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Transport and optics at the node in a nodal loop semimetal
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We use a Kubo formalism to calculate both AC conductivity and DC transport properties of a dirty nodal
loop semimetal. The optical conductivity as a function of photon energy � exhibits an extended flat background
σ BG as in graphene provided the scattering rate � is small as compared to the radius of the nodal ring b (in
energy units). Modifications to the constant background arise for � � � and the minimum DC conductivity σ DC,

which is approached as �2/�2 as � → 0, is found to be proportional to
√

�2+b2

vF
with vF the Fermi velocity.

For b = 0 we recover the known three-dimensional point node Dirac result σ DC ∼ �

vF
while for b > �, σ DC

becomes independent of � (universal) and the ratio σDC

σBG = 8
π2 where all reference to material parameters has

dropped out. As b is reduced and becomes of the order �, the flat background is lost as the optical response
evolves towards that of a three-dimensional point node Dirac semimetal which is linear in � for the clean limit.
For finite � there are modifications from linearity in the photon region � � �. When the chemical potential μ

(temperature T ) is nonzero the DC conductivity increases as μ2/�2(T 2/�2) for μ

�
( T

�
) � 1. Such laws apply

as well for thermal conductivity and thermopower with coefficients of the quadratic law only slightly modified
from their value in the three-dimensional point node Dirac case. However in the μ = T = 0 limit both have the
same proportionality factor of

√
�2 + b2 as does σ DC. Consequently the Lorentz number is largely unmodified.

For larger values of μ > � away from the nodal region the conductivity shows a Drude-like contribution about
� � 0 which is followed by a dip in the Pauli blocked region � � 2μ after which it increases to merge with the
flat background (two-dimensional graphene like) for μ < b and to the quasilinear (three-dimensional point node
Dirac) law for μ > b.

DOI: 10.1103/PhysRevB.95.214203

I. INTRODUCTION

Optical (IR) along with other spectroscopies such as angular
resolved photoemission ARPES and scanning tunnelling mi-
croscopy have given us a wealth of information on the dynam-
ics of charge carriers in metals and superconductors [1–3] with
different gap symmetries. More recently the dynamic optical
conductivity σ (T ,�) as a function of temperature and photon
energy has been equally successful when applied to the class
of two-dimensional (2D) metals such as graphene [4–6], the
surface states of topological insulators [7,8], as well as topo-
logical materials such as Dirac and Weyl semimetals [9–17].

Another recent development has been the discovery of
nodal loop semimetals [18–28]. Their magnetic susceptibil-
ity [29], density fluctuation plasmons and Friedel oscilla-
tions [30], Landau quantization [31], some aspect of their
topological electrodynamic response [32], and correlation ef-
fects [33] have been studied. The dynamical optical conductiv-
ity as a function of photon energy � has also been considered
in the clean limit [34]. It was found to display signatures of
both three-dimensional (3D) point node Weyl or Dirac-like
materials and 2D graphene-like systems, depending on what
range of photon energy � is used to probe the dynamics.
For � small compared with twice the radius in energy units
of the nodal ring (b), the response is 2D in nature while for
� > 2b it evolves to 3D, characteristic of point node Dirac.
In any realistic case, the charge carriers will also have a finite
scattering rate � which influences their motion. In this paper
we study the effect of � on the electromagnetic properties
of a nodal loop semimetal at finite chemical potential and
photon energy. In addition, we consider DC transport including

conductivity, thermal conductivity, thermopower, and Lorentz
number. Here we will be particularly but not exclusively
interested in the case when the chemical potential μ and
temperature T are small compared with � which allows optics
and transport at the nodes to be probed. This regime includes
the concept of minimum conductivity and how it is modified
when μ and/or T is increased out of zero.

In Sec. II we present the necessary formalism including
the Kubo formula for the dynamical conductivity σ (T ,�) at
finite T and photon energy. Results at finite photon energy
are given in Sec. III. While many of our results are for μ = 0
(nodal region) the effect of a finite chemical potential are also
presented. In Sec. IV we consider DC properties, electrical
conductivity, thermal conductivity, thermopower, and Lorentz
number. A discussion and conclusion can be found in Sec. V.

II. FORMALISM

The continuum 4 × 4 matrix Hamiltonian for a loop node
semimetal on which our work is based takes the form

Ĥ = vF τ̂x(σ̂ .p) + bτ̂zσ̂x, (1)

where vF is the Fermi velocity, p is the momentum equal to k,
and b is a Zeeman field oriented along the x axis. The 2 × 2
matrix τ̂ and σ̂ are each a set of Pauli matrices. For convenience
in our calculation we will set vF = h̄ = 1 and only at the end
restore them. The energies of the two sets of bands involved
can be written as

εss ′ (k) = s

√
k2
x + (√

k2
y + k2

z + s ′b
)2 = sεs ′ (k), (2)
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FIG. 1. Schematic diagram showing the electron dispersion

curves εss′ (k) = s

√
k2

x + (
√

k2
y + k2

z + s ′b)2. In the figure kx = 0 and

k⊥ =
√

k2
y + k2

z . ε+s′ (k) represents the conduction band and ε−s′ (k)

the valence band. There are two branches s ′ = +1 (dashed red curve)
which has no nodes and s ′ = −1 (dashed blue curve) which involves
a nodal circle depicted as the solid blue circle of radius b. The vertical
arrows show the minimum interband optical transitions possible for
the three values of the chemical potential μ shown μ < b, μ = b, and
μ > b. Transitions with shorter arrows are Pauli blocked and hence
are not possible.

where s ′ = ± and s = ±. The index s gives conduction (+1)
and valence (−1) band associated with the dispersion curves
of the s ′ band. These dispersion curves are highlighted in
Fig. 1.

The zz component of the dynamical conductivity σzz(�)
which can be calculated from the Kubo formula depends on
the spectral density Ass ′ (ω) of the charge carriers and takes the
form

σ IB
zz (�) = e2π

�

∫ +∞

−∞
dω[f (ω) − f (ω + �)]

∑
ss ′

∫
d3k

(2π )3

×
(

1 − k2
x

ε2
ss ′ (k)

)
Ass ′ (k,ω)A−ss ′ (k,ω + �), (3)

for the interband transitions [σ IB
zz (�)] and the intraband part

[σD
zz (�)] is given by the formula

σD
zz (�) = e2π

�

∫ +∞

−∞
dω[f (ω) − f (ω + �)]

∑
ss ′

∫
d3k

(2π )3

× k2
x

ε2
ss ′ (k)

Ass ′ (k,ω)Ass ′ (k,ω + �). (4)

In terms of the carrier self energy 	ss ′ (ω), the spectral
functions take the form [6]

Ass ′ (k,ω) = 1

π

|−�	ss ′ (ω)|
(ω − 		ss ′ (ω) − εss ′ (k))2 + (�	ss ′ (ω))2

.

(5)

For simplicity in our calculation we will take the case of
residual scattering modeled through a constant imaginary part
|−�	ss ′ (ω)| ≡ �. We will consider two limiting cases for
Eq. (3). The DC limit of � → 0 in which instance the thermal
factor

lim
�→0

{
f (ω) − f (ω + �)

�

}
= −∂f (ω)

∂ω
, (6)

where f (ω) is the Fermi-Dirac thermal distribution function.
The zero temperature case for which the integral over ω

becomes limited to the range μ to μ − � where μ is the
chemical potential and the thermal factor [f (ω) − f (ω + �)]
is to be replaced by 1.

The T = 0 limit involves an integral over ω of the form∫ μ

μ−�

dω

π2

�

(ω − εss ′ (k))2 + �2
× �

(ω + � − εss ′ (k))2 + �2
,

(7)

which can be done analytically and gives

σ IB
zz (T = 0,�)

�
= e2

2π3h̄2vF

∑
s ′

∫ ∞

0

dk̃x

�̃

∫ ∞

0
ρ̃dρ̃

×
(

1 − k̃2
x

ε̃ 2
s ′

)
Y(μ̃,�̃,̃b,̃εs ′ ), (8)

where we have introduced polar coordinates for ky,kz variables
and have divided all variables by the scattering rate which
has had the effect of scaling out �. Of course it remains in
�̃ ≡ �

�
,μ̃ ≡ μ

�
and b̃ ≡ b

�
while the other variables are

dummies of integration. The function Y(μ̃,�̃,̃b,̃εs ′ ) has the
form

Y(μ̃,�̃,̃b,̃εs ′ ) = 1

(�̃ + 2̃εs ′ )[4 + (�̃ + 2̃εs ′ )2]

[
ln

(
1 + (μ̃ + �̃ + ε̃s ′ )2

1 + (μ̃ − ε̃s ′ )2
× 1 + (μ̃ − �̃ − ε̃s ′ )2

1 + (μ̃ + ε̃s ′ )2

)
+ (�̃ + 2̃εs ′ ){arctan(μ̃ + �̃ + ε̃s ′ ) + arctan(μ̃ − ε̃s ′ ) − arctan(μ̃ + ε̃s ′ ) − arctan(μ̃ − �̃ − ε̃s ′ )}

]
+ 1

(�̃ − 2̃εs ′ )[4 + (�̃ − 2̃εs ′ )2]

[
ln

(
1 + (μ̃ + �̃ − ε̃s ′ )2

1 + (μ̃ + ε̃s ′ )2
× 1 + (μ̃ − �̃ + ε̃s ′)2

1 + (μ̃ − ε̃s ′ )2

)
+ (�̃ − 2̃εs ′ ){arctan(μ̃ + �̃ − ε̃s ′ ) + arctan(μ̃ + ε̃s ′ ) − arctan(μ̃ − ε̃s ′ ) − arctan(μ̃ − �̃ + ε̃s ′ )}

]
. (9)
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An equivalent equation can be derived for the intraband case. We obtain

σD
zz (T = 0,�)

�
= e2

2π3h̄2vF

∑
s ′

∫ ∞

0

dk̃x

�̃

∫ ∞

0
ρ̃dρ̃

k̃2
x

ε̃ 2
s ′

H (μ̃,�̃,̃b,̃εs ′ ), (10)

with

H(μ̃,�̃,̃b,̃εs ′ ) = 1

�̃[�̃2 + 4]

[
ln

(
(1 + (μ̃ + �̃ + ε̃s ′ )2 )

1 + (μ̃ + ε̃s ′ )2

(1 + (μ̃ + �̃ − ε̃s ′ )2)

1 + (μ̃ + ε̃s ′ )2

(1 + (μ̃ − �̃ + ε̃s ′ )2)

1 + (μ̃ − ε̃s ′ )2

(1 + (μ̃ − �̃ − ε̃s ′ )2)

1 + (μ̃ − ε̃s ′ )2

)
+ �̃{arctan(μ̃ + �̃ + ε̃s ′ ) + arctan(μ̃ + �̃ − ε̃s ′ ) − arctan(μ̃ − �̃ + ε̃s ′ ) − arctan(μ̃ − �̃ − ε̃s ′ )}

]
. (11)

We have checked that these equations properly reduce to the
clean limit forms for � → 0 used in the work of Ref. [34] with
which we will compare when appropriate.

III. RESULTS FOR FINITE FREQUENCIES

In Fig. 2 we show our results for the zero temperature
dynamic optical response σ (T = 0,�) as a function of photon
energy � both quantities normalized by the optical scattering
rate �, i.e., σ (T = 0,�)/� vs �/�. In these reduced variables
� has dropped out and we have a single set of curves which
apply for any value of �. In fact we have a family of curves
defined by two external parameters, the normalized chemical
potential μ/� ≡ μ̃ and nodal loop parameter b/� ≡ b̃. Here
μ̃ = 0 represents charge neutrality and we consider nine values
of b/�. Starting from the top curve we see a graphene-like
2D constant background extending from a bit above of � = 0
all the way to � = 2b at which point it shows a transition to
a linear in �/� behavior characteristic of a 3D point node
Dirac material. The height of this plateau referred to as the

FIG. 2. The conductivity σ (T = 0,�) normalized by the scatter-
ing rate � in units of e2

h̄2vF
as a function of normalized photon energy

�/�. Various values of b/� are shown with b the loop node radius in
energy units. The chemical potential μ is set equal to zero. Except for
the smaller values of b/� the 2D graphene-like constant background
conductivity is well developed for photon energies � below 2b. For
photon energies above 2b the linear law of the 3D Dirac point node
case is recovered. At small values of � there is a downturn of the
constant background to its minimum DC value at � = 0.

interband background [35] and denoted by σ BG agrees (after
a correction of a dropped factor of 2) with the value obtained
in Ref. [34] where the clean limit � → 0 was considered. At
�/� → 0 however our new results show a bend downward
to connect with the DC value of the conductivity as we will
discuss shortly. As the value of the nodal loop parameter is
reduced towards zero the frequency range over which a plateau
is well defined shrinks. It is still seen in the dashed blue curve
for b/� = 6 but below this value we see a clear evolution
from a constant value to linear-like behavior characteristic of
a 3D Dirac point node system as we will elaborate upon in
Fig. 4. First we return to the � = 0 limit. As we will see later
[Eq. (20)] we get a particularly simple and important result

σ DC = e2

h̄2vF

1

2π2

√
�2 + b2. (12)

In the limit b = 0 which here corresponds to a 3D point node
Dirac model we get the known answer obtained in Ref. [16],
namely the minimum conductivity σ DC is not universal but
rather depends linearly on optical scattering rate (twice the
quasiparticle rate �). This is a very different result from that
obtained for graphene [6] for which σ DC is simply a number
4e2

πh
in the same constant � approximation used here and

referred to as the universal interband background (σ BG). We
see however from Eq. (12) that in the nodal loop semimetal
� drops out of σ DC if b � � and in that case we get no
dependence on scattering rate � so σ DC is again universal equal
to e2

h̄2vF

b
2π2 . While this minimum conductivity does not depend

on � it is linear in b and inversely dependent on vF which are
material dependent properties. In graphene no such material
parameters arise [6]. A universal conductivity [36] is also part
of d-wave [3] superconductivity theory. It arises when a gap
which can have complex symmetry [37,38] nevertheless goes
through a zero [39,40] on the Fermi surface. It does not arise
in an s-wave superconductor even if there is some anisotropy
such as in Al [41] but with no zero. We note that the magnitude
of minimum conductivity depends on the model used for the
disorder as discussed in the review of Evers and Mirlin [42] for
the specific case of graphene and many other Refs. [43–45].
Here only the simplest model of constant scattering was used.
This can be expected if the density of state at charge neutrality
is finite as argued in Ref. [43].

The approach to the minimum DC conductivity and more
generally the transition from 2D graphene-like behavior for
the AC conductivity to 3D point node Dirac behavior as b

gets small is further elaborated upon in Fig. 3. Again we
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FIG. 3. The conductivity σ (T = 0,�) normalized by the scatter-
ing rate � in units of e2

h̄2vF
as a function of normalized photon energy

�/�. We show the transition from a 2D graphene-like constant
background for � < 2b (dotted violet curve) to the linear in �

behavior of a 3D Dirac point node as b/� is reduced from a value
of six to zero when the double-dashed-dotted red curve applies. This
last curve still differs from the solid black curve which applies in the
clean limit and is a straight line of slope 1

12π
in our units. The DC

limit of these curves [σ DC(T = 0,μ = 0)] is shown with heavy red
points on the �/� = 0 axis and is never zero when some scattering
is included. The inset shows how it evolves as a function of b/�.

show the photon energy dependence of the zero temperature
conductivity σ (T = 0,�) both normalized by � so as to get
universal curves but here we consider only values of b less than
b/� = 6 (dotted violet curve). While this curve still shows a
clear tendency to flatten out in the region around �/� ≈ 5, the
other results do not. By b/� = 1 the curve for σ (T = 0,�)/�

vs �/� is convex upward and no trace of a plateau remains.
The dot-double-dashed red curve for b = 0 reproduces the
results of Ref. [16] for a 3D Dirac point node semimetal. We
have also placed on the same graph their results (solid black
curve) for the clean limit. A straight line of slope 1

12π
applies

in this case. In the inset to Fig. 3 we show the evolution of
minimum DC conductivity σ DC normalized to � as a function
of b/� from Eq. (12), which in our units is 1

2π2

√
1 + (b/�)2.

We see that it rapidly goes from a constant 1
2π2 to b/�

2π2 linear
in b and inversely proportional to �. These results are plotted
on the � = 0 axis of the main frame as heavy red dots.

It is important to understand that when residual scattering
(finite �) is introduced both interband and intraband optical
transition contribute to the minimum conductivity Eq. (12) as
they do to finite photon energy properties. This is illustrated
in Fig. 4 where we treat the specific case μ/� = 0, b/� = 6
for definiteness. We have decomposed the contributions to
σ (T = 0,�) into four terms. The dashed green line is the
interband (IB) contribution of the s ′ = +1 band and the dashed
red line is for s ′ = −1, the dotted magenta line is the intraband
(D) contribution with s ′ = +1 and the double-dashed-dotted
blue line for s ′ = −1. It is clear and expected that the s ′ = +1
band contributes little to the conductivity in the region � < 2b

because it is gapped as can be seen in Fig. 1. In fact if we
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FIG. 4. The conductivity σ (T = 0,�) normalized by the scatter-
ing rate � in units of e2

h̄2vF
as a function of normalized photon energy

�/� for the case μ/� = 0 and b/� = 6 (solid black line). The other
curves show the decomposition of the conductivity in terms of the
intra- (D) and inter- (IB) band optical transitions and the two bands
s ′ = ±. The s ′ = +1 band is gapped by b and does not contribute
much. The s ′ = −1 band in contrast shows that at � = 0 (DC limit)
both intra- (Drude) and interband contributions are equal. As �/� is
increased IB− increases while D− decreases as we expect.

had not included some scattering (� = 0) these contributions
would be identically zero in the clean limit. Even for � 
= 0 it
is the s ′ = −1 that gives almost the entire contribution from
interband (dashed red curve) and intraband (double-dashed-
dotted blue curve) optical transitions. Note that at � = 0 (DC
limit) both give exactly the same contribution. This is entirely
due to the presence of finite �. In the clean limit there is no
intraband conductivity because the chemical potential μ = 0
in our example and the entire DC conductivity comes from the
interband transitions. Thus scattering has a profound effect on
these results.

In Fig. 5 we elaborate further on the relationship of our
results to the clean limit results of Refs. [16,34]. What is
shown as the solid red curve is σ (T = 0,�) normalized with
� in units of e2

h̄2vF
as a function of �/� for a case μ/� = 2

and b/� = 10. In this example a Drude-like peak is clearly
seen in the vicinity of �/� � 0. This contribution would exist
even in the clean limit but would take the form of a Dirac delta
function at � = 0. For comparison with the clean limit we
also show as a solid blue line the clean limit result of Ref. [34]
corrected for a missing factor of 2. We have,

σ IB(�)

�
= e2π

h̄2vF

1

2��
I

(
�

2

)
, (13)

with

I (ω) = ωb

4π
ω < b,

= 1

2π2

[
b|ω| arctan

b√
ω2−b2

+
√

ω2−b2

3|ω| (4ω2−b2)

]
ω > b. (14)
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FIG. 5. The conductivity σ (T = 0,�) normalized by the scatter-
ing rate � in units of e2

h̄2vF
as a function of normalized photon energy

�/�. A case of chemical potential μ/� = 2 and b/� = 10 (solid red
curve) is compared with the clean limit results obtained in Ref. [34]
for a loop node semimetal (solid blue curve) as well as with the 3D
Dirac point node model (solid black curve) in Ref. [16]. At the higher
values of � shown all these curves merge and define a straight line of
slope 1

12π
in our units. This straight line continues in the point node

case until � = 2μ where it drops to zero. The lost optical spectral
weight is transferred to a Dirac delta function at � = 0 (not seen
here). For the nodal loop there is a short region in photon energy
where the straight line of slope 1

12π
changes to a constant of height

b/�

16 at � = 2b and is again cut off at � = 2μ. The solid red line is
different but still shows a plateau-like region below � = 2b but there
is no sharp cutoff at � = 2μ for two reasons. First the optical weight
transferred to the intraband transitions is now broaden into a Drude
part of width 2�, and the interband background is also smeared out
by the residual scattering.

This is plotted as a blue solid line [labeled as G(�/�

2 )] which is
cut off below 2μ because interband optical transitions are not
possible below this photon energy because of Pauli blocking
(see Fig. 1). The optical spectral weight lost is of course
transferred to a delta function at � = 0 not shown on the
figure. Having understood that at finite � this spectral weight
is distributed into a Drude-like form around � = 0 we see that
the clean limit results agree very well with our new results
for the finite � case (solid red curve). We have also placed
for additional comparison the results of Ref. [16] for point
node Dirac as a solid black curve which is a straight line of
slope 1

12π
. It too is to be cut off at � = 2μ. While it matches

well with the other two curves in the large � region it is very
different from the nodal loop results below � = 2b.

In Fig. 6 we present additional results for the case of finite
chemical potential. Here b/� is fixed at 30, and five values
of μ/� are considered. The solid black line is for μ = 0 and
has already been presented in Fig. 2 as a dashed-double-dotted
magenta line. It is repeated here for comparison. The finite
μ curves all show a large Drude-like peak at small photon
energies. Beyond this Drude, all curves show a depression in
conductivity before rising up again to meet the μ = 0 curve at
higher energies. The dashed blue curve for μ/� = 5 has only a
small dip and has recovered to its μ = 0 value by �/� = 20,
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FIG. 6. The conductivity σ (T = 0,�) normalized by the scat-
tering rate � in units of e2

h̄2vF
as a function of normalized photon

energy �/�. In all cases b/� is set to be 30 while five different
values of chemical potential are considered ranging from μ/� = 0 to
μ/� = 50 which is almost twice the value of b/� chosen. Except for
the μ/� = 0 case (solid black line) the curves all show a Drude-like
peak at small values of �/�. These peaks increase with the value of
μ/� as a result of increasing optical spectral weight transfer from
the interband to intraband optical transitions. When μ/� is small
compared with b/� the 2D graphene-like constant background is
recovered as �/� increases while for the last curve with μ > b the
recovery is to the 3D Dirac point node linear in � law.
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FIG. 7. The optical conductivity σ (T = 0,�) normalized by the
scattering rate � in units of e2

h̄2vF
as a function of normalized photon

energy �/�. The case of μ/� = b/� = 3 (dotted black curve) is
compared with the case μ/� = 3 but b/� = 0 (dashed blue curve).
Also shown as a solid red line is the case μ = b = 0 and solid black
the clean limit. The inset shows results for the clean limit for μ = b

in loop nodes (solid blue) and point node (solid black). The shaded
region below � = 2b is entirely transferred to the intraband transition.
The ratio of the optical spectral weight transferred of loop and point
node

OSWloop

OSWpoint
is equal to 3π

4 .
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which is twice the value of 2μ, the low energy cutoff on
interband transition that would apply to the clean limit.
Here this cutoff is no longer sharp because of the smearing
caused by disorder (finite �). When the chemical potential is
increased to μ/� = 20 (double-dashed-dotted magenta curve)
the conductivity displays a much more pronounced dip beyond
the Drude region of photon energy. In the clean limit we would
have had a large delta function contribution at � = 0 then a
complete zero up to 2μ/� = 40 after which it would have
recovered its plateau value. Disorder smearing has partially
filled in the gap region and has also smeared the edge at 2μ.
At still higher values of μ the same behavior is observed but
at large �/� the conductivity goes back to the linear law of
3D point node Dirac.

One interesting special case with some additional commen-
tary is the case μ = b. In the clean limit this corresponds to
the transfer of the entire optical spectral weight from the flat
2D graphene-like plateau in the interband conductivity to the
intraband delta function at � = 0. This leave a region above
� = 2b which would deviate very little from the straight line
of slope 1

12π
of 3D point node Dirac. Nevertheless the two

cases can be differentiated from each other when � 
= 0 as is
shown in Fig. 7. The black dotted line is the result for b/� = 3
with μ/� = 3 as well. We see that the disorder smearing
has broadened the intraband transition contribution to such

an extent that no Pauli blocking gap is seen at 2μ/� = 6.
This is also true for the dashed blue curve obtained when b

is set to zero. This curve does differ from the black dotted
curve when � is included. The main reason for this is that the
optical spectral weight under the Drude is very different in
the two cases as is illustrated in the inset of the figure. The
shaded region shows the lost optical spectral weight (OSW)
in the interband background that has been transferred to the
intraband. In the clean limit we have OSWloop = e2

h̄2vF

b2

8 for

the nodal loop and OSWpoint = e2

h̄2vF

b2

6π
for the 3D point node

Dirac. The ratio of the loop to point node is 3π
4 . Thus there is

more than a factor of 2 difference between these two quantities
and this leads to the striking differences between dotted black
and dashed blue curves of the main frame of Fig. 7 in the
region of photon energy below twice the value of the chemical
potential. Above �/� � 10 both curves are the same and are
not very different from the solid red curve for b = 0 (3D point
node Dirac) including finite � and from the solid black curve
which is the clean limit version of the solid red curve included
for comparison.

IV. DC TRANSPORT

The DC limit of Eq. (3) gives

σ IB
zz (� = 0) = 2e2π

h̄2vF

∫ +∞

−∞
dω

(
−∂f (ω)

∂ω

) ∑
s ′

∫
d3k

(2π )3

(
1 − k2

x

ε2
s ′ (k)

)
�2

π2

(
1

�2 + (ω − εs ′ )2
× 1

�2 + (ω + εs ′ )2

)
(15)

for the interband contribution and

σD
zz (� = 0) = e2π

h̄2vF

∫ +∞

−∞
dω

(
−∂f (ω)

∂ω

) ∑
s ′

∫
d3k

(2π )3

k2
x

ε2
s ′ (k)

�2

π2

[(
1

�2 + (ω − εs ′ )2

)2

+
(

1

�2 + (ω + εs ′ )2

)2
]

(16)

for the intraband or Drude contribution. At zero temperature the thermal factor − ∂f (ω)
∂ω

reduces to a delta function of the form
δ(ω − μ) which pins ω to be at the chemical potential. Equations (15) and (16) then reduce to 2D integrals over kx and ρ which
are the integration variables introduced in Eq. (8). We get

σ IB
zz (� = 0) = 2e2π

h̄2vF

∑
s ′

∫ +∞

0

ρdρ

(2π )2

∫ +∞

−∞
dkx

�2

π2

(
1 − k2

x

ε2
s ′ (k)

)(
1

�2 + (μ − εs ′)2
× 1

�2 + (μ + εs ′ )2

)
, (17)

and

σD
zz (� = 0) = 2e2π

h̄2vF

∑
s ′

∫ +∞

0

ρdρ

(2π )2

∫ +∞

−∞
dkx

�2

π2

k2
x

ε2
s ′ (k)

[(
1

�2 + (μ − εs ′ )2

)2

+
(

1

�2 + (μ + εs ′ )2

)2
]
. (18)

Results for σ DC(T = 0,μ) ≡ σ IB
zz (� = 0) + σD

zz (� = 0) are
given in Fig. 8 where we plot σ DC/�

in units of e2

h̄2vF
as a function of μ/� for various values of

b/� namely b/� = 0 solid black curve, b/� = 10 dashed-
dotted blue, b/� = 20 double-dotted-dashed brown, and
b/� = 30 dashed green. The solid black line is known from
the 3D point node case [16] and is

σ DC(T = 0,μ)

�
= e2

h̄2vF

1

2π2

[
1 + 1

3

μ2

�2

]
. (19)

The limit of zero chemical potential gives

σ DC(T = 0,μ = 0)

�
= e2

h̄2vF

[√
�2 + b2

2π2�

]
. (20)

In this case the sum of Eqs. (17) and (18) is particularly simple

and the terms (1 − k2
x

ε2
s′ (k)

) in Eq. (17) and k2
x

ε2
s′ (k)

in Eq. (18) add

to give 1. We get

σ DC(T = 0,μ = 0)

= 2e2π

h̄2vF

∑
s ′

∫ ∞

0

ρdρ

(2π )2

∫ ∞

0
dkx

�2

π2

1(
�2 + ε2

s ′
)2 , (21)
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FIG. 8. The DC conductivity σ DC(T = 0,μ) normalized by the
scattering rate � in units of e2

h̄2vF
as a function of chemical potential

μ/� for various values of b/�. The solid black curve for b/� = 0
represents the case of 3D Dirac while all others are for the nodal loop
case. In all these cases the asymptotic value at small μ and large μ

are indicated by dashed magenta and red lines, respectively. At small
μ/� a quadratic in μ law holds while at large μ/� we have the linear
in μ dependence found in Ref. [34] which treated the clean limit. In
the present context this limit means both μ/� and b/� are large.

which can be done analytically and gives Eq. (20). The
implications of Eq. (20) were discussed in the previous section.
Here we note that except for the b/� = 0 curve σ DC(μ = 0)
increases linearly with b in Fig. 8 because b/� � 1. We
shall also show below that for finite μ but μ/� < 1, σ DC(μ)
increases as μ2/�2 out of its μ = 0 value. This behavior is
indicated by a dashed magenta curve which agrees with our
full numerical results at small μ but deviation occurs as μ

increases. In fact, for the finite b curves there is a gradual
evolution to a linear in μ dependence of σ DC(μ) which is
characteristic of 2D graphene-like behavior as obtained in
Ref. [34] for the clean limit. Here the clean limit corresponds
to μ/� and b/� large (� → 0). For μ < b, the clean limit
result is

σ DC(T = 0,μ)

�
= e2

h̄2vF

(b/�)(μ/�)

8π
, (22)

which is shown in Fig. 8 as the dashed red lines that go through
the origin. The main difference between clean limit results
and those that included carrier scattering are at small values
of μ/� (near charge neutrality). Including a finite � changes
the dependence of the DC conductivity from linear in μ/� to
a quadratic dependence in the region μ/� < 1. By contrast
the solid black curve for b = 0 follows a quadratic law μ2/�2

over the entire range shown. The evolution from quadratic to
linear behavior is studied in more detail in Fig. 9 where small
values of b are considered namely b = 1 (solid blue), b = 3
(dashed black), b = 5 (dashed-dotted red), and b = 7 (dashed
magenta) curves. Also shown on the figure for comparison are
clean limit results (dotted blue) for b = 1 and (dotted red) for
b = 7. What is plotted for the dotted blue line are the results
for the clean limit from Ref. [34] (again corrected for a missed

0 1 2 3 4 5 6 7 8 9 10
μ/Γ

00

5.05.0

11

5.15.1

22

5.25.2

33

σD
C
(T

=0
,μ

)/Γ
  (

e2 / h_
2 v F) b/Γ=1

b/Γ=3
b/Γ=5
b/Γ=7

H(μ/Γ, b/Γ=1)

(μ/Γ)2
___
6π2

(b/Γ)(μ/Γ)________
8π

FIG. 9. The DC conductivity σ DC(T = 0,μ) normalized by the
scattering rate � in units of e2

h̄2vF
as a function of normalized chemical

potential μ/� for four values of b/� namely b/� = 1 (solid blue),
b/� = 3 (dashed black), b/� = 5 (dot dashed red), and b/� = 7
(dashed magenta). The dotted blue curve shows results in the clean
limit for b/� = 1 which is described by H(μ/�,b/�) defined in
Eq. (24). The solid black curve shows the quadratic in μ/� behavior
and matches with the blue dotted curve for values of μ/� > b/�.
The dotted red curve is for b/� = 7 but only the linear part of
H(μ/�,b/�) is shown. Deviations of the dashed magenta curve from
this linear law at small values of μ/� are due to a finite scattering rate
while at large μ/� we start seeing deviations due to the evolution
of H(μ/�,b/�) from linear in μ/� (2D graphene-like regime) to a
quadratic law (3D Dirac point node regime).

factor of 2). The relevant function is

σ DC(T = 0,μ)

�
= e2

h̄2vF

H
(

μ

�
,
b

�

)
, (23)

with

H
(

μ

�
,
b

�

)
= (μ/�)(b/�)

8π
μ < b,

= 1

2π2

[
1

2

(
μ

�

)(
b

�

)
arctan

(
b/�√

(μ/�)2 − (b/�)2

)

+ 1

3

(
(μ/�)2 − 3

2 (b/�)2

μ/�

)√
(μ/�)2 − (b/�)2

]
μ > b.

(24)

For μ � b, H(μ

�
, b
�

) of Eq. (24) reduces to (μ/�)2

6π2 which is
independent of b and the result for 3D point node Dirac. It is
clear that there are three regimes for H(μ

�
, b
�

). A linear regime
for μ < b, a transition regime for μ > b during whichH(μ

�
, b
�

)
evolves from a linear to quadratic dependence on μ

�
, and a final

regime where the quadratic law μ2/�2 holds. The size of μ

relative to b is critical in determining which regime is relevant
for a particular value of μ. Note that in Fig. 8 the three curves
with finite b all fall in the regime μ < b and so only the linear
region of H(μ

�
, b
�

) is probed. In Fig. 9 however we have chosen

214203-7



S. P. MUKHERJEE AND J. P. CARBOTTE PHYSICAL REVIEW B 95, 214203 (2017)

b such that the dotted blue curve (clean limit) ranges over all
three regimes involved inH(μ

�
, b
�

) as μ/� ranges from 0 to 10.
Below μ/� = 1 we are in the linear regime (dotted red curve)
and above 8 in the quadratic regime (solid black curve) with
a transition region from linear to quadratic between these two
extremes. For the dashed magenta curve however we do not
show H(μ

�
, b
�

) but rather have chosen to show only the linear
dependence even outside its range of validity. It is clear that
significant deviations from linearity for large values of μ/�

enter only for μ/� � 8. Comparing the case of finite � with
its clean limit (dotted curves) we see that the largest effect
of finite � is in the region μ/� � 2 where carrier scattering
changes the linear law to a quadratic law.

We now turn to the small μ limit of σ DC(μ) and obtain
analytically the μ2 law seen in Fig. 8. In fact it is convenient to

return to Eqs. (17) and (18) and include at the same time finite
temperature effects. We take μ/� and T/� < 1 in which
case it is justified to expand the integrand of Eqs. (17) and (18)
to second order in ω dropping all higher order terms. After
straightforward algebra we get that the DC conductivity takes
the form

σ DC(μ,T ) = e2

h̄2vF

(
�2

π3

)[
A + B

(
μ2 + π2T 2

3

)]
, (25)

where

A =
∑
s ′

∫ ∞

0
ρdρ

∫ ∞

0
dkx

(
1

�2 + k2
x + (ρ + s ′b)2

)2

, (26)

and B = BIB + BD with

BIB =
∑
s ′

∫ ∞

0
ρdρ

∫ ∞

0
dkx

(
1 − k2

x

k2
x + (ρ + s ′b)2

)[
1(

�2 + k2
x + (ρ + s ′b)2

)3 − 2�2(
�2 + k2

x + (ρ + s ′b)2
)4

]
(27)

and

BD =
∑
s ′

∫ ∞

0
ρdρ

∫ ∞

0
dkx

(
k2
x

k2
x + (ρ + s ′b)2

)[
5(

�2 + k2
x + (ρ + s ′b)2

)3 − 6�2(
�2 + k2

x + (ρ + s ′b)2
)4

]
. (28)

These integrals can all be done analytically to yield

σ DC(μ,T ) = e2

2π2h̄2vF

[√
�2 + b2 + 1

3�2

{√
�2 + b2 − �2b2

2(�2 + b2)3/2

}
×

{
μ2 + π2T 2

3

}]
. (29)

The limit of b = 0 corresponds to 3D point node Dirac. The
DC conductivity reduces to

σ DC(μ,T ) = e2�

2π2h̄2vF

[
1 + 1

3

{
μ2

�2
+ π2

3

T 2

�2

}]
, (30)

which is a function of μ/� and T/� valid for both these
variables less than one because of our expansion in ω to second
order only. The DC conductivity is further linearly proportional
to �. Expression (30) agrees with the previous work [16] in
this limit. For a general b and � we get

σ DC(μ,T ) = e2
√

�2 + b2

2π2h̄2vF

[
1 + h

3

{
μ2

�2
+ π2

3

T 2

�2

}]
, (31)

with

h = 1 − �2b2

2(�2 + b2)2
, (32)

which is always near 1 in value. Its minimum is at b = � where
it is 7

8 , reduced from one by ∼12%. While the μ = T = 0 value
of σ DC is very different in the nodal loop case from the 3D
Dirac point node case, the first going like b while the second
goes like �, it has the same μ/� and T/� dependence. T

coefficient of this dependence is however always close to that
of the point node Dirac.

Other important transport coefficients can also be calculated
for μ

�
, T

�
< 1. The formula for the conductivity is

σ tot = e2

h̄2vF

�2

π3

∫ +∞

−∞
dω

(
− ∂f

∂ω

)
[A + Bω2]. (33)

To get thermal conductivity (κ) we drop the e2 and add a factor
of (ω−μ

T
)2 which gives κ22

T
. The total thermal conductivity has

a thermopower correction and reads,

κ

T
= κ22

T
− e2κ2

12

σ DC
, (34)

where the formula for the coefficient κ12 is given as in Eq. (33)
without the e2 and a factor (ω−μ

T
) added to the integral of the

energy integration over ω. In terms of κ12 the thermopower S

is given by,

S = eκ12

σ DC
. (35)

Another quantity often discussed is the Lorentz number (L) of
the Wiedemann-Franz law. By definition,

L = κ

T σ DC
. (36)

It is straightforward to obtain explicit results for the above
coefficients using algebra closely related to that of Appendix B
of Ref. [16]. The results are,

κ22

T
=

√
�2 + b2

2π2h̄2vF

[
1 + h

{
1

9

μ2

�2
+ 7π2

45

T 2

�2

}]
, (37)

S = 2π2

9e

h(μ/�)(T/�)

1 + h
{

1
3

μ2

�2 + π2

9
T 2

�2

} , (38)

L = π2

3e2

[
1 + h

{
1
3

μ2

�2 + 7π2

15
T 2

�2

}
1 + h

{
1
3

μ2

�2 + π2

9
T 2

�2

} ]
, (39)
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with a correction to L for thermopower of the form S2. As
we have seen h = 1 for the point node Dirac case. For the
nodal loop case h is somewhat reduced going like (1 − 1

2
�2

b2 )
for �/b < 1. When the disorder scattering rate becomes large
as compared with b we find that h is reduced by 12% at � = b

after which it again rises towards one. These results are only
valid for μ/� and T/� < 1 near charge neutrality.

The approach to the minimum DC conductivity for T =
μ = 0 but with finite � as � → 0 is also of interest. It takes
on the form of Eq. (31) with the second term in the square
bracket replaced by 1

36(1+ b2

�2 )2
[4 b4

�4 + 6 b2

�2 + 7]. The expansion

of the functions Y(μ̃,�̃,̃b,̃εs ′ ) of Eq. (9) and H(μ̃,�̃,̃b,̃εs ′ ) of
Eq. (11) in powers of �̃ and retaining terms to �̃2 only gives

σ (T = 0,�̃)

�

= e2

h̄2vF

√
�2 + b2

2π2

×
[

1 + 1

36
(
1 + b2

�2

)2

(
4

b4

�4
+ 6

b2

�2
+ 7

)
�2

�2

]
, (40)

where we needed to evaluate the integral

e2

2π3h̄2vF

∑
s ′

∫ ∞

0
dk̃x

∫ ∞

0
ρ̃dρ̃

4̃ε 2
s ′ − 2̃k2

x − 1(
1 + ε̃ 2

s ′
)4

= 4 b4

�4 + 6 b2

�2 + 7

72π2
(
1 + b2

�2

) 3
2

. (41)

V. CONCLUSION

We have considered the effect of a finite scattering rate
(�) on the finite frequency (�) electromagnetic response of a
nodal loop semimetal and on its DC electrical conductivity,
thermal conductivity, thermopower(or Seebeck coefficient),
and Lorentz number (or Wiedemann Franz law). For the
dynamic optical conductivity at zero temperature σ (T = 0,�)
several regimes arise as a function of � even when the chemical
potential is set equal to zero. In the limit of � → 0 which
corresponds to the minimum DC (σ DC) conductivity we find
σ DC = e2

√
�2+b2

2π2h̄2vF
where b is the radius of the nodal ring in

energy units, e is the electron charge, h̄ the Plank’s constant,
and vF the Fermi velocity. This reduces to the known result for
3D point node Dirac when b = 0 and to the clean limit result
for a nodal semimetal when � = 0. In this last instance the
correction for finite � is of the order of �2/b2. The approach
to the minimum D.C. conductivity obeys a �2/�2 law with

coefficient
4 b4

�4 +6 b2

�2 +7

36π2(1+ b2

�2 )2
. This result agrees with the point node

Dirac case of Ref. [16] when b = 0. At frequencies a few times
� but smaller than 2b we find a constant interband background
as in graphene of height e2

h̄2vF

b
16 provided b � � so that the

ratio of σ DC

σ BG = 8
π2 and is exactly the same as one would get

for graphene in the same constant � approximation as used
here. Of course both σ DC and σ BG are themselves different in
that they both involve material parameters namely vF and b

while in graphene these drop out entirely of both properties. In
the limit of b → 0 the constant background loses its integrity
and the conductivity σ (T = 0,�) evolves toward its behavior
in 3D Dirac point node semimetal. For � > 2b, σ (T = 0,�)
again takes on the characteristic linear in � dependence and
in fact the parameter b completely drops out.

For finite value of the chemical potential μ a Drude-like
response is obtained in the regime � � 2μ with width related
to the scattering rate �. In the pure case (� = 0) the region
up to � = 2μ would have zero conductivity but now this
region shows only a depressed conductivity because of the
disorder scattering. Beyond � � 2μ the flat background of the
μ = 0 case is recovered if μ < b while we recover the linear
dependence of the 3D point node Dirac case if μ > b with
some smearing in the transition region around � = 2μ. Finite
chemical potential also affects the behavior of DC properties.
For the electrical conductivity we find that provided μ/�

(or temperature T/�) is less than 1 the approach to charge
neutrality is quadratic in μ/�(T/�). We have also considered
the limit of large μ at T = 0 and find the quadratic behavior
characteristic of the dirty limit μ2/�2 approach to charge
neutrality and then gradually goes into a linear law μ/�

characteristic of a 2D graphene-like system when b is much
larger than μ and this changes to a μ2/�2 law for μ � b.

Finally the DC thermal conductivity is found to vary as√
�2+b2

vF
when μ = 0, T = 0 and have a μ2/�2 or T 2/�2

correction for μ/�, T/� finite but smaller than one. The
coefficient of these quadratic dependences are only slightly
modified from the b = 0 point node case. The maximum
correction for finite b is of order 12%. This implies that the
Wiedemann-Franz law only very slightly changes from its
value for b = 0 (point node case). A similar situation holds for
the thermopower. We hope that our calculations will stimulate
experimental studies of the optical and transport properties of
nodal loop semimetals. In particular AC spectroscopic data
can provide a wealth of valuable information on the dynamics
of the charge carrier. Several such studies already exist for
related systems of Dirac and Weyl semimetals [9–12,14].
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