
cotunneling of electrons with short-range (screened) Coulomb interaction. The system is supposed to be coupled
to random stray charges in the dielectric matrix that are only loosely bounded to their spatial positions by
elastic forces. The flexibility of the stray charges gives rise to a polaronic effect, which leads to the onset of
Arrhenius-type conductivity behavior at low temperatures, replacing conventional Mott variable-range hopping.
The effective activation energy logarithmically depends on temperature due to fluctuations of the polaron barrier
heights. We present the unified theory that covers both weak and strong polaron effect regimes of hopping in
granular metals and describes the crossover from elastic to inelastic cotunneling.
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I. INTRODUCTION

In this paper we are discussing a multiparticle cotunneling
mechanism of conductivity in a granular metal with flexible
charges, randomly placed in the insulating matrix. The
flexibility of disorder gives rise to a sort of “random polaronic
effect,” which dramatically affects the temperature dependence
of conductivity. A study of this subject requires a combination
of different physical concepts and methods, so we start from a
brief review of the necessary ingredients.

A. Variable-range hopping

The stretched-exponential temperature dependence of con-
ductivity

σ ∝ exp{−(T0/T )α} (1)

is characteristic of variable-range hopping (VRH) in homo-
geneously disordered materials (such as amorphous solids [1]
or doped semiconductors [2]) at low temperatures. In the case
when the long-range interactions do not play any significant
role, the exponent α = 1/(d + 1) (where d is the space
dimensionality), T0 ≡ TM ∼ [νF ξd ]−1 (where νF is the density
of states at the Fermi level and ξ is the inverse decrement of
electronic wave functions), and the corresponding dependence
is known as the Mott law [3]. In the opposite case, when
the long-range Coulomb interaction is crucial and gives
rise to the soft Coulomb gap in the electronic density of
states [4], the exponent α = 1

2 , T0 ≡ TES ∼ e2/κξ (where κ

is the dielectric constant) and this dependence is known as the
Efros-Shklovskii law.

B. Variable-range cotunneling in granular systems

A similar behavior of conductivity was also observed in
arrays of metallic and semiconducting quantum dots in the
temperature range 1–200 K (see reviews [5,6] and some old [7]
and more recent [8] experimental papers). An explanation
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of the stretched-exponential T dependence of conductivity
in granular materials attracted interest of theorists. Many of
early theories [9] were based on special assumptions about the
distribution of the random parameters of grains (sizes, etc.) and
were criticized (see, e.g., [10]) because of their ad hoc char-
acter and the lack of universality. Some other theories [11,12]
correctly indicated the important role of sequential tunneling
of electrons through a chain of intermediate grains, but did not
give a correct multiparticle description for this tunneling and
a valid recipe for evaluation of the tunneling amplitude. Such
a prescription was worked out in [13], where the simple idea,
introduced in [11], was generalized to take into account both
multiparticle character (i.e., the cotunneling, see [14,15]) of
the process and Coulomb effects.

In contrast with the standard single-particle-like VRH sce-
nario, where a particle would travel from one end of the chain
to the other, consequently hopping through all intermediate
grains, the multiple cotunneling scenario developed in [13]
involves all possible sequences of hops between neighboring
grains in the chain. In general, these hops are executed by
different electrons; the intermediate states of the process
involve many grains with altered charges. However, upon the
completion of the process there is only one net electron that
is transferred between the terminal grains of the chain, while
the charges of all intermediate grains return to their initial
values. It does not mean that all the processes with different
sequences of hops lead to the same final state of the system:
the final states of some grains may be identical to the initial
ones (elastic cotunneling), while for other grains the initial
and final states may differ by an electron-hole pair (inelastic
cotunneling). As a result (see [13] for details), the law (1) is
reproduced with

T0 ∼ L(T )Ec, (2)

where

L(T ) ∼
{

ln(Ec/gδ), T � Tc0

ln
(
E2

c /gT 2L2
)
, T � Tc0

(3)

and the Coulomb charging energy is Ec ∼ e2/2C, C being
typical capacitance in the system of grains. A typical level
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spacing in a grain δ ∼ (νF a3)−1, a being the grains size,
and g � 1 is the typical dimensionless conductance between
adjacent grains. Note that the logarithmic factor L is large.
The crossover between the elastic and inelastic cotunneling
regimes takes place at

T ∼ Tc0 =
√

ECδ/L. (4)

Thus, the stretched exponential law in the case of granular
materials is slightly modified in the intermediate temperature
range (T > Tc0) due to additional logarithmic T dependence
of T0. This deviation from the Mott-Efros-Shklovskii law is,
however, not easy to detect experimentally.

C. Hard gap and polaronic effect in homogeneously
disordered systems

It is well known that at relatively high temperatures the
VRH is not operative, it is changed to the nearest-neighbor
hopping (NNH), so that the stretched-exponential law (1) is re-
placed by the Arrhenius law for conductivity σ ∝ exp{−ε3/T }
(see [2]). What is much less trivial, in some cases [16] the
reentrance of the Arrhenius law

σ ∼ exp{−EH/T } (5)

is observed also at low temperatures! This reentrance is usually
attributed to polaronic effect: a “hard gap” EH is supposed to
be related to the energy, necessary for the creation in advance
of a polaronic cloud, that then will accommodate a hopping
electron at a new position.

In principle, the hopping electron can take along the
necessary energy while hopping from the initial position to the
new one, therefore, at still lower temperatures the activational
mechanism of polaron hopping is substituted by the tunneling
one (see [1]) and the stretched exponential law (1) is again
restored at T � ω, where ω is the characteristic frequency
of phonons (or some other species, e.g., magnons, localized
electronic excitations, etc.), that constitute the polaronic cloud.
The case of magnetic polarons is special: Due to the local
conservation of the magnetization the process of the tunneling
transfer of the polaronic cloud is strongly suppressed [17],
and the classical-quantum crossover is shifted from T ∼ ω

to much lower temperatures. It explains why the hard gap
phenomenon was experimentally observed predominantly (but
not exclusively!) in magnetic systems. In general, the theory
of VRH with account for polaronic effect was developed
in [17–20] for different types of polarons.

It is important that if the strength of the polaronic effect
randomly varies from place to place, then it does not
necessarily have to lead to the activation Arrhenius law. If
the distribution of barrier heights has a power-law tail at zero,
one can expect the dependence (1) with α �= 1. In particular,
for homogeneously disordered solids it was shown in [20] that,
if the barrier distribution is constant in the vicinity of zero, the
Mott conductivity should have the exponent α = 2/(d + 2).

D. Polaronic effect in granular systems

The onset of Arrhenius-type behavior of conductivity at
low temperatures in granular materials is reported far less
often. For example, in experiments [21] the Arrhenius behavior

was observed below ∼5 K in two-dimensional arrays of
semiconducting Ge/Si quantum dots. Above that temperature
the conductivity followed Efros-Shklovskii law. In paper [22]
the observation of “almost” Arrhenius conductivity was
reported in the temperature range 20 K < T < 30 K in the
array of metallic Co nanoparticles. This dependence was
well described by (1) with α = 1.1. At higher temperatures
45 K < T < 80 K Efros-Shklovskii law was found. There are
also experiments [23] in which α = 2

3 was observed in the
broad temperature range 7 K < T < 200 K in the arrays of
ZnO nanocrystals.

It is tempting to attribute these findings to some kind of
random polaronic effect. But, what does the polaron effect
mean in the case where we deal not with single charge carriers,
but with grains, containing many electrons? And, what are the
effective degrees of freedom that constitute here a polaronic
cloud? To our knowledge, no models of the polaronic effect
in granular systems have been discussed so far. In this paper,
we introduce such a model for metallic grains and study its
implications for the transport properties within the framework
of multiple cotunneling concept.

E. Structure of the paper

The paper is organized in the following way. We discuss
the basic concepts of our model in Secs. II and III. We
start from the general model, including (i) general (possibly
long-range) interaction in the system of grains and impurities,
(ii) elasticity of the impurities, (iii) dynamics of impurities,
and (iv) intergrain hopping of electrons. Then, we simplify
the initial model, first by discarding the long-range part of
the interaction and second by assuming the impurities to be
so heavy that, according to the Franck-Condon principle, the
positions of impurities may be treated as “quasistatic” from
the point of view of intergrain electronic transitions.

The detailed calculation of electron transition rate between
the pair of distant resonant grains in the case of short-range
interaction and quasistatic impurities is carried out in Secs. IV-
VII. We deal with different parameter ranges and also provide
physical interpretation of results. Based on these findings, we
analyze the temperature behavior of conductivity in Secs. VIII
and IX. Section X contains the summary of our results and
in Sec. XI we discuss the limitations and possible future
directions of research.

II. DYNAMICAL FLUCTUATIONS OF THE OFFSET
CHARGES: GENERAL MODEL

The main source of disorder in granular systems ar the
“stray charges,” hardly removable charged impurities and
defects, trapped in the insulating part of the system (see Fig. 1).
They produce random Coulomb fields acting on the grains, so
that the Coulomb energy of the system is

EC( �N, �Q) = 1
2 {( �N − �Q)Û ( �N − �Q) − �QÛ �Q}, (6)

where we have introduced vectorial notation �NÛ �N ≡∑
jj ′ Ujj ′NjNj ′ . Here, integer Nj denotes a number of excess

electrons on j th grain, Û ≡ e2Ĉ−1 is the inverse matrix of
capacitances, and the components Qj of the vector �Q are the
so-called “offset charges” (not necessarily integers!). It should

214205-2



COTUNNELING AND POLARONIC EFFECT IN GRANULAR . . . PHYSICAL REVIEW B 95, 214205 (2017)

FIG. 1. Sample of granular material with trapped elastic
impurities.

be noted that each offset charge Qj can not be identified with
certain unique impurity: all impurities that effectively interact
with a given grain j contribute to Qj . Vice versa, each impurity
may effectively contribute to many different variables Qj .

In the context of VRH, the offset charges are usually treated
as static random variables, but in this paper we are going to
take into account their dynamics. Indeed, Qj depend on the
positions of the charged impurities, that are not absolutely
rigid, but can deviate from their equilibrium places. In the
harmonic approximation, these deviations are governed by the
Hamiltonian Ĥdev = Êdev + Ĥkin,

Êdev = 1
2 ( �Q − �Q(0))K̂( �Q − �Q(0)), (7)

Ĥkin = − h̄2

2
∂ �QM̂−1∂ �Q, (8)

where the positively defined matrix of effective masses M̂ is
related to the masses of impurities. The vector �Q(0) describes
the set of equilibrium values of offset charges for the case
of neutral grains: �N ≡ 0. The matrix K̂ in (7) is related to
the stiffness of the system with respect to displacements of the
charged impurities. It contains both the “mechanical” part (due
to deformation of surrounding medium) and the “electrostatic”
part [the variation of the electrostatic energy of grains (6) due
to the displacement of impurities]. The second part depends
on the set �N ; namely, since Kjj ′ ( �N ) is linearly related to the
second derivative of the energy with respect to the coordinates
of impurities, K̂ should be a quadratic polynomial in �N :

Kjj ′ ( �N) = K
(0)
jj ′ +

∑
k

K
(1)
jj ′kNk +

∑
kk′

K
(2)
jj ′kk′NkNk′ . (9)

The mechanical part contributes only to the first, N -
independent, term in (9). Therefore, in the most natural case,
when the mechanical stiffness dominates over the electrostatic
one, the N dependence of K̂ can be neglected. Anyway, even if
the electrostatic part of K̂ is considerable, at low temperatures
it seems reasonable to ignore the “live” �N dependence of K̂ ,
and replace the function Kjj ′ ( �N ) by its equilibrium value

Kjj ′( �N ) = K
(0)
jj ′ +

∑
k

K
(1)
jj ′kN

(eq)
k +

∑
kk′

K
(2)
jj ′kk′N

(eq)
k N

(eq)
k′ ,

(10)

where �N (eq) are the charges that the grains acquire at the
equilibrium.

A. Classical ground state

Since the effective masses are large, in the leading approx-
imation, the kinetic energy term (8) in the Hamiltonian can
be neglected, and the ground state of the system corresponds
to the minimum of the total potential energy of the system of
charges

Ech( �N, �Q) = EC( �N, �Q) + Edev( �Q)

= 1
2 {( �N − �Q)Û ( �N − �Q) − �QÛ �Q}
+ 1

2 ( �Q − �Q(0))K̂( �Q − �Q(0)). (11)

Minimizing (11) with respect to �Q at fixed �N , we get

�Qmin( �N) = �Q(0) + K̂−1Û �N, (12)

min
�Q

Ech( �Q, �N ) = 1
2

�N Û �N − �NÛ �Q(0), (13)

where the symmetric matrix

Û = Û − ÛK̂−1Û (14)

has a meaning of the inverse capacitance matrix, renormalized
due to the effects of finite elasticity of the system.

For the stability of the system’s ground state, the matrix Û
must be positively defined. A violation of this requirement
would mean that we have incorrectly chosen the ground-
state set �N (eq), which turned out to be unstable; the system
eventually will move to a different state, where the stability
will be restored due to nonlinearity of the problem, expressed
in the K̂( �N ) dependence (9).

Further minimization of (13) with respect to �N gives the
equilibrium values of charges as integers, closest (in a sense,
see below) to Û−1Û �Q(0). As a result,

�N (eq) = Û−1Û �Q(0) + �γ , (15)

�Q(eq) = �Q(0) + K̂−1Û �N (eq), (16)

where �γ is the set of “effective residual offset charges.” Note
that in the case of rigid impurities (when K̂ → ∞) Û → Û ,
and the effective offset charges are reduced to the standard
ones: �γ → noninteger part of �Q(0).

214205-3



A. S. IOSELEVICH AND V. V. SIVAK PHYSICAL REVIEW B 95, 214205 (2017)

The common restriction, usually imposed on the residual
offset charges, reads as

−1/2 � γk � 1/2. (17)

Strictly speaking, this is not correct in general case: for
symmetric matrix Û the all-integer- �N minimum of the energy
functional may, in principle, lay quite far from the unrestricted
one, so that some components of �γ may be quite large. Ex-
amples are easy to produce (say, a highly anisotropic potential
profile with valleys, looking in low-symmetry directions) but
all these examples seem to be exotic, if not pathological. At
least we were not able to construct any physically relevant
matrix Û for that the restriction (17) would be violated.
Anyway, it is definitely valid for the case which we are going
to study in detail below: the screened Coulomb interaction
with diagonal matrix Û . Therefore, in what follows we will
consider the restriction (17) granted.

B. Low-energy Hamiltonian

At low temperatures, both the grains’ charges �N and the
offset charges �Q only slightly deviate from the equilibrium
values, so one can write

�N = �N (eq) + �n, �Q = �Q(eq) + �q, (18)

where nk may take values (−1,0,1). Now, we are prepared
to rewrite the Hamiltonian in terms of deviations �n and �q.
Substituting (18) into (11) and omitting the terms, that do not
contain deviations, we get

Ech = 1
2 {(�n − �q )Û (�n − �q) + �q (K̂ − Û )�q} + �n Û �γ . (19)

C. Thermodynamic excitation energies

Aside from the ground state, the low-lying excited states are
of great importance for the transport properties of the system.
For the state �n the thermodynamic (i.e., minimized with respect
to �q) excitation energy is

Ẽ(�n) ≡ min
�q

Ech(�n,�q) = 1
2 �n Û(�n + 2 �γ ). (20)

Different branches of spectrum (19) can be visualized as
multidimensional paraboloids in the �q space. The paraboloids
are indexed by vector �n. Excitation energy Ẽ(�n) is nothing else
but the energetic distance between the bottom of corresponding
paraboloid and the global ground-state energy (see Fig. 2). For
brevity, we have denoted Ẽi ≡ Ẽ(�ni) and Ẽf ≡ Ẽ(�nf ), where
i stands for “initial state” and f for “final state.” We will
reserve these indices for this purpose and will never use them
as grain labels.

Also, to avoid further confusion we should mention that in
this paper one will encounter two types of indices: (1) those
that label the charging states of a system, i.e., they label vectors
�n (as an example one can consider the initial state �ni); (2) those
that label the grains, i.e., the entries in vector �n. For example,
[�ni]m refers to the charge of the mth grain in the initial state �ni .

1. Single-particle excitations

Below we will obtain some crucial characteristics of single-
particle excited states, in which only one entry [�n]k in �n is
nonzero, while all other entries are zeros (namely, �n = ±�zk

where [�zk]m = δkm).

FIG. 2. Energy paraboloids in the �q space. The paraboloids are
indexed by vector �n. Zero-energy level corresponds to the classical
ground state. The activation energy Eact for transition �ni → �nf is
given by (30).

The thermodynamic excitation energies for such states are

Ẽ
(±)
k = 1

2 �zk Û(�zk ± 2 �γ ) (21)

correspond to variation of the “relaxed” energy due to creation
(annihilation) of one electron at grain k. By definition, the
inequality Ẽ

(±)
k � 0 should hold for all k, which is ensured

by (17). In granular systems it is convenient to introduce

εk =
{
Ẽ

(+)
k , for �zkÛ �γ < 0

−Ẽ
(−)
k , for �zkÛ �γ > 0

(22)

that has the meaning of the energy of “charged ground state,”
counted from the global ground state of the grain. Density of
such states is sometimes called the density of ground states
(DOGS) in the literature (see [11,24] for more details).

As we will see soon, another useful combination that enters
the activation exponent of the conductance between two distant
grains l (by agreement “left”) and r (by agreement “right”) is

εlr ≡ 1
2 {|εl − εr | + |εl| + |εr |}. (23)

Note that it has a conventional analog in the standard hopping
conductivity theory [2].

In the following, we will assume that electronic transitions
proceed very fast, so that the slow variables �q do not have time
to change during the process: the Franck-Condon principle
(see more discussion on this topic in Sec. IV A). Thus, we
introduce additional Franck-Condon excitation energies

E
(±)
k (�q) ≡ Ech(±�zk,�q) − Ech(0,�q)

= Ẽ
(±)
k + 1

2 �zkÛK̂−1Û�zk ∓ �zkÛ �q. (24)

2. Two-particle excitations

There are four classes of possible two-particle processes,
corresponding to an act of the charge −e transfer from grain l

to grain r (see Fig. 3).
(a) (++ process): transfer of an electron-type single-

particle excitation from l to r: (�ni = �zl) −→ (�nf = �zr );
(b) (−− process): transfer of a hole-type single-particle

excitation from r to l: (�ni = −�zr ) −→ (�nf = −�zl);
(c) (+− process): annihilation of a two-particle excitation,

consisting of an electron-type excitation in grain l and a hole-
type one in grain r: (�ni = �zl − �zr ) −→ (�nf = 0);
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FIG. 3. Four possible ways of the charge −e transfer from grain
l to grain r .

(d) (−+ process): creation of a two-particle excitation,
consisting of an electron-type excitation in grain r and a hole-
type one in grain l: (�ni = 0) −→ (�nf = �zr − �zl).

While in the first two processes only single-particle
excitations are involved, in the third and fourth ones the
two-particle complexes (intergrain electron-hole pairs) are
created or annihilated. Because of generally long-range char-
acter of interaction matrix Û the components of two-particle
excitations interact with each other, so that their energies
generally are not additive. Thermodynamic excitation energies
for the two-particle excitations can be obtained from (20):

Ẽ
(±±)
lr = Ẽ

(±)
l + Ẽ(±)

r , (25)

Ẽ
(±∓)
lr = Ẽ

(±)
l + Ẽ(∓)

r − �zlÛ�zr (26)

and the Franck-Condon energies are

E
(±±)
lr (�q) ≡ Ech(±�zl ± �zr ,�q) − Ech(0,�q)

= E
(±)
l + E(±)

r , (27)

E
(±∓)
lr (�q) ≡ Ech(±�zl ∓ �zr ,�q) − Ech(0,�q)

= E
(±)
l + E(∓)

r − �zlÛK̂−1Û�zr . (28)

We will see in Sec. III that the interaction parts in (26) and (28)
vanish in the case of short-range interaction.

3. Potential barrier between resonant grains and activation energy

A very important role in low-temperature physics is played
by the resonant grains, for which either Ẽ

(+)
k or Ẽ

(−)
k is anoma-

lously close to zero. The corresponding pairs of states, differing
in the charge of the resonant grains, have, therefore, almost
identical energies. The transition between such resonant states
�ni and �nf requires, however, a considerable change of the
surrounding (i.e., the vector �q), which can only be done
continuously. In the course of this change the potential energy
of the system also changes: first increases, then decreases, so
that the system has to overcome the potential barrier. This
can be accomplished either by means of activation over the
barrier or by tunneling. For both processes, the height of
the barrier W is crucial. To find it we should minimize the
energy Ech(�ni,�q) over �q with additional condition Ech(�ni,�q) =

Ech(�nf ,�q), implying that the states are resonant. The result is

W = 1
8 (�nf − �ni)ÛK̂−1Û (�nf − �ni). (29)

Note that W depends only on the difference �nf − �ni between
the final and initial states. In particular, it is the same for all
kinds of processes described in Sec. II C 2.

We can also find the activation energy Eact for a transition
between arbitrary (not necessarily resonant) states �ni and �nf .
It can be defined as the lowest point of interception of two
paraboloids (see Fig. 2):

Eact = Ẽi + Ẽf

2
+ W + (Ẽf − Ẽi)2

16W
, (30)

where W is defined by (29). If the states are resonant, we have
Eact = W .

III. SHORT-RANGE INTERACTION MODEL

There are some cases when the long-range part of the
Coulomb interaction Û may be neglected:

(1) The systems, where the interaction is screened (say,
because of the presence of metallic gate, or due to residual
conductivity of the insulating matrix).

(2) The systems with “weak charge disorder,” where the
concentration of the stray charges is very low (e.g., clean arti-
ficial arrays of quantum dots). Here the long-range interaction
is not relevant in a wide range of intermediate temperatures.
Indeed, in such systems typical values of γ are small and
concentration of the resonant grains, proportional to the
probability to have γ ≈ ±1/2 is low (see [13]): P̃ (±1/2) � 1.
As a result, optimal hops are very long, the width �C of
the Coulomb gap is small: �C ∼ Ec[P̃ (±1/2)]1/(d−1). Thus,
although the long-range interaction is not suppressed, it
becomes essential only at very low temperatures T � �C . This
situation is similar to that for a hopping conductivity of lightly
doped semiconductors at low compensation, where (due to
the same physical reasons) the crossover from Mott to Efros-
Shklovskii law is also shifted to lower temperatures (see [2]).

The above-mentioned systems can be roughly described by
the simplest model of “short-range Coulomb interaction” (see,
e.g., [15]). In this model we assume the matrices Û and K̂ to
be diagonal

Û =

⎛
⎜⎜⎜⎜⎝

. . . 0 0 0
0 Uj 0 0
0 0 Uj+1 0

0 0 0
. . .

⎞
⎟⎟⎟⎟⎠,

K̂ =

⎛
⎜⎜⎜⎜⎝

. . . 0 0 0
0 Kj 0 0
0 0 Kj+1 0

0 0 0
. . .

⎞
⎟⎟⎟⎟⎠,

but their diagonal entries in general are not identical since
different grains have different capacitances, etc. The electro-
static energy (19) can be rewritten in a simple way Ech =∑

j Ej (nj ,qj ), where

Ej (n,q) = Ec
j

{
n2 + 2n[γj (1 − αj ) − q] + q2

αj

}
(31)
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and each grain is characterized by three constants:
(i) the standard charging energy Ec

j ≡ Uj/2 = e2/2Cj

with Cj being the capacitance of the grain j ;
(ii) the “polaronic coupling constant” αj ≡ Uj/Kj ; the

inequality αj < 1 is the stability condition;
(iii) the random “effective offset charge” γj , distributed in

the interval [−1/2,1/2].
The thermodynamic and Franck-Condon excitation ener-

gies for this model are

Ẽ
(±)
j = Ec

j (1 − αj )(1 ± 2γj ), (32)

E
(±)
j (q) = Ẽ±

j + 4Wj ∓ 2Ec
jqj , (33)

Wj = αjE
c
j /4. (34)

For two-particle excitations, in which only charges of two
grains l and r are altered, we get W = Wl + Wr .

IV. TRANSITION RATE

As we know from [13], the main features of variable-range
hopping in granular systems can be revealed already in the
simplest model of short-range Coulomb interaction, described
in Sec. III, so in this paper we restrict our consideration to
this model.

A. Franck-Condon principle

We will also ignore the quantum aspects of the offset
charges dynamics (i.e., put M → ∞). In particular, the
last assumption means that we can use the Franck-Condon
principle in the calculation of transition rates. According to
this principle, the set �q remains unchanged on the cotunneling
time scale ∼E−1

c . We should calculate the transition rates
wlr (�q ) between relevant grains at fixed configuration of �q
and only afterwards perform the thermodynamic averaging
of the result with respect to �q. The cotunneling time τcotun

can be roughly estimated as the inverse scale of energetic
denominators appearing in the perturbation theory

τcotun ∼ E−1
c . (35)

On the other hand, characteristic time scale τq for the dynamics
of �q is nothing but the inverse frequency of the impurity
oscillations ωimp, which apparently should be of the order of
phonon frequencies ωph. As a result, the applicability criterion
for the Franck-Condon principle τcotun � τq becomes

ωimp � Ec. (36)

Note that in typical granular systems the rough estimate
∼100 K holds for Ec as well as for ωimp. Thus, the
condition (36) can not be considered automatically fulfilled
in all systems; the opposite case ωimp � Ec is also well
probable. This case is, however, not interesting since it implies
weak coupling between electronic and vibrational degrees of
freedom, leading to a negligible polaronic effect.

As we already noted, we are going to neglect the kinetic
term for �q in the Hamiltonian, which means that �q can
overcome potential barriers only by activation, and not by
tunneling. This implies even more stringent condition

ωimp � T � Ec (37)

that we will consider granted throughout this paper. The low-
temperature tunneling case T � ωimp � Ec will be discussed
elsewhere.

B. Hamiltonian and some qualitative considerations

Under the above approximations, the Hamiltonian of the
system may be written in the form

Ĥ =
∑

j

{
Ej (nj ,qj ) + Ĥ(0)

j

}+
∑
〈jj ′〉

Ĥ(jj ′)
tun , (38)

where Ej (nj ,qj ) is given by expression (31), and

Ĥ(0)
j =

∑
λj ,σ

ελj
â
†
λj σ

âλj σ (39)

is the Hamiltonian of electrons within the j th grain. The index
λj denotes electronic eigenstates with eigenenergies ελj

, which
are supposed to be σ independent (σ is a spin projection). The
level spacing δj for electrons at the Fermi level in grain j is
small: δj � Ec

j .
The tunneling Hamiltonian

Ĥ(jj ′)
tun =

∑
λj ,λj ′ ,σ

tλj λj ′ â
†
λj σ

âλj ′σ (40)

describes the hops of electrons between neighboring grains
〈jj ′〉. We are interested in the case, when the typical dimen-
sionless intergrain conductances

gjj ′ ≡ |tjj ′ |2/δj δj ′ � 1 (41)

are small, and the tunneling Hamiltonian may be treated
perturbatively; the necessary order of the perturbation theory,
however, appears to be high: the lower the temperature, the
higher the order!

The principal idea of any VRH-type calculation is the
famous observation of Mott [3]: at low temperatures hopping
electrons prefer to visit only resonant sites (in our case for
sites stand the grains), where their energies are confined to a
narrow strip of width ε near the Fermi energy. Decreasing ε

loosens the factor exp{−ε/T } that suppresses the conductivity
due to small number of available excitations. On the other
hand, the resonant sites are rare [the typical distance r(ε)
between them grows with decreasing ε], so that the overlap of
corresponding wave functions I is small: I ∝ exp{−2r(ε)/ξ}
and this small factor becomes still smaller with decreasing
ε. Thus, one has to find a compromise between the two
exponentially small factors, that results in certain optimal
εopt(T ) and the conductivity σ ∝ exp{−εopt(T )/T }. In the
presence of polaronic effect, the above calculation scenario
is somewhat modified, but the main idea remains the same.

While in case of single-electron tunneling evaluation of the
overlap exponential factor I is straightforward, and ξ is simply
related to the decrement of electronic wave function, in the case
of metallic grains the origin of the exponential dependence and
explicit form of ξ are more sophisticated. In this section, we
will explore this problem, incorporating the additional physics
that arises from the effects of the stray-charges flexibility.

C. Amplitudes of multiple cotunneling: Perturbation theory

Thus, we are interested in the amplitude of electronic
transition between two distant resonant grains l (left) and r
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FIG. 4. Cotunneling process from grain l to grain r .

(right). Unless there is a tunneling term in the Hamiltonian,
the occupation numbers �n are preserved. The tunneling term
Ĥtun allows hops of electrons between neighboring grains; to
accomplish a hop between distant grains, Ĥtun has to be applied
in some (N + 1)-st order of perturbation theory, where N is a
number of intermediate grains, constituting a continuous chain
between l and r . A multiparticle process, described by this
perturbational approach, is generally known as cotunneling. It
was introduced in [14] and applied to the theory of transport
in quantum dots [15,25] and granular metals [13,26].

Let us consider the transfer of an electron via virtual states
on N intermediate grains, l ≡ 0,1, . . . ,N ,N + 1 ≡ r being
the path of adjacent grains, starting at the initial grain l and
terminating at the final grain r , so that k is a neighbor of
k − 1 and k + 1 (see Fig. 4). In principle, one should sum
over all possible paths connecting l and r , but in the case of
small tunneling amplitudes t we can expect the sum to be
dominated by shortest paths, i.e., those with minimal possible
numberN of intermediate grains. Moreover, in most situations
only one particular path will be important. The amplitude of
such multiple cotunneling event is given by a proper matrix

element of

A{hk,ek}(�q) = (−i)N+1
∫

T{ŜĤtun(tN+1) . . . Ĥtun(t1)}

×
N+1∏
k=1

dtk (42)

calculated at given static set of deviations �q.
The amplitude A{hk,ek} describes the process, at the end of

which a hole with the set of quantum numbers h0 is created
in grain l and an electron with the set eN+1 is created in
grain r; generally speaking, each ofN intermediate grains k =
1, . . . ,N acquires an electron-hole pair with quantum numbers
{ek,hk} (inelastic cotunneling). However, it is possible to have
ek = hk for certain k’s, then no electron-hole pairs are created
in the corresponding grains (elastic cotunneling). Let us denote
the set of such k’s as m1,m2, . . . ,mM. If this set is empty (M =
0), one speaks about purely inelastic multiple cotunneling; if
it includes all the intermediate grains (M = N ), we deal with
purely elastic multiple cotunneling.

Consider the set of indices {α1β1; . . . ; αN+1βN+1}, which
describes certain sequence of individual tunnelings between
pairs of neighboring grains in the chain (in the kth entry
a tunneling event occurs from the state αk to the state βk).
Such a set is some permutation of “the natural sequence”
{h0e1; h1e2; . . . ; hN eN+1}, corresponding to progressive mo-
tion of electron from the left end of the chain to its right
end. All the permuted sets contribute to the amplitude A{hk,ek}
alongside with the natural one. From (42) we get

Ã{hk,ek} = (−i)N+1
N+1∏
k=1

tekhk−1

∫ N+1∏
k=1

dτk〈|T{ψ̂†
eN+1

(τN + · · · + τ1)ψ̂hN (τN + · · · + τ1) . . . ψ̂†
e1

(0)ψ̂h0 (0)}|〉, (43)

where we have used the shortcut notation | 〉 for initial and 〈 | for final state. The tunneling matrix element tekhk−1 describes the
transition of electron from the state h in the (k − 1)th grain to the state e in the kth grain.

Within the short-range interaction model we only need to time order the ψ̂ operators acting in each single-grain subspace:

−i〈|T{ψhk
(τ1 + · · · + τk)ψ+

ek
(τ1 + · · · + τk−1)}|〉. (44)

As a result, we obtain (45) for inelastic grains and (46) for elastic ones:

−inhk

[
1 − nek

](
θ (τk)e−i(εhk

+E
(+)
k )τk−i(τ1+···+τk−1)(εhk

−εek
) − θ (−τk)e−i(εhk

−E
(−)
k )τk−i(τ1+···+τk−1)(εhk

−εek
)
)

(45)

−i
(
1 − nem

)
θ (τm)e−i(εem +E

(+)
k )τk + inem

θ (−τm)e−i(εem −E
(−)
k )τk . (46)

Here, ns is the fermionic occupation number for state s (not to be mixed with the occupation numbers of grains!). The two terms
in (45) and (46) correspond to different sequences of tunnelings: in one case, the hole is created first and the electron afterwards,
and in another case the order is reversed. Let us now collect all the factors containing τk for each k ∈ 1 . . .N in (43) and integrate
them out. Then, we eventually arrive at

Ã{hk,ek} = −inh0 [1 − neN+1 ]
N+1∏
k=1

tekhk−1

N∏
k=1

Bk. (47)

The factors Bk for inelastic and elastic grains, respectively, are

Bk(�q) = −nhk
[1 − nek

]

{
1

εhk
+ �k + E

(+)
k (qk)

+ 1

εhk
+ �k − E

(−)
k (qk)

}
,

Bm(�q) = −
{

1 − nem

εem
+ �m + E

(+)
m (qm)

+ nem

εem
+ �m − E

(−)
m (qm)

}
, (48)
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where we have introduced

�k ≡ −εeN+1 − E(+)
r (qr ) +

N∑
s=k+1

(εhs
− εes

). (49)

Note that the explicit summation over all tunneling se-
quences, which we have just performed, is only possible in
the short-range interaction model.

According to Fermi’s golden rule, the transition rate is

wlr (�q) = 2π
∑

{hk,ek}
|Ã{hk,ek}|2

× δ

(
εh0 − εeN+1 +

N∑
s=1

(εhs
− εes

) − �

)
, (50)

where the Franck-Condon energy difference

� ≡ �(�q ) = Ech(�nf ,�q ) − Ech(�ni,�q ) (51)

is the difference between electrostatic energies of final and
initial states. We should also define the thermodynamic energy
difference

�̃ = Ẽf − Ẽi (52)

which is the energy distance between two local minima
corresponding to initial �ni and final �nf states.

Note that it is impossible to distinguish the final states
of the systems with the same sets of inelastic quantum
numbers and different sets of elastic quantum numbers. For
this reason, in principle, one should add the amplitudes of
such processes rather than probabilities. However, the arising
interference terms are strongly suppressed because of violent
sign fluctuations of tunneling elements and, therefore, they
were neglected in (50).

V. AVERAGING OF THE TRANSITION RATE

The transition rate (50) depends on both dynamic random
variables �q and static ones �γ ,�α, etc. There is an important
difference between these two groups of variables: we should
perform thermodynamic averaging of (50) over �q, while the
frozen static variables do not imply averaging, so that, in

principle, they remain “live” and characterize a specific sur-
rounding of a particular chain. However, because of typically
large number N of grains in the chain, the static disorder is
partly self-averaged and washed out. As we will see, only
the dependence on few static random variables (mainly those
characterizing the terminal grains l and r) remains live.

A. Thermodynamic averaging

Gibbs thermodynamic averaging over �q has the form

〈(. . .)〉�q = 1

Zc

∑
�n

∫
(. . .) exp

{
−Ech(�n,�q)

T

}
d �q, (53)

where Zc is the partition function:

Zc =
[

det
K̂

2πT

]−1/2 ∑
�n

exp{−Ẽ(�n)/T }. (54)

In averaging over electronic states we will assume an equi-
librium noncorrelated distribution, so that 〈nsk

〉 = fF (εsk
) and

〈nsk
nsk′ 〉 = 〈nsk

〉〈nsk′ 〉, with fF being the Fermi function.
Further simplification can be made if we note that the

characteristic value of inelastic energies εhk
, εek

is controlled
by the combination of Fermi functions and delta function
in (50). We can see that εinel ∼ �/L, where L = N − M
is the number of inelastic grains in the string. This means
that typically εinel � Ec. The same is also true for �k .
Therefore, these quantities in the denominators in (48) can be
neglected compared to E

(±)
k . However, this is not true for the

elastic energies εm since they do not enter the delta function.
These energies are of order Ec and should be kept in the
denominators. For the same reason (as εhm

∼ Ec � T ), we
can substitute 1 − θ (εhm

) instead of fF (εhm
). The summation

over spin projections should be performed only for inelastic
grains. It is straightforward and yields the factor 2L+1.

Also, we can substitute tekhk−1 by its “coarse-grained” value
at the Fermi level tk,k−1 (i.e., averaged over an interval of
energies, large compared to the level spacing δ, but small
compared to any other relevant scale). It allows for replacement
of the summation over electronic states by integration

∑
εs

→∫
dεs/δk , which immediately allows to integrate out the elastic

energies, and we arrive at

wlr = 2π

〈
2L+1

N+1∏
k=1

|tk,k−1|2
∑
{hl,el}

fF (εh0 )[1 − fF (εeN+1 )]
∏

k,inelastic

fF (εhk
)[1 − fF (εek

)]

[
1

E
(+)
k

− 1

E
(−)
k

]2

×
∏

m,elastic

[
1

E
(+)
m

+ 1

E
(−)
m

]
δ

(
εh0 − εeN+1 +

N∑
s=1

(εhs
− εes

) − �

)〉
�q
. (55)

The variables qk for intermediate grains enter wlr only
through the denominators in square brackets of both types
(elastic and inelastic), and the result of integration over dqk

in thermal averaging formally diverges at resonances, where
either E

(−)
k or E

(+)
k goes to zero. This divergency, however,

should be cut off at E±
k ∼ |t |, where the perturbation theory

ceases to be valid, thus, the integration in the vicinity of the
resonance gives finite result. So, each integration over dqk

gives three contributions: one from the vicinity of thermal
equilibrium qk ≈ 0, and the other two from the vicinities of
the resonances q

(±)
k , defined by conditions E

(±)
k (q(±)

k ) ≈ 0.
The relative magnitudes of the resonant contributions are
exponentially suppressed ∼Ec/|t | exp{−Ec/T } and thus
are negligible in the low-temperature VRH regime. As a
result, thermodynamic fluctuations of q at intermediate
grains are not relevant, and one can simply neglect
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them, setting qk ≈ 0, so that E
(±)
k (qk) → E

(±)
k (0)

in (55).

B. Self-averaging of intermediate grains

To treat the products of large number of random factors,
occurring in (55), we will apply the Cental Limit Theorem
self-averaging rule in the form

n∏
j=1

Xj ≈ exp{n ln X}, n � 1 (56)

and hence

|tkk−1|2 → t2 ≡ eln |tkk−1|2 , δk → δ ≡ eln δk ,

E
(c)
k → Ec ≡ eln E

(c)
k ,(

1

E
(+)
m (0)

+ 1

E
(−)
m (0)

)
→ A1

Ec

, (57)(
1

E
(+)
k (0)

− 1

E
(−)
k (0)

)2

→ A2

E2
c

, (58)

where

A1 ≡ 2 exp{−ln[1 − 4(1 − α)2γ 2]},
A2 ≡ 4A2

1 exp{ln[(1 − α)γ ]}. (59)

The factors A1, A2 depend on the specific distribution
functions of random parameters α and γ and their correlation.
They are model-dependent numbers of order unity and we will
never refer to their exact values in this paper.

C. Back to thermodynamic averaging

Finally, we have to perform the remaining summation over
the energies εes

,εhs
of the components of electron-hole pairs,

created in the inelastic grains, and over the vector �q.
Let us introduce the new temperature scale

T∗ =
√

(A1/2A2)Ecδ (60)

and more convenient notations εs = εes
, εN+s = −εhs

for all
“inelastic” intermediate grains, and ε2N+1 = εeN+1 , ε2N+2 =
−εh0 for terminal grains. Then, we can rewrite (55) as

wlr = 4πgT∗

(
A1gδ

Ec

)N N∑
L=0

CL
N 〈IL[�(ql,qr )]〉�q, (61)

where

IL(�) = T∗
∫ ∞

−∞

2L+2∏
s=1

dεs

T∗
[1 − fF (εs)]δ

(
2L+2∑
s=1

εs + �

)
.

(62)

The binomial coefficient CL
N ≡ N ![(N − L)!L!]−1 appears in

the formula (61) as a number of possible partitions of the string
into elastic and inelastic subsets. Note that in (62) we have used
the relation (41) and expressed the result in the terms of the
average dimensionless conductance between adjacent grains
g ≡ (|t |/δ)2 � 1.

As it was shown in [13], in the absence of the polaronic
effect (for W → 0) the characteristic scale εinel for the

energies of electron-hole pairs, created in the acts of inelastic
cotunneling, is much larger than temperature. It allows for an
evaluation of the multiple integral in (62), leading to the result

IL(�) = (|�|/T∗)2L+1

(2L + 1)!
exp

{
−� + |�|

2T

}
,

�

L
� T . (63)

A physical meaning of this result is clear: if the number
of inelastic grains is L and their total energy is �, then the
characteristic energy of one electron (or one hole) created in
the process is εinel ∼ �/L. The phase volume, corresponding
to the processes with 2L + 2 particles with energies ε ∼ εinel

and finite density of states, is then proportional to ε2L+2
inel , which

(with the help of Stirling formula) explains formula (63).
We will see soon that in the presence of the polaronic

effect (namely, for � � W ) εinel becomes comparable to
temperature. Finding IL(�) for εinel � T is a much more
difficult problem, which, however, is possible to resolve, using
a trick proposed in [27].

We should Fourier transform the δ function in (62) to
decouple the integrals over εs :

1

2π

∫
e−i�tdt

2L+2∏
s=1

∫
e−itεs

1 + e−εs/T
dεs. (64)

The trick is to multiply it by 1 = exp(− �
2T

− 1
2T

∑
εs),

which will make the integrals convergent, and they can be
easily calculated via residue theory:

1

2π
e−�/2T

∫
e−i�tdt

2L+2∏
s=1

∫
e−itεs

2 cosh εs

2T

dεs

= 1

2π
e−�/2T

∫
e−i�tdt

[
πT

cosh πtT

]2L+2

. (65)

As a result,

IL(�) = T∗
2π

e−�/2T

∫
e−i�tdt

(
πT/T∗

cosh πtT

)2L+2

. (66)

The integral (66) can be evaluated exactly, but it is more
convenient first to perform summation over L, which in this
representation turns out to be trivial:

N∑
L=0

CL
N IL(�)= T∗

2π
e−�/2T

∫
e−i�tdt

[
1+

(
πT/T∗

cosh πtT

)2
]2N

×
(

πT/T∗
cosh πtT

)2

. (67)

We are left with the thermodynamic averaging
〈exp{−�(1/2T + it)}〉�q , which is reduced to the Gaussian
integration that can be easily performed. As a result,

wlr ∝
(

A1gδ

Ec

)N
exp

{
− ε

T
− D2

16WT

}

×
∫

exp

{
−W

T

(
2tT − i − i

D

4W

)2
}

×
[

1 +
(

πT/T∗
cosh πtT

)2
]N

dt

cosh2 πtT
, (68)
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where

D ≡ Dlr = |�̃lr | − 4W, W ≡ Wl + Wr,

ε ≡ εlr ≡ 1
2 {|εl − εr | + |εl| + |εr |}, �̃lr = εl − εr ,

and we have omitted all preexponential factors.

VI. CASE STUDIES: TRANSITION RATES AT DIFFERENT
STRENGTH OF POLARONIC EFFECT

The general formula (68), in principle, contains the answers
for all possible questions concerning different modes of the
charge transfer between two particular grains. However, for
understanding of the physical origin of each particular mode
and the corresponding T dependencies, it is necessary to
consider the limiting cases. In this section, we undertake such
a case study.

To evaluate the integral over t one can use the steepest
descent method. The saddle point is located below the lowest
pole on the imaginary axis of the complex t plane at t =
i(1 − ξ )/2T , where ξ satisfies the equation

D + 4Wξ = 2πNTy(ξ ) cot(πξ/2) (69)

and

y(ξ ) ≡
[

1 +
(

T∗ sin(πξ/2)

πT

)2
]−1

= L

N (70)

determines the typical number L of inelastic grains in the
string. In terms of ξ , the transition rate can be written as

wlr ∝
(

A1gδ

Ec

)N
[

1 +
(

πT

T∗ sin(πξ/2)

)2
]N

× exp

{
W

T
ξ 2 − ε

T
+ D

2T
ξ

}
. (71)

We have omitted in (71) the preexponential factor sin−2 πξ

because it becomes essential only at extremely low temper-
atures in the case of purely elastic cotunneling. This factor
may be important for systems where the length of strings N is
restricted from above (as in small arrays of quantum dots, or
single-electron transistors), which is not the case as long the
VRH conductivity of a large sample is concerned.

We will see that the entire range of the parameter D

(−4W < D < ∞) may be split into three intervals with
different types of approximations applicable:

(1) weak polaronic effect (D > 0, D � �D);
(2) strong polaronic effect (D < 0, |D| � �D);
(3) narrow transition range (|D| � �D).
The transition range width

�D = 8
√

WLT � 8
√

WNT � 4W. (72)

The latter inequality is valid because, as we will see in
Sec. VIII, max{W,|�̃|}/T � N for typical strings of grains
that contribute to the conductivity. Below we discuss these
three intervals separately.

A. Weak polaronic effect: “Electron hopping”

For D > 0 the parameter ξ � 1, so that all trigonometric
functions in (69) and (70) can be expanded. Aside from that,
as long as D � �D one can neglect the second term on the
left-hand side of (69), so that the latter is reduced to the cubic
equation

(T∗/2T )2ξ 3 + ξ = 4NT

D
(73)

and one can easily express ξ via y:

ξ = 2T

T∗

√
(1 − y)/y. (74)

The transition rate then can be rewritten as

wlr ∝
(

A1gδ

Ec(1 − y)

)N
e

D
2T

ξ (y) exp
{
− ε

T

}
. (75)

Substituting (74) to (73), we arrive at the equation

y3 = (1 − y)z2, where z = D

2T∗N
(76)

which implicitly determines the function y(z). Finally, for the
transition rate we obtain

wlr ∼
[
A1gδ

Ec

exp

{
�1

(
D

2T∗N

)}]N
exp

{
− ε

T

}
(77)

the function �1(z) being defined as

�1(z) = 2y(z) − ln[1 − y(z)]. (78)

The asymptotics of �1(z) are

�1(z) ≈
{

3z2/3, for z � 1
2 ln(ze), for z � 1.

(79)

Note that �1(z) coincides with ϕ(z) which was described
in [13], so that for D > 0 their result coincides with the
result of this paper up to a slight modification |�̃| → D in
the definition of the argument z.

One can easily check that the parameter ξ is indeed
small under conditions D > 0, max{W,|�̃|} � LT , no matter
whether T < T∗ or T > T∗.

B. Strong polaronic effect: “Polaron hopping”

For negative and not very small D we can neglect the right-
hand side of Eq. (69) (it can definitely be done if |D| � δD),
and then

ξ = |D|/4W, (80)

where ξ is not necessarily small. Substituting (80) into (71),
we get

wlr ∝
[
A1gδ

Ec

exp

{
�2

(
T∗
πT

sin
π |D|
8W

)}]N

× exp

{
− ε

T
− D2

16WT

}
(81)

and also

y = 1

1 + z2
, z = T∗

πT
sin

π |D|
8W

. (82)
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In order to write the transition rate in a compact form, like (77),
we have introduced the new function �2(z):

�2(z) = ln(1 + 1/z2). (83)

C. Narrow transition range

Looking at the results of the two preceding subsections,
we conclude that ξ � 1 for all positive D and also for small
negative D (such that |D| � 4W ). However, for very small |D|
(both positive and negative) the first term on the left-hand side
of (69) can not be neglected. The condition of “very small” |D|
reads as |D| ∼ ξW , where ξ is given by the solution of (73). It
yields |D| ∼ �D, where �D is given by (72). To find ξ in the
narrow transition range |D| � �D, one would have to solve a
quartic equation

[(T∗/2T )2ξ 3 + ξ ]

[
1 + 4ξW

D

]
= 4NT

D
. (84)

To justify the numerical coefficients in (72), we note that the
saddle-point equation (69) for small ξ can be written in the
form

D + 4Wξ = 4LT

ξ
, (85)

where L ≡ y(ξ )N itself depends on ξ . A formal “solution” of
this equation is

ξ = − D

8W

⎛
⎝1 ±

√
1 + 64WLT

D2

⎞
⎠. (86)

From the result (86) immediately follows the estimate for

the width of transition range �D ∼ 8
√

WLT . Since the
requirement L � N is always satisfied, we arrive at the
inequality in (72).

We will not discuss the transition region in detail since the
corresponding range of random parameters D,W is narrow
and does not give any considerable contribution to physical
observables.

VII. PHYSICAL INTERPRETATION

Activation exponential factors in formulas (77) and (81)
coincide with the corresponding factors from standard polaron
hopping theory. Additional modifications, specific for our
problem, arise only in the power-law factors (effective overlap
integrals) due to the many-particle nature of the cotunneling
process.

A. Main exponential dependence

Activation exponential factors for conventional polarons
were obtained previously by other researchers. Still, we would
like to present some physical arguments that qualitatively
explain the origin of these factors.

Let us first consider the exothermic transition with � <

0, i.e., Ech(�nf ,�q) < Ech(�ni,�q) [see Fig. 5(a)]. Since the total
electrostatic energy decreases, the electron-hole pairs will be
created in the inelastic intermediate grains to ensure energy
conservation. Thus, in this situation with exponential accuracy

FIG. 5. Different types of transitions: (a) exothermic, (b) en-
dothermic, (c) polaron transition.

the probability of transition is just the probability to find the
system in state �ni . Its maximum value is

w ∝ exp
{−Ẽi/T

}
. (87)

Now, let us consider the endothermic transition with � > 0,
i.e., Ech(�nf ,�q) > Ech(�ni,�q) [see Fig. 5(b)]. Since the electro-
static energy increases, the electron-hole pairs will be anni-
hilated in some intermediate grains to make up the shortfall.
Such pairs are difficult to find at low temperature, which is ac-
counted for by the additional exponential factor exp(−�/T ).
The transition rate also contains exp {−Ech(�ni,�q)/T }: the
probability to find the system in state �ni . Together these two
contributions yield w ∝ exp {−Ech(�nf ,�q)/T }, and we should
take its maximum value

w ∝ exp{−Ẽf /T }. (88)

But what if �q, that delivers the minimum of Ech(�nf ,�q),
violates the requirement � > 0? The result (88) will be
incorrect in this case since there will be no exponential factor
e|�|/T for � < 0! In this case, the true minimum of the
activation energy should lay on the boundary of the regions
with � > 0 and � < 0, i.e., at � = 0 [see Fig. 5(c)]:

w ∝ exp{−min Ech(�nf ,�q)/T }, �q : � = 0. (89)

Finding the minimum, we obtain

w ∝ exp{−Eact/T }, (90)

where Eact is given by (30).
To determine which of the above-described solutions gives

the largest contribution to the probability of transition, we
should simply compare the corresponding exponents. It is
easily seen that the contribution of the boundary minimum (90)
dominates when |Ẽi − Ẽf | < 4W and explains the main
exponential dependence in polaron hopping regime (81).
In the opposite case |Ẽi − Ẽf | > 4W we have to choose
the maximum of (87) and (88), which explains the result
wlr ∝ exp {−εlr/T } from (77).

B. Energies of electron-hole pairs

In the electron hopping regime, the Franck-Condon tran-
sition energy � (that coincides with the aggregate energy of
electron-hole pairs involved) does not differ much from its
“relaxed” value �̃. Hence,

εinel ∼ �/L ≈ �̃/L ∼ LT � T , (91)

where L is the large logarithmic factor (see later).
On the contrary, according to the above-described physical

picture, in polaron hopping regime the transition occurs at
� = 0 [see (89)]. However, presented in Sec. VI more careful
calculation (which takes into account the � dependence of the
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power-law factor) shows that � is indeed small, but finite,
in contrast with conventional polaron transitions (where it
is exactly zero). In fact, � ∼ LT , which means that in the
polaron hopping regime

εinel ∼ �/L ∼ T . (92)

Another way to see this is to note that in the presence
of polaronic effect, the integral (68) converges at t � 1/T ,
which means that the integrals over the inelastic energies (64)
converge solely due to the denominators, which means at
εinel ∼ T .

Thus, we conclude that during the crossover from electron
to polaron hopping the characteristic energies of electron-hole
pairs decrease from εinel ∼ LT to εinel ∼ T � LT .

VIII. CONDUCTIVITY: GENERAL CONSIDERATION

We now finally turn to the calculation of conductivity of a
sample of granular metal. According to the general philosophy
of the hopping, we introduce the Miller-Abrahams network of
conductances glr ∝ wlr , connecting each pair of grains. As
usual, at low temperatures the conductivity is dominated by
distant pairs of resonant grains, so that we can use the results
of the preceding section, and represent the conductances in
(almost) standard form

glr ∼ exp

{
−Elr

T
− 2|rl − rr |

alr

}
, (93)

where rl , rr are the positions of the centers of the grains and
the “effective decay length” alr is given by

2a0

aij

= ln

(
Ec

A1gδ

)
−
⎧⎨
⎩

�1

(
Dlr

2T∗Nlr

)
, Dlr > 0

�2

(
T∗
πT

sin π |Dlr |
8(Wl+Wr )

)
, Dlr < 0

(94)

where a0 is the average distance between neighboring grains,
so that |rl − rr | ≡ a0Nlr . The functions �1 and �2 are given
by (79) and (83).

The dependence of alr on both rlr and characteristics
of grains seems to be unusual, however, it is a distinct
feature of hopping in granular materials. This dependence is
only logarithmic and therefore it can be taken into account
perturbatively (see later).

The activation energy is standard for a polaronic problem:

Elr = εlr +
{

0 (Dlr > 0),
D2

lr

16(Wl+Wr ) (Dlr < 0).
(95)

Thus, we have come to a system of grains, each of them being
characterized by the position rj of its center, by the energy εj ,
and by the barrier Wj . Obviously, at low T hopping electrons
prefer to “make stops” only at resonant grains, those with
small ε and W , while the nonresonant grains with typically
large ε and W may serve only as intermediate places, where
electrons occur only virtually, staying there for very short
times, governed by the quantum uncertainty (see Fig. 6). The
random variables εj and Wj have the distribution function
ν̃(ε,W ) and may be correlated or uncorrelated, depending on
the underlying physics. In this paper, we will consider only the

FIG. 6. (a) Sample of granular material. Resonant grains are
shown as dark shapes. Electron cotunneling paths between resonant
grains go through gray intermediate grains. (b) Equivalent Miller-
Abrahams network of conductances.

noncorrelated case, in which for small enough ε

ν̃(ε,W ) = ν0P (W ), (96)

where P (W ) is the barrier distribution function and ν0 is the
density of states (DOGS) near ε = 0:

ν0 = ngP̃ (γ = ±1/2)/Ec, (97)

where P̃ (γ = ±1/2) is the probability density to have γ =
1/2 (the same as γ = −1/2), and ng is the concentration of
grains.

Statistics of barriers

Within the paradigm of short-range interaction, it is natural
to assume that the interaction between grains and impurities
is also a short-range one. It means that only the impurities,
situated immediately at the surface of particular grain j ,
contribute to both εj (through the offset charge γj ) and Wj

(through finite elasticity αj ).
In general, the number of such impurities pj fluctuates from

grain to grain. Different impurities give to εi contributions
of different signs, depending on their charges and positions.
Therefore, εj would fluctuate from grain to grain already in
the hypothetical case, where all pj are the same.

Because of the random signs of different contributions to
εj , the density of states ν0(ε) can easily be nonzero at ε = 0.
However, it is not the case for the barriers Wj . Each barrier is
additive with respect to different impurities

Wj =
pj∑

kj =1

Wkj
. (98)

Since the individual contributions are positively defined, the
random charges of different impurities do not matter, and the
distribution function P (W ) should vanish at W = 0. At the
same time, for any positive barrier height P (W ) should be
nonzero: there is no physical reason to expect a hard gap in
P (W ).
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1. Gaussian distribution of barriers

The contributions of individual impurities Wkj
are assumed

to be noncorrelated random variables with identical relatively
narrow distributions. Thus, for the most interesting case, in
which the average number of impurities coupled to each grain
is large pj � 1, the central part of the distribution P (W )
should be a Gaussian one:

P (W ) = 1√
2πδW

exp

{
− (W − W )2

2δW 2

}
, (99)

where W is the average barrier, δW is its standard deviation,
and by “central part” we mean the range of barriers W , where
|W − W | � W . We will stick to the case p � 1, when W ∝ p

and δW ∝ p1/2, so that the distribution is narrow: δW � W .
The condition pj � 1 also allows to neglect the cor-

relations between εj and Wj . Note that for pj ∼ 1 the
correlations are strong: for instance, the absence of impurities,
associated with given grain (i.e., pj = 0), leads to Wj = 0 and,
simultaneously, γj = 0.

Thus, in this paper we are going to analyze the case where
the joint density of states (96) has the polaronic factor P (W )
defined in (99). We have physically justified such choice,
although other distribution functions can also be considered.

2. Rectangular distribution of barriers

For example, in the paper [20] a factorized rectangular
distribution

P (W ) = θ (W − Wmin)θ (Wmax − W )

Wmax − Wmin
(100)

was studied by the method similar to the original percolational
approach to the Mott VRH, proposed in [28]. The most
spectacular result was obtained for the case Wmin � ε(T ) �
Wmax, when for relevant ε ∼ ε(T ) within the Mott strip of
width ε(T ) the“generalized density of states” ν̃(ε,W ) = ν̃0

may be treated as ε and W independent. Under this condition,
the temperature dependence of conductivity is given by

σ ∝ exp{−(TM/T )2/(d+2)}, (101)

TM ∼ (ν̃0a
d )−1/2, ε(T ) ∼ T d/(d+2)T

2/(d+2)
M . (102)

For low temperatures, such that Wmin > ε(T ), the low-energy
gap in the distribution (100) becomes essential and the
conductivity acquires a hard gap as well:

σ ∝ exp{−Wmin/T }, T � Wmin

(
Wmin

TM

) 1
d+1

. (103)

As we have already noted, in reality the gap in the distribution
P (W ) is not hard, it is most likely to have an exponential tail
at zero. In the rest of this paper, we will adopt the Gaussian
distribution of barriers (99).

A. Percolation problem

The conductivity of Miller-Abrahams network with expo-
nentially wide distribution of conductances should be found by
means of percolation theory [2,28]. We have come to a kind of
colored percolation problem on random sites, homogeneously
distributed in (r,ε) space with the density (DOS) ν0 [29]. Each
site k, besides its position (rk,εk), is characterized by a positive
variable Wk , distributed according to (99). The variables εk and

Wk are interpreted as two components of a composite color of
a site k, and n(ε,W ) ≡ ν(ε)P (W ) is the density of sites with
given color.

By definition, a pair of sites 〈kj 〉 is “ξ connected” if

ξkj ≡ 2|rk − rj |
a

+ Ekj

T
< ξ, (104)

where

Ekj ≡ E(εkWk|εjWj ) = εkj + �kj , (105)

�kj ≡ D2
kj

16(Wk + Wj )
θ (−Dkj ), (106)

Dkj ≡ |εk − εj | − 4(Wk + Wj ). (107)

As it is usual for the problems of VRH type, the dc
charge transfer processes at low temperatures are confined
to certain critical subnetwork of resonant grains with small
energies ε within certain narrow strip of width ε(T ). This
width is T dependent and has to be defined self-consistently.
It is more convenient to proceed with calculations in different
temperature ranges separately.

IX. CONDUCTIVITY IN DIFFERENT
TEMPERATURE RANGES

There are three principal energy scales in our problem: (i)
the average barrier W , (ii) the barrier dispersion δW � W , and
(iii) the width of the Mott strip ε(T ). Correspondingly, there are
three ranges of temperature with different dominating physics.

A. Electron hopping: Standard Mott VRH

In this case W � ε(T ), so that the polaron effect is
negligible, and the standard Mott law is valid

σ ∝ exp

{
−
(

TM

T

) 1
d+1

}
, TM = βM

ν0ad
. (108)

The width of effective energy strip is

ε(T ) ∼ T (TM/T )
1

d+1 . (109)

The condition W � ε(T ) is equivalent to

T � Tc1, Tc1 ∼ W

(
W

TM

) 1
d

(110)

being the temperature of crossover between the electron and
the polaron regimes.

B. Polaron hopping, grains with typical barriers

Here,

δW � ε(T ) � W (111)

so that the polaron effect is dominant, but the fluctuations of
the barriers are still negligible. In this range, the results of the
model with identical barriers for all grains are applicable:

σ ∝ exp

{
−2W

T
−
(

T ′
M

T

) 1
d+1

}
,

T ′
M = β ′

M

νF ad
, ε(T ) ∼ T

(
T ′

M

T

) 1
d+1

. (112)
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Note that the second term in the exponent is small compared
to the first one. The condition δW � ε(T ) � W is equivalent
to Tc2 � T � Tc1, where

Tc2 ∼ δW

(
δW

T ′
M

) 1
d

∼ Tc1

(
δW

W

) d+1
d

� Tc1. (113)

In principle, one can also write a general formula that describes
the behavior of the conductivity in the entire range T � Tc2:

σ ∝ exp

{
−Weff(T )

T

}
, Weff(T ) = W [2 + F1(T/Tc1)],

(114)

F1(x) being a universal function, with a shape depending only
on the space dimensionality d. Its asymptotics are

F1(x) ≈ x
d

d+1

{
c1 (x � 1),
c2 (x � 1), (115)

where c1,c2 are some universal constants. An interpolation
formula for the function F1(x) was proposed in [20].

C. Polaron hopping, grains with the barriers in the Gaussian
tail of distribution

Here,

ε(T ) � δW � W (116)

and the grains with anomalously low barriers Wj from the tail
of the distribution (99) dominate the critical network:

σ ∝ exp

{
−2W

T
+ δW

T

[
8d ln

(
Tc2

T

)]1/2
}

,

ε(T ) ∼ δW

[
8d ln

(
Tc2

T

)]−1/2

. (117)

Namely, the critical subnetwork consists of grains with Wj

from a narrow strip∣∣∣∣Wj − 1

2
Weff(T )

∣∣∣∣ � ε(T ),

Weff(T ) ≡ 2W − δW

[
8d ln

(
Tc2

T

)]1/2

. (118)

The derivation of results (117) and (118) is given in
Appendix B. It is based on the possibility to reduce the initial
multiparametrical percolation problem to certain universal
one, governed by a single parameter.

Note that the result (117) is only valid, if the second term
in the exponent is small compared to the first one. In the terms
of temperature it means

Tmin � T � Tc2, Tmin ∼ Tc2 exp

⎧⎨
⎩− 1

8d

(
W

δW

)2
⎫⎬
⎭.

(119)

In principle, one can also combine the results in the entire
range Tmin � T � Tc1 in one formula:

σ ∝ exp

{
−Weff(T )

T

}
, Weff(T ) = 2W + δWF2(T/Tc2),

(120)

where F2(x) is, again, a universal function, depending only on
the space dimensionality d. Its asymptotics are

F2(x) ≈
{−√

8d ln(1/x) (x � 1),
c3x

d
d+1 (x � 1),

(121)

where c3 is a constant. Note that the high-temperature asymp-
totics of (120) coincides with the low-temperature asymptotics
of (114).

The inequality T � Tmin was imposed to secure the
condition of relatively small relevant fluctuations with W −
W � W . This condition is needed to justify their universal
Gaussian distribution. At T ∼ Tmin, the relevant fluctuations
are large: W − W ∼ W and their distribution is strongly model
dependent.

The range of exponentially low temperatures T � Tmin may
only be of academic interest because at such low T , the the
barrier would rather be penetrated due to quantum tunneling
mechanism than due to the activational one, which we are
discussing here.

D. Effective radius of the wave functions

Now we have to specify the “effective radius of the wave
function” a, entering the criterion (104). In the electron
hopping regime, when |ε| � W , the actual “radius” a = akj

depends on the characteristics of particular grains k and j . This
logarithmic dependence can be easily taken into account. This
was done in [13] with the help of the perturbational method
in the percolation theory. As a result, the effective radius a

appeared to be inversely proportional to the large logarithm
L(T ):

a = a(T ) = 2a0

L(T )
, (122)

where we define a0 as the mean distance between the grains:
rkj = a0Nkj . As a consequence, the parameter TM in (108)
acquires a logarithmic temperature dependence

TM = TM (T ) = β ′

νF a(T )d
= β

νF

(L(T )

2a0

)d

. (123)

Fortunately, for |ε| � W , in all the polaron hopping
regimes, including both weak fluctuations and strong fluc-
tuations cases, a does not depend on i and j , but only
on temperature. This can be seen from the expression for
transition rate, which contains the factor

e−2rkj /a ≡
⎧⎨
⎩A1gδ

Ec

⎡
⎣1 +

(
πT

T∗ sin π |D|
8W

)2
⎤
⎦
⎫⎬
⎭

Nkj

≈
{

A1gδ

Ec

[
1 +

(
πT

T∗

)2
]}Nkj

. (124)

Thus, no perturbational method is needed in this case and

a = a′(T ) = 2a0

ln
(

Ec

A1gδ

)− ln
[
1 + (

πT
T∗

)2] (125)
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so that the parameter T ′
M in (112) also becomes logarithmically

T dependent:

T ′
M = T ′

M (T ) = T ′
M (0)

⎛
⎝1 − ln

[
1 + (

πT
T∗

)2]
ln
(

Ec

A1gδ

)
⎞
⎠

d

,

T ′
M (0) = β ′

νF a′(0)d
= β ′

νF

(
ln
(

Ec

A1gδ

)
2a0

)d

. (126)

X. SUMMARY

We have considered a granular metal with charged im-
purities (stray charges) that are not rigidly fixed at certain
positions, but can be slightly displaced from their equilibrium
positions due to electrostatic forces and thermal fluctuations.
The flexibility of the system of impurities leads to a “polaronic
effect” that can be either weak (for T � Tc1) or strong (for
T � Tc1), where the crossover temperature

Tc1 ∼ W (W/TM )
1
d (127)

and TM ≈ TM (Tc1) is given by (134) below.
In this paper, we have studied a model with short-range

interaction (e.g., screened Coulomb) and taken into account
only the thermoactivational mechanism of the penetration
of the polaronic barrier by the configurational degrees of
freedom, not the tunneling one. The latter may become
relevant at very low temperatures (the larger the effective mass
M of the impurities, the lower the corresponding crossover
temperature).

Experimentalists often introduce the differential activation
energy according to

Eact(T ) ≡ ∂ ln(1/σ (T ))

∂(1/T )
. (128)

Below we discuss the temperature dependence of Eact(T ) in
different temperature ranges.

A. Weak polaronic effect

In the range T � Tc1, the hopping can be with minor modi-
fications described by the electronic multiple cotunneling [13]

Eact(T ) ≈ T

d + 1

(
TM (T )

T

) 1
d+1

. (129)

B. Strong polaronic effect

The range T � Tc1, where the cotunneling is dominated by
polaronic effect, is split into two subranges with the crossover
temperature

Tc2 ∼ Tc1(δW/W )
d+1
d � Tc1. (130)

(i) For Tc2 � T � Tc1, the spatial fluctuations of
polaronic barriers Wj can be neglected and the choice of
resonant grains that constitute the effectively conducting
network is dictated exclusively by the values of εj : they should
lie in the Mott-type strip |εj | � ε(T ), while the particular
values of Wj are irrelevant. Here the approach, similar to the

one proposed in [20], is applicable, and

Eact(T ) ≈ 2W + T

d + 1

(
T ′

M (T )

T

) 1
d+1

, (131)

where the second term is relatively small, compared to the first
one.

(ii) For T � Tc2, both εj and Wj are important, the
effective network is formed by the grains for which both εj and
Wj are anomalously small: |εj | � ε(T ) and simultaneously
|Wj − 1

2Weff(T )| � ε(T ). Here,

ε(T ) ∼ δW

[
8d ln

(
Tc2

T

)]−1/2

. (132)

In this temperature range,

Eact(T ) ≈ Weff ≡ 2W − δW

[
8d ln

(
Tc2

T

)]1/2

. (133)

Thus, due to the tail in the distribution of the barrier
fluctuations, the effective activation energy continues to
decrease even at lowest temperatures, although this decrease
becomes very slow.

C. Elastic versus inelastic cotunneling

The above-mentioned crossovers discriminate different
modes of hopping with respect to the strength of polaronic
effect (crossover at T ∼ Tc1) and to the importance of the fluc-
tuations of the latter (crossover at T ∼ Tc2). There is, however,
one additional crossover at T ∼ Tc0 that discriminates different
modes with respect to the character of cotunneling: elasic or
inelastic. For T � Tc0, the “constants” TM (T ) and T ′

M (T )
logarithmically increase with the lowering of temperature,
while at T � Tc0 they saturate and become T independent:

TM (T ) = βLd (T )

νF (2a0)d
, T ′

M = β ′Ld (0)

νF (2a0)d
, (134)

L(T ) ≈ ln

(
Ec

gδ

T 2
c0

T 2
c0 + T 2

)
. (135)

The explicit form of Tc0 depends on the relation between Tc0

and Tc1:

Tc0 ∼ (Ecδ)1/2

{
1/L(0), Tc0 � Tc1

1/π, Tc0 � Tc1.
(136)

For Tc0 � Tc1, the crossover between elastic and inelastic
cotunneling takes place within the weak polaron effect domain,
while for Tc0 � Tc1 it happens within the strong polaron effect
domain.

D. Long-range Coulomb interaction: Some qualitative estimates

If the long-range part of the interaction Ujk ∝ 1/|rjk| is
not screened, the problem becomes not analytically solvable,
but some qualitative conclusions still may be drawn. Although
the characteristics of grains are spatially correlated in this
case, at low temperature a typical length of a hop exceeds
the corresponding correlation length, so that variables εj

and Wj of the terminal grains in the string still may be
treated as independent random variables. The distribution
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of εj has a Coulomb gap ν ∝ εd−1
j (see [11,13]), while the

distribution of Wj apparently remains Gaussian, with certain
W and δW . Then, as in the case of short-range interaction,

one can define two crossover temperatures T ∗
c1 ∼ W

2
/T0 and

T ∗
c2 ∼ δW 2/T0.

(a) As it was already argued in [13], in the range of
weak polaronic effect T � T ∗

c1, the Efros-Shklovskii law
σ ∝ exp{−(T0/T )1/2} should be valid, where T0(T ) is given
by (2). This law corresponds to Eact(T ) ∼ (T T0)1/2.

(b) Within the range T ∗
c2 � T � T ∗

c1, the temperature
dependence of conductivity is mainly determined by the
activation over typical polaronic barriers: Eact(T ) ≈ 2W +
const × (T T0)1/2.

(c) At still lower T � T ∗
c2, the hopping proceeds through

the grains with anomalously low barriers, and the for-
mula (133) is valid, where Tc2 should be replaced by T ∗

c2.
A special interesting question is the role of long-range

interaction in the case of a dense two-dimensional array
of grains. There is certain spatial scale rc such that for
|rjk| < rc the interaction Ujk ∝ (1/rc) ln(|rjk|/rc) describes
the logarithmic two-dimensional Coulomb law, while the
standard three-dimensional Coulomb law Ujk ∝ 1/|rjk| is
restored only at |rjk| � rc (see [30] for detailed discussion).
Such form of the interaction leads to modification of the
Coulomb gap and, therefore, may result in an unusual behavior
of transport.

XI. CONCLUSION

In this paper, we have introduced a concept of polaronic ef-
fect in granular systems, related to the flexibility of the random
charges, trapped in the insulating matrix. We have explained
how this effect is manifested in the conductivity of the system,
the latter being controlled by multiple cotunneling of electrons
through long “strings” of adjacent grains. The basic line of our
reasoning was similar to that of every VRH-like calculation,
and could be split into two basic steps: (i) We calculate the
carrier transition rate between distant resonant sites, taking
into account all the necessary physics (the cotunneling and
coupling to flexible impurities). The transition rate is given
by the expression (68) and its simplifications (77) and (81).
(ii) Afterwards, we find the conductivity of Miller-Abrahams
network of conductances with the help of percolation theory.
We distinguish two important temperature ranges, namely,
T > Tc1 (electron hopping) and T < Tc1 (polaron hopping),
which differ in both physical characteristics of transport and
T dependence of conductivity.

Aside from the crossover between electron and polaron
hopping, we have also studied another crossover between
elastic and inelastic cotunneling regimes. It takes place at the
temperature T = Tc0, given by (136). In the presence of strong
polaronic effect, this temperature turns out to be the same as
for single quantum dot, in contrast with the electron hopping
regime, where it is much lower.

A few important questions remain open and are subject to
future research.

(i) In this work, we have treated the configurational degrees
of freedom (i.e., coordinates of the charged impurities) as
classic ones. This can be justified only if the temperature T

is higher than characteristic frequencies ωi of the impurities

vibrations; at lower T , the polaronic barriers would be
penetrated by means of quantum tunneling. In principle, it
should lead to the reentrance of Mott law at T < ω. However,
since ωi may be different for different impurities, the crossover
to tunneling may occur not simultaneously at all grains, and
that may give rise to some interesting new physics.

(ii) We have studied here the case of short-range inter-
action; only some qualitative ideas about the effects of the
long-range Coulomb interaction were given is Sec. X D.

(iii) The lack of experimental data on polaron effect
in granular systems does not allow to reliably choose the
distribution function of the polaronic barriers W . It is not
clear whether it should be wide or narrow, have a power-law
tail at W → 0, or exponential one.

(iv) It is also unclear if the present model, in which
the occupation numbers n are coupled to oscillators, is
adequate for real-world applications. Another possible option
would be the coupling to the tunneling two-level systems
(TTLS, see [31,32]). Physically the two-level system may be
represented by impurity atoms that can tunnel between two
adjacent potential wells. Such systems play an important role
in physics of glasses, and they also contribute to dephasing in
qubits [33].

We believe that the formalism developed in this paper will
allow us to answer at least the first question from the list
above. As for the other questions, some novel approaches may
be required.
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APPENDIX A: LIST OF NOTATIONS

Here, in order to avoid confusion, we produce a list of
notations for most important characteristic energies, appearing
in this work.

EC( �N, �Q) Coulomb energy of the system
Edev( �Q) Elastic energy of impurities
Ech( �N, �Q) Potential energy of a system of charges
�if (�q) ≡
Ech(�nf ,�q) −
Ech(�ni,�q)

Franck-Condon energy difference

E
(±)
k (�q), E

(±±)
lr (�q) Single- and two-particle Franck-Condon

excitation energies
Ẽ(�n) Thermodynamic (i.e., minimized with respect

to q) energy
�̃if ≡
Ẽ(�nf ) − Ẽ(�ni)

Thermodynamic energy difference

Ẽ
(±)
k , Ẽ

(±±)
lr Single- and two-particle thermodynamic

excitation energies
Ec

k = e2/2Ck Charging energy of grain k

Wk Polaronic barrier’s height at grain k
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APPENDIX B: PERCOLATION WITH GAUSSIAN
DISTRIBUTION OF BARRIERS. DERIVATION

OF THE FORMULA (117)

We are interested in the low-T behavior of the system,
when the critical subnetwork, responsible for the conductivity,
is comprised of the rare grains with anomalously small
εj and anomalously low barriers Wj from the tail of the
distribution (99). As we will see later, these parameters are
confined in narrow strips

εj � εε, Wj − ξT � εW , with εε,εW � ξT . (B1)

Now, we will adopt the inequalities (B1) as a conjecture, the
real values of εε,εW will be determined later, and these values
will justify (B1).

Based on the assumption (B1), the expression (107) for �kj

can be expanded and we get

E(εkWk|εjWj ) = |εk| + |εj |
2

+ Wk + Wj. (B2)

The result (B2) means that indeed each site may be charac-
terized by one “composite color” W̃k ≡ Wk + |εk|/2 > 0 not
by two independent colors εk and Wk . The density of this
composite color is

ñ(W̃ ) = 2
∫ 2W̃

0
n(ε,W̃ − ε/2)dε (B3)

(the factor 2 arises due to symmetry ε → −ε), and

ξkj ≡ 2|rk − rj |
a

+ Eij

T
, Ekj ≡ E(W̃k|W̃j ) = W̃k + W̃j .

(B4)

Now, we introduce dimensionless variables

xk ≡ 2r
ξa

, δk ≡ 1

2
− W̃k

ξT
(B5)

and arrive at the dimensionless percolation problem

ξ̃kj ≡ |xk − xj | − δk − δj < 0 (B6)

with the density in the (x,δ) space

ñ(δ) = 2ξT

(
ξa

2

)d ∫ ξT ( 1
2 −δ)

0
n

[
ε,ξT

(
1

2
− δ

)
− ε

2

]
dε

≈ 4β ′T
T ′

M

(ξ/2)d+1�

[
W − ξT

(
1
2 − δ

)
δW

]
, (B7)

where

�(x) ≡ 1√
2π

∫ ∞

x

exp

{
−ζ 2

2

}
dζ. (B8)

In particular, we will need the asymptotics

�(x) ≈ 1

x
√

2π
exp{−x2/2} (x � 1). (B9)

It is convenient to write

σ ∝ exp

{
−Weff(T )

T

}
, Weff(T ) ≡ ξT , (B10)

and note that w ≡ 2W − Weff(T ) � W and ξT δ � W , so that

ñ(δ) ≈ 4β ′T
T ′

M

(
ξ

2

)d+1

�

(
w/2 + 2Wδ

δW

)
,

�

(
w/2 + 2Wδ

δW

)
≈ 1√

2π

δW

w/2 + 2Wδ

× exp

{
− (w/2)2

2δW 2
− w

δW 2
Wδ

− (2Wδ)2

2δW 2

}
. (B11)

As we will see soon, for typical δ and w a hierarchy Wδ �
δW � w holds. Therefore, only the first two terms in the
exponent should be kept, while the last term is much less than
unity and can be neglected. As a result, we can rewrite (B11)
in a form

ñ(δ) ≈ 4β ′T
T ′

M

(
ξ

2

)d+1 1√
2π

2δW

w
exp

{
− w2

8δW 2
− wWδ

δW 2

}
.

(B12)

After the renormalization of variables

uk ≡ wW

δW 2
δk, yk = wW

δW 2
xk, (B13)

we arrive at the universal percolation problem, where the sites
of color u are randomly distributed with the density

ñ(u) ≈ Ae−u, (B14)

while the percolation criterion reads as

ξ̃kj ≡ |yk − yj | − uk − uj < 0. (B15)

Note that this problem is characterized by single constant

A ≡
(

wW

δW 2

)−(d+1)

ñ(δ = 0)

= 8β ′T
T ′

M

1√
2π

δW

w

(
wT

δW 2

)−(d+1)

exp

{
− w2

8δW 2

}
(B16)

and therefore the percolation should be established at

A = Ad, (B17)

where Ad ∼ 1 is some universal constant, depending only on
the space dimensionality d.

So, the dependence of the effective barrier Weff (T ) ≡ 2W −
w on the parameters may be found from the equation for w:

1 = 8β ′T
AdT

′
M

1√
2π

δW

w

(
wT

δW 2

)−(d+1)

exp

{
− w2

8δW 2

}
. (B18)

In the leading logarithmic approximation, the solution
of (B18) reads as

w

δW
≈
√

8d ln(Tc2/T ), Tc2 ∼ δW

(
δW

T ′
M

)1/d

. (B19)
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Now, we can estimate εε and εW . As it follows from (B13)

εε ∼ εW ∼ δW 2

w
∼ δW√

8d ln(Tc2/T )
� δW, (B20)

which justifies our conjecture (B1).
In the presence of the long-range interaction, result-

ing in the Coulomb gap in the density of states, one

should write n(ε,W ) ∝ εd−1P (W ), which leads to the
following:

(1) Replacement of T ′
M by T0 (and, consequently, to

replacement of Tc2 by T ∗
c2).

(2) Appearance of an additional factor (δW/w)d−1 on the
right-hand side of (B18). This factor is, however, only a
logarithmic one [as follows from (B19)], so it does not change
the final result in the leading logarithmic approximation.
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