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Polaron spin echo envelope modulations in an organic semiconducting polymer
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We present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in
semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction
between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables
direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we
demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be
distinguished from the signal coming from the protons residing on the polaron site (coupled to the polaron spin
via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction,
that would enable detailed study of the polaron orbital state and its immediate environment. We also analyze the
decay of the spin echo modulation, and its connection to the polaron transport.
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I. INTRODUCTION

Over the past decades, semiconducting organic π -
conjugated small molecule and polymer materials have been
become widely used in optoelectronic devices such as light-
emitting diodes and solar cells [1,2]. This triggered an in-
creasing interest in the area of organic electronics, uncovering
a variety of new concepts. Remarkably, it was established that
the charge carrier spin is fundamental to electrical and optical
properties of organic semiconductors. However, because of the
extremely complex nature, many important aspects of the spin
dynamics and underlying microscopic mechanisms are not
yet well understood. This includes the microscopic structure
of charge-carrier polaron states, and the resulting hyperfine
coupling of polaron spin to the local magnetic environment,
which is a key for understanding the spin-dependent processes
in organic semiconductors.

Optically and electrically detected magnetic resonance
(ODMR and EDMR, respectively) are highly efficient spectro-
scopic tools for the investigation of microscopic properties of
organic semiconductors [3]. While the conventional electron
spin resonance (ESR) techniques measure the spin polar-
ization, ODMR and EDMR probe optically and electrically
active paramagnetic states [4–6], which are crucial to many
organic semiconductor applications. Moreover, as the spin po-
larization in organic semiconductors is typically low, ODMR
and EDMR are much more sensitive than the conventional
ESR [7–9].

Substantial progress in this direction was made by the
pulsed EDMR (pEDMR) experiments [10–16]. Unlike the
continuous wave measurements, these experiments are capable
of probing the coherent spin dynamics, and thus provide a
closer view on the spin-dependent processes. Importantly,
pEDMR (and pODMR) offer the implementation of various
spin-echo based spectroscopic techniques in the study of
organic semiconductors [14,15]. This motivates the present
theoretical study of a spectroscopic method based on the
two-pulse (Hahn) echo and three-pulse echo sequences [17].
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In many organic semiconductors, the spin-orbital coupling
is very weak, and the polaron spin dynamics is governed
mainly by the hyperfine interaction (HFI) of the polaron spin
with the surrounding proton spins [18,19]. Therefore probing
the polaron’s HFI is very important. In particular, electron spin
echo envelope modulation (ESEEM) spectroscopy [20,21]
is a very informative magnetic resonance technique that is
widely used for investigation of the hyperfine interactions of
paramagnetic centers. The pEDMR implementation of this
technique, applied to organic polymer poly[2-methoxy-5-(2′-
ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV), was
recently reported by Malissa et al. [15] Employing a version
of ESEEM, the authors of Ref. [15] have been able to resolve
the proton spectral line in MEH-PPV and the deuteron and the
proton lines in partially deuterated MEH-PPV.

In this paper, we develop a theory of ESE modulations in
organic semiconducting polymers for two most common pulse
experiments, the two-pulse primary echo, and the three-pulse
stimulated echo (corresponding to primary and stimulated
ESEEM, respectively). Our theory enables direct selective
probe and investigation of different groups of nuclear spins
which affect the polaron spin relaxation. For instance, we show
that, by appropriately choosing the experimental parameters,
it is possible to selectively measure the signal from the distant
protons (coupled to the polaron spin via dipolar interactions)
and distinguish it from the signal coming from the protons
residing on the polaron site (coupled to the polaron spin via
contact HFI). Based on our theoretical analysis, we conclude
that the spectral lines observed in Ref. [15] come from the
distant protons, while the same-site protons are not detected.
We propose a method for directly probing the contact HFI, that
would enable detailed study of the polaron orbital state and its
immediate environment.

The paper is organized as follows. In the next section, we
discuss the hyperfine interaction between the polaron and
the proton spins, particularly in polymer poly[p-phenylene
vinylene] (PPV) and its derivative, MEH-PPV. The analytical
description of ESEEM is given in Sec. III. In Sec. IV, we
analyze the effect of random orientations of the polymer
chains. The polaron hopping and the resulting ESE modulation
decay is considered in Sec. V. We discuss our results in Sec. VI.
Appendices contain the details of our analytical and numerical
calculations.
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II. POLARON SPIN IN A π -CONJUGATED ORGANIC
SEMICONDUCTING MATERIAL

The polarons in organic semiconductors reside on certain
molecular or polymer sites and hop between the sites. While
residing on a site the polaron spin S interacts with N

surrounding hydrogen nuclear spins Ij = 1/2, j = 1, . . . ,N .
In a strong static magnetic field B0 = B0ẑ, the polaron spin
dynamics is described by the Hamiltonian

H = �Sz +
N∑

j=1

Sz
(
AjI

z
j + BjI

x
j

) − ωI

N∑
j=1

I z
j , (1)

where � = γeh̄B0 and ωI = γnh̄B0 are the polaron and
the nuclear Larmor frequencies, respectively, and {Aj }, {Bj }
are the coupling constants that correspond, depending
on the location of the nuclear spin, either to the contact
hyperfine [Eq. (3)] or to the dipole-dipole interaction [Eq. (5)].
This (pseudo)secular description [17] implies that B0 greatly
exceeds the local magnetic fields created by the nuclear mag-

netic moments, i.e., � � ωhf, where ωhf = 1
2

√∑
j (A2

j + B2
j )

is the average polaron precession frequency in the local field
of the surrounding nuclear spins. Assuming measurements
in the X band, [14,15] we will take B0 ≈ 345 mT and
ωI/2π ≈ 14.7 MHz.

The coupling constants in Eq. (1) depend on the relative
orientation of B0 and the polaron host molecular or polymer
site. Typically, organic semiconductors are amorphous mate-
rials lacking any long range order in molecular or polymer
orientations. Thus the coupling constants {Aj,Bj } differ from
site to site, even if the sites have the same microscopic
structure.

A. Polarons in conjugated polymer PPV and MEH-PPV

The hyperfine interaction between the polaron and the
proton spins is determined by the chemical structure of host
molecule or polymer, which also governs the orbital state of the
polaron. To be specific, we focus on the polymer PPV and its
derivative, MEH-PPV (see Fig. 1). We base our consideration
on the picture of the polaron wavefunction and underlying HFI
advocated in Refs. [24–27]; for a comprehensive review, see
Ref. [28].

The protons can be naturally divided into two groups. The
first group includes protons located within the envelope of the
polaron’s orbital wave function, thus contributing to the con-
tact HFI. These are the protons of the C–H groups covalently
coupled to the polymer backbone carbons, where the polaron
wave function resides. Because of the exponentially fast spatial
decay the polaron wave function covers a finite number of
such protons. As discussed below, in PPV and MEH-PPV this
number is order of few tens. Therefore we neglect the contact
protons which are coupled to the polaron spin weaker than
0.5 MHz; the number of such contact protons is small, and
their overall effect is inessential.

Distant protons, which form the second group, couple to a
polaron spin via magnetic dipolar interactions. These protons
belong both to polymer backbones and substituent side-groups.
Simple estimates show that nearly every distant proton couples
to a polaron spin with less than 1 MHz strength. However,
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FIG. 1. Conjugated polymer PPV (a) and its derivative, MEH-
PPV (b). Upper and middle panels show the chemical structures and
the unit cells. The principal x, y axes of the C–H proton hyperfine
tensors at B and C′ carbon sites are different from those at B′, C, E,
and F carbon sites, while the z axes are the same and perpendicular to
the plane of the picture (in MEH-PPV there are no C–H protons at B′

and C sites). (Bottom) Half-widths of the spatial extents of polarons
(orange ovals), according to Ref. [26].

because of the slow, ∝ 1/r3 decay of the dipolar interaction
the effective number of these protons is of the order of few
thousand, so that their overall effect can be noticeable, and
sometimes even dominant.

1. Contact hyperfine interaction

The polaron spin S couples to a C–H proton spin I via the
hyperfine interaction S · ρSÂ · I, where ρS is the polaron spin
density on the carbon pπ orbital and Â is the hyperfine tensor.
Thus the polaron contact hyperfine interaction is completely
described in terms of Â and ρS.

From the analysis of unpaired carbon orbital states it was
established [29] that the principal x and z axes of the hyperfine
tensor are parallel to the C–H bond and the pπ orbital axes,
respectively (see Fig. 1). Principal elements of the hyperfine
tensor are approximately expressed as

(Ax,Ay,Az) = −([1 − α]AH,[1 + α]AH,AH ), (2)

where AH/2π = 60 to 80 MHz is the McConnell’s constant,
and α = 0.5 to 0.6 is the degree of anisotropy [29].

Equation (2) is quite generally applicable to organic π -
electron radicals. For PPV and MEH-PPV, the experimental
studies suggest AH/2π = 70 MHz and α = 0.5 [24–26].
These numerical values are used in our calculations. The
remaining ingredient needed for description of the polaron
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TABLE I. Spin density of a polaron in PPV chain, ρS, taken
from Ref. [27]. Small values, |ρS| < 0.005, are neglected. The site
assignment corresponds to that of Fig. 1. The unit cell at the polaron
center is denoted by 0, thereby the unit cells with significant values
of ρS range from −3 to 3.

site \ cell −3 −2 −1 0 1 2 3

A – 0.01 0.04 0.08 0.04 – –
B – 0.01 −0.015 0.035 −0.005 0.03 −0.005
B′ – 0.01 −0.015 0.04 – 0.03 –
C – – 0.03 – 0.04 −0.015 0.01
C′ – −0.005 0.03 −0.005 0.035 −0.015 0.01
D – – – 0.04 0.08 0.04 0.01
E 0.01 −0.01 0.09 0.08 – 0.035 –
F – 0.035 – 0.08 0.09 −0.01 0.01

contact HFI is the polaron spin density at the carbon sites,
ρS. In our subsequent calculations we use the spin density
presented in Table I. The numbers presented there have been
obtained from a model calculation [27], and have been verified
by the analysis of spectral lineshapes in ENDOR [24,25] and
light-induced ESR [26] experiments.

Formally, ρS in Table I is calculated for PPV. However,
the same data can be used for other PPV derivatives [26],
particularly for MEH-PPV, neglecting the effect of substituent
groups on ρS.

The consideration below is focused primarily on MEH-
PPV, since its ESEEM spectra have been studied in Ref.
[15]. According to Table I and Fig. 1, in MEH-PPV there
are Nc = 22 contact proton spins coupled to the polaron spin
at sites B, C′, E, and F, distributed over seven consecutive unit
cells, which are covered by the polaron wave function (note
that in MEH-PPV the C–H protons at carbon sites B and C′
are replaced by substituent groups). In the Hamiltonian (1)
we label the contact protons by j = 1, . . . ,Nc. The coupling
constants {Aj ,Bj }Nc

j=1 depend on the relative orientations of
the corresponding C–H bonds and the applied magnetic field,
B0 = B0ẑ. We denote the components of ẑ in the principal basis
of the j th hyperfine tensor by qμj , μ = x, y, z. The coupling
constants are related to the hyperfine tensor elements Eq. (2)
as

Aj = ρS(j )
∑

μ

Aμq2
μj , A2

j + B2
j = ρ2

S(j )
∑

μ

A2
μq2

μj . (3)

For each j, ρS(j ) is given in Table I, and qμj can be found
for any direction of B0 from the description of the principal
hyperfine axes in Fig. 1. The protons coupled to the polaron
via contact HFI create a random local magnetic field. The
number of such protons is quite large, so the random field
has almost Gaussian probability distribution. From Table I, we
calculate its standard deviation, ωhf,c/h̄γe, where the hyperfine
frequency

ωhf,c =
〈

1

2

√∑
j�Nc

(
A2

j + B2
j

)〉 ≈ 2π × 7.25 MHz (4)

is an average over the polaron random orientations. The
corresponding ESR line would have a Gaussian shape with

the full width at half maximum of 6.1 G, in agreement with
Ref. [26].

2. Interaction with the distant protons

Distant protons couple to the polaron spin via magnetic
dipolar interaction. The strength of this interaction is deter-
mined by the material morphology, including the molecular
packing and the average density of protons. Relying upon
the reported data on the molecular packing [30–32] and
van der Waals radii of hydrogen and carbon [33–35], we
restrict the minimal distance between the polymer backbone
carbons and distant protons to dmin = 2.2 Å. Furthermore,
based on the MEH-PPV mass density 1 g mL−1 [31,32] and
its chemical structure shown in Fig. 1, we infer the average
proton density 55 nm−3. Correspondingly, we assume that the
protons are uniformly randomly distributed over the sample
with the average density of 55 nm−3, except for the (distant)
proton-free cylindrical regions of the radius dmin around the
polymer backbone. The polaron spin density, being strongly
concentrated around the 38 carbon sites given in Table I, can
be approximated as a sum of 38 delta functionlike peaks.
Therefore the coupling constants Aj and Bj , which describe
the dipolar interaction between the j th distant proton and the
polaron spin, include the summation over the 38 pointlike
regions, i.e.,

Aj = h̄ γeγn

38∑
l=1

ρS(l)
1 − 3 cos2 θlj

R3
lj

,

Bj = h̄ γeγn

38∑
l=1

ρS(l)
3 sin θlj cos θlj

R3
lj

. (5)

Here, ρS(l) is the polaron spin density at the carbon site l, Rlj

is the vector connecting the distant proton to this carbon site,
and θlj is the angle between Rlj and B0.

A large number of distant protons is included in our
numerical simulations. The locations of the distant protons are
sampled from the distribution described above (uniform, with
the exception of the proton-free cylinders around the polymer
chains), and the averaging over many different samples is
performed. In our simulations, the results converge for about
Nd = 2000 distant protons, and do not change appreciably
if this number is increased by an order of magnitude. This
is because we deal with spatial integrals of ∼A2,B2, and
their combinations, which vanish as ∝ R−6 or faster, and
thus converge quickly. Averaging over the random orientations
of polymer chains should be performed additionally, as the
polaron spin density is not spherically symmetric and different
chain orientations are inequivalent.

The random local frequencies created by the distant protons
will have a typical magnitude of ωhf,d ≈ 2π × 2 MHz, leading
to the total linewidth,

ωhf =
〈

1

2

√∑
all j

(
A2

j + B2
j

)〉 ≈ 2π × 7.52 MHz. (6)

From Eqs. (4) and (6) it is seen that, on average, the distant
protons are responsible only for a small fraction of the local
hyperfine field. Yet they have a strong effect on the fine
structure of ESEEM, as will be seen shortly.
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Note that the distinction between contact and distant
protons is rather sharp, with a well defined dmin controlled
by the molecular packing. Although for some contact-coupled
protons the hyperfine coupling is somewhat weak (comparable
to the coupling of the distant protons), the number of such
protons is small, and their influence on the spectra is negligible.

In theoretical studies of the spin dynamics in organic
semiconductors, the semiclassical approach [22] is often used.
While this approach does not capture all details of the ESEEM
signal, it provides a convenient way for the characterization of
signal decay. Within the semiclassical treatment, the nuclear
spin dynamics given by the last term of Eq. (1) is ignored,
and the on-site hyperfine interaction is replaced by a random
local static magnetic field experienced by the polaron spin
[22]. Accordingly, the on-site semiclassical Hamiltonian in
the secular approximation reads

HSC = (� + ωz)S
z, (7)

where ωz is random and uncorrelated from site to site. This
random frequency is approximately described by the Gaussian
distribution, with the standard deviation ωhf [see Eq. (6)]. Note
that the distribution of random fields resulting from the bath
of dilute spins is Lorentzian, rather than Gaussian, [23] and
may provide an alternative description for the distant protons
in highly deuterated samples. However, because of moderate
dilution of protons even in the deuterated samples and overall
small contribution of distant protons to ωhf, the Gaussian
distribution of local frequencies is sufficiently accurate for
the purposes of our study.

III. SPIN ECHO WITH IDEAL PULSES

Generally, ESEEM spectroscopy is used to investigate the
hyperfine interactions of paramagnetic species [20]. To set
a framework for discussing the application of spin echo ex-
periments to organic semiconductors, we discuss the ESEEM
in the case of the two-pulse Hahn echo sequence, Fig. 2(a)
(primary ESEEM), and the three-pulse sequence, Fig. 2(b)
(stimulated ESEEM). In Fig. 2, π/2 and π denote the rotation
angles of spins around the x axis in the rotating frame, induced
by resonant microwave pulses, whereas τ and T are the free
evolution periods between the pulses. The pulses are assumed
to be ideal. Depending on τ and T the echo amplitude, which
we denote by E(2τ ) for the primary ESEEM and E(τ,T ) for
the stimulated ESEEM, undergoes modulation caused by the
coupling to the nuclear spins.

(a)

(b)

⁄  

⁄  ⁄ ⁄  

FIG. 2. The ESEEM pulse sequences considered in the text. (a)
Primary ESEEM. (b) Stimulated ESEEM.

Using the density matrix formalism, the (normalized) echo
amplitudes can be written as

E(2τ ) = −2 Tr[U (τ )ρ̂(0)U †(τ )Sy], (8)

E(τ,T ) = −2 Tr[U (τ,T )ρ̂(0)U †(τ,T )Sy], (9)

where ρ̂(0) is the density operator before the first pulse, and
the evolution operators are given by

U (τ ) = e−iτH [π ]e−iτH [π/2],

U (τ,T ) = e−iτH [π/2]e−iT H [π/2]e−iτH [π/2],

where [φ] = exp(iφSx) denotes the rotation operator for an
ideal pulse with the flip angle φ, and H is the Hamilto-
nian, as given by Eq. (1). We consider the initial density
operator ρ̂(0) = (1/2 + Sz) ⊗ ρI that describes the polaron
spin ensemble polarized along the z-axis. We can neglect the
thermally-induced polarization of the nuclear spin ensemble
and take the nuclear density operator proportional to the unity,
ρI ∝ 1. The explicit calculation of modulation functions is
facilitated by the fact that the Hamiltonian, Eq. (1), preserves
the z-component of polaron spin. One gets [20]

E(2τ ) =
N∏

j=1

(
1 − 2kj sin2 ωj+τ

2
sin2 ωj−τ

2

)
(10)

for the primary ESEEM and

E(τ,T ) = 1

2

N∏
j=1

(
1 − 2kj sin2 ωj+[τ + T ]

2
sin2 ωj−τ

2

)

+ 1

2

N∏
j=1

(
1 − 2kj sin2 ωj+τ

2
sin2 ωj−[τ + T ]

2

)

(11)

for the stimulated ESEEM, where the frequencies,

ωj± = [
(ωI ± Aj/2)2 + B2

j

/
4
]1/2

, (12)

are the nuclear spin precession frequencies corresponding to
the polaron spin being up (+) and down (−), and

kj =
(

ωIBj

ωj+ωj−

)2

(13)

are the modulation depths.
Two major factors influencing modulation signals Eqs. (10)

and (11) in a real experiment are the orientation disorder of the
polymer chains and random hopping of the polaron between
different sites. In the next two sections, we study the effects of
these factors.

IV. THE EFFECT OF ORIENTATION DISORDER

In the typical experiments, the samples are the disordered
films of the organic polymer, so the observed signals include
contributions from all orientations of the polymer chains.
Therefore we average Eqs. (10) and (11) over random orienta-
tions of the polymer chains, and consider the disorder-averaged
modulation signals, 〈E(2τ )〉, 〈E(τ,T )〉, together with their
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spectra given by the cosine Fourier transforms [36], Ẽ(ω) =
Fτ [〈E(2τ )〉], Ẽ(τ,ω) = FT [〈E(τ,T )〉].

A. Orientation-averaged primary ESEEM

The HFI described above leads to small modulation depths,
kj 
 1. Moreover, the sum of all modulations depths, κ =∑

kj , is also small. This allows expansion of Eq. (10) in terms
of small kj (for details see Appendix A). We write

E(2τ ) = 1 − 1

2

∑
j

kj

{
1 − cos(ωj+τ ) − cos(ωj−τ )

+ 1

2
cos[(ωj+ − ωj−)τ ] + 1

2
cos[(ωj+ + ωj−)τ ]

}
.

(14)

Equation (14) shows that the primary ESEEM spectrum
involves four groups of carrier frequencies, {ωj±} and {ωj+ ±
ωj−}. We also approximate

ωj± ≈ ωI ± Aj/2. (15)

For the distant protons, Eq. (15) follows from the weak
coupling, Aj ,Bj 
 ωI . For the contact protons with a stronger
coupling, Eq. (15) is valid due to the weak anisotropy of
the contact HFI, see Appendix A. Equation (15) reveals
the four frequency groups in the ESEEM signal, namely,
{|Aj |}, {ωI − |Aj |/2}, {ωI + |Aj |/2}, and 2ωI . The relation
[37] ωI > 3

2 |Aj | means that the information about {|Aj |} is
encoded in the low-frequency modulations of the ESEEM
signal, which is well separated from the higher-frequency
groups. Besides, the second and the third groups are close
to ωI , mirroring each other about this frequency.

Another conclusion from Eq. (14) is that the contributions
of the contact and the distant protons in E(2τ ) are simply
additive. We separate these contributions by introducing the
notations, Ec(2τ ) and Ed (2τ ), respectively. More specifically,
Ec(2τ ) is the partial sum of the first Nc terms in Eq. (14),
whereas Ed (2τ ) includes the terms with j > Nc, and thus
E(2τ ) = 1 + Ec(2τ ) + Ed (2τ ). Using Eq. (15) in Eq. (14)
and averaging the result over the disorder in polymer chain
orientations, we obtain

〈Eβ(2τ )〉 = −〈κβ〉
2

− 1

4
Fβ(2τ ) − 〈κβ〉

4
cos(2ωIτ )

+Fβ(τ ) cos(ωIτ ), (16)

where the subscript, β = c,d, refers to the contact and the
distant protons, respectively, and the partial sums

Fc(τ ) =
〈∑

j�Nc

kj cos(Ajτ/2)

〉
, (17)

Fd (τ ) =
〈∑

j>Nc

kj cos(Ajτ/2)

〉
, (18)

with κc = 〈∑Nc

j=1 kj 〉 and κd = 〈∑j>Nc
kj 〉 are introduced.

Equation (16) gives the orientation-averaged ESE modulation
function in terms of Fc(τ ) and Fd (τ ). Particularly, the low-
frequency modulations are included in the second term of
Eq. (16). The third term of Eq. (16) describes oscillations of

FIG. 3. (a) and (c) Functions Fc(τ ) and Fd (τ ), introduced in
Eqs. (17) and (18), respectively, are plotted with blue. (b) and (d) The
respective cosine Fourier transforms, F̃c(ω) and F̃d (ω), are plotted
with magenta, in the same units.

a constant amplitude at the frequency 2ωI , and includes both
the contact and the distant protons. Finally, modulations with
the frequencies close to ωI are incorporated in the last term of
Eq. (16).

First we discuss the contribution of distant protons. On the
timescale, τ ∼ 1/ωI , the function Fd (τ ), Fig. 3(c), varies only
slightly. Thus the last term of 〈Ed (2τ )〉 in Eq. (16) represents
oscillations with the frequency ωI and the envelope Fd (τ ). The
cosine Fourier transform, F̃d (ω), plotted in Fig. 3(d), shows a
sharp peak at ω = 0. Through this function the cosine Fourier
spectrum of the distant protons is described. It involves three
well-resolved features; a dip of the form − 1

4 F̃d (ω/2) near the
origin, a sharp peak at ωI of the shape F̃d (ω − ωI ), and a
sharper negative δ- peak at 2ωI .

In the case of the contact proton contribution, the function
Fc(τ ) shown in Fig. 3(a) changes considerably on the timescale
τ ∼ 1/ωI because of the presence of large Aj ∼ ωI . Therefore
the last term of 〈Ec(2τ )〉 in Eq. (16) does not admit a simple
interpretation in terms of the oscillations with the frequency
ωI and a smooth envelope. Its cosine Fourier transform,
F̃c(ω − ωI ), incorporates two bands mirroring each other
about ωI , as can be inferred from Fig. 3(b). These bands
come from the modes with frequencies {ωI ± |A|j /2}Nc

j=1,
spread by the orientation disorder. Besides these two bands
and the negative δ- peak at 2ωI , the cosine Fourier spectrum
of contact protons involves a low-frequency band of the form
− 1

4 F̃c(ω/2), originating from the frequencies {|A|j }Nc

j=1.
Figure 4 plots the primary ESEEM spectrum Ẽ(ω), calcu-

lated from Eq. (10) by a Monte Carlo sampling of the polymer
chain orientations, employing Eqs. (3) and (5). Its structure
near ωI = 14.7 MHz includes a sharp peak at ωI and two wider
side-bands mirroring each other about ωI . Based on the above
analysis, we identify the side-bands with the contribution of
contact protons and the sharp peak with the influence of the
distant protons. Thus the shapes of the sidebands and of the
sharp peak are given by F̃c(ω − ωI ) and F̃d (ω − ωI ), respec-
tively. This identification is clearly confirmed in Fig. 4(b),

214202-5



V. V. MKHITARYAN AND V. V. DOBROVITSKI PHYSICAL REVIEW B 95, 214202 (2017)

FIG. 4. The primary ESEEM spectrum Ẽ, calculated from ori-
entation disorder averaged Eq. (10) numerically, is plotted in black.
(a) The cosine Fourier transform of the sum, 〈Ec(2τ )〉 + 〈Ed (2τ )〉,
is plotted with yellow dashed line, from Eq. (16). (b) Zoom in of
the region indicated in the left panel with a rectangle. F̃c(ω − ωI )
and F̃d (ω − ωI ) are plotted with the cyan and magenta dotted lines,
respectively. It is seen that the spectral peak at ωI = 14.7 MHz is
exclusively due to the distant protons, whereas the side bands come
from the contact protons.

where we separately plot the contributions of the contact and
the distant protons.

B. Orientation-averaged stimulated ESEEM

The stimulated ESEEM can be analyzed along the same
lines. Expanding Eq. (11) in terms of small kj and keeping the
leading terms, one gets

E(τ,T ) = 1 −
∑

j

kj

2

{
sin2 ωj+τ

2
[1 − cos ωj−(τ + T )]

+ sin2 ωj−τ

2
[1 − cos ωj+(τ + T )]

}
. (19)

Thus the stimulated ESEEM spectrum involves only two
groups of frequencies, {ωj+} and {ωj−}. Our subsequent
analysis employs the approximation given by Eq. (15). By
separating the contact and the distant proton contributions in
Eq. (19) and averaging over the polymer chain orientations,
we get 〈E(τ,T )〉 = 1 + 〈Ec(τ,T )〉 + 〈Ed (τ,T )〉, where the T -
dependent parts of 〈Eβ(τ,T )〉, β = c,d, are

〈Eβ(τ,T )〉 � 1
2Fβ(τ + T ) cos[ωI (τ + T )] − 1

4Fβ(T )

× cos[ωI (2τ + T )] − 1
4Fβ(2τ + T ) cos(ωIT ).

(20)

As a function of T , 〈Ed (τ,T )〉 involves only modulations
with the proton Zeeman frequency ωI , and its cosine Fourier
transform [36] Ẽd (τ,ω) demonstrates just a sharp peak around
that frequency. The τ dependence of the modulation depth can
be understood even without performing the disorder averaging.
Indeed, Eq. (19) shows that the modulation amplitude is
reduced if τ can be chosen in such a way that sin(ωj±τ/2) ≈ 0
for all protons. Since for the distant protons all ωj± are close
to ωI , one can expect a reduction of the modulation amplitude
of 〈Ed (τ,T )〉 for the values of τ satisfying sin(ωIτ/2) = 0.
Similarly, one can anticipate an increase of the modula-
tion amplitude for the values of τ satisfying the condition
sin(ωIτ/2) = ±1.

FIG. 5. The stimulated ESEEM 〈E(τn,T )〉, calculated from ori-
entation disorder averaged Eq. (11) numerically, is plotted against T

at fixed τn = (π/ωI )n for n = 3, τ3 ≈ 102 ns (a), and n = 4, τ4 ≈
136 ns (c). The corresponding spectra Ẽ(τn,ω), n = 3 (b) and 4
(d), are plotted against ω. The strong reduction of the peak at
ωI = 14.7 MHz for even n, allowing the observation of the contact
proton hyperfine coupling, is obvious.

In Appendix A, we show that the T -modulation amplitude
of 〈Ed (τ,T )〉 is reduced when τ = τn = (π/ωI )n with even
integer n, and increases when n is an odd integer. We also show
that, for n � 30, the difference in the amplitudes of 〈Ed (τn,T )〉
between odd n and even n is more than two orders of magnitude
for small n and more than a factor of 15 for large n. Note that
this includes all τn within the interval 0 < τ < 1 μs, which
corresponds to the experimentally plausible values of τ .

The T modulation of 〈Ec(τ,T )〉 given by Eq. (20) cannot
be interpreted as having a single frequency ωI , because the
function Fc varies rapidly on the timescale, T ∼ 1/ωI . Similar
to the case of the primary ESEEM, its cosine Fourier transform
[36] Ẽc(τ,ω) demonstrates two bands near ωI . However, in this
case, these bands are not quite symmetric with respect to ωI .
Importantly, choosing τ = τn is not critical for 〈Ec(τ,T )〉, and
there is no reduction of modulation at even n, as shown in
Appendix A.

Summarizing, the stimulated ESEEM spectra at τ = τn

with odd n demonstrate a strong peak at ωI , which could make
it difficult to experimentally observe the weaker contact proton
sidebands. On the other hand, reduction of the peak occurs
at τ = τn with even n, while the contribution of the contact
protons is preserved. This provides a method of distinguishing
the signal coming from the distant protons from the modulation
caused by the contact protons, coupled to the polaron via HFI.

To illustrate the method, in Fig. 5, we plot the time-domain
signals 〈E(τn,T )〉 along with their spectra for n = 3 and 4, as
calculated from the orientation-averaged Eq. (11). The spectra
plotted in Figs. 5(b) and 5(b) demonstrate the suppression of
the peak at ωI = 14.7 MHz when changing n from odd to even.

V. ECHO MODULATIONS OF HOPPING POLARONS

The random hopping of the polaron leads to the decay
of ESEEM, thus imposing limitations on the observability of
modulations. On the other hand, this decay can serve as a probe
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for understanding the polaron transport. In this section, we
investigate the ESEEM of polarons performing random walk
over orientationally disordered polymer sites and coupling to
the nuclear spins according to Eq. (1). Our main goal is to
reveal the hopping regimes where the ESEEM signal, and
particularly the contact hyperfine spectrum, is not distorted.

The spin dynamics of a randomly hopping polaron depends
on the dimensionality of the sample [38–41]. Its analytical
description is the simplest in 3D, where the self-intersections
of the polaron random walk trajectories can be neglected.
This is equivalent to the strong collision approximation, which
provides a simple way of describing the spin relaxation of a
randomly hopping carrier [42].

The multiple trapping model [43–46] is an implementation
of the strong collision approximation, often used to explain the
transport in organic materials [47], and particularly in PPV and
its derivatives [48]. We base our consideration on the multiple
trapping model. Within this model the polaron hopping from
a polymer site is described by the rate,

Wr = ν exp(εr/kBT ), (21)

where ν is the hopping attempt frequency, εr is the trapping
energy at the site r, kB is the Boltzmann constant, and
T is the temperature. The trapping energies are all nega-
tive and random, with the exponential distribution, N (ε) ∝
exp[ε/kBT0]. Hence the model is defined by two parameters:
the frequency ν and the dispersion parameter α ≡ T/T0. In
the high-temperature or shallow-trap limit, when α → ∞,
the hopping rates are uniform and the waiting time statistics
of the polaron random walk obeys the Poisson distribution,
P (t) = ν exp(−νt). For finite α, this distribution assumes the
algebraic form, P (t) ∝ t−1−α , reflecting the broad distribution
of the hopping rates.

A. Primary ESEEM of hopping polarons

The generalization of Eq. (10) for hopping polarons and the
evaluation of the resulting echo modulation function, E(2τ ), is
described in Appendix B. We calculate E(2τ ) by Monte Carlo
sampling of the random-walk trajectories over the orientation
disordered polymer sites. But before turning to our results on
E(2τ ) we introduce the echo modulation function of hopping
carriers calculated from the semiclassical Hamiltonian (7),
ESC(2τ ), which is the semiclassical counterpart of E(2τ ).

ESC(2τ ) is a nonoscillatory, monotonously decreasing
function of the delay time τ . In the high-temperature limit,
α → ∞, the perturbative treatment over small η ≡ ν/ωhf 
 1
given in Appendix C yields

ESC(2τ ) = [1 + η
√

π erf(ωhf τ )]e−2ντ , (22)

where erf(x) is the error function. For τ > 2/ωhf, the error
function in Eq. (22) changes very little, so that ESC(2τ )
assumes the exponential form, ESC(2τ ) ∝ exp(−2τ/T2), with
the decoherence time, T2 = 1/ν. The decay of ESC(2τ ) with
τ is exponential also in the fast hopping regime, η � 1.
However, due to the motional narrowing, the dependence of
T2 on ν in this regime is reversed; T2 = ν/ω2

hf. Combining the
two forms, we write

T2 = 1/ν + ν/ω2
hf. (23)

Even though the decay of ESC(2τ ) in the intermediate regime
η ∼ 1 is not exponential, the dephasing time Eq. (23) gives the
correct timescale for that decay too.

Our numerical simulations show that with decreasing α the
decay of ESC(2τ ) becomes slower and nonexponential, with
a progressively stronger long-time tail. For η 
 1, this can
be explained as follows. The dependence of ESC(2τ ) on α

is stipulated by the number of deep traps, which grows with
decreasing α. A trapped polaron is subject to a static hyperfine
magnetic field. Because the echo pulse sequence eliminates
the dephasing caused by static field components [17,23], the
decay of ESC(2τ ) becomes slower with the increasing fraction
of trapped polarons. The effect is most pronounced at long
times due to the slow, algebraic decrease of the waiting time
distribution, resulting in the overall nonexponential dephasing
of ESC(2τ ).

The dependence of ESC(2τ ) on α for η � 1 is less
transparent. Nevertheless, the nonexponential character of
ESC(2τ ) at finite α, observed in our numerical simulations, is
established analytically also for this case [49]. Summarizing,
the exponential behavior of ESC(2τ ) is a signature of the
uniform hopping rates with either fast or slow hopping (i.e.,
away from η ∼ 1), whereas in all the remaining situations
ESC(2τ ) is nonexponential.

The analysis of E(2τ ) reveals different types of τ depen-
dence in slow- (η 
 1) and fast- (η � 1) hopping regimes.
In the slow-hopping regime, where this dependence is more
complex, we numerically find that E(2τ ) is quite accurately
quantified by

E(2τ ) = 〈E(2τ )〉ESC(2τ ), (24)

where 〈E(2τ )〉 is established in the previous section. To
substantiate this relation, in Fig. 6, we plot E(2τ ) numerically
calculated for four different small values of η, and compare
them with the curves resulting from Eq. (24). The plots confirm
the validity of Eq. (24) for the hopping attempt frequencies up
to η = 0.21.

Equation (24) suggests that the fine structure of E(2τ ) is
totally described by 〈E(2τ )〉, whereas its decay is given by
ESC(2τ ). Important to us is the question whether the decay
destroys any information on the spectrum of contact HFI,
enclosed in 〈E(2τ )〉, i.e., in 〈Ec(2τ )〉. The answer is found
from Fig. 3(a), indicating that Fc(τ ) almost disappears for
τ > 1 μs. Thus one is able to capture the complete spectrum
if E(2τ ) is detectable for τ � 1 μs. Assuming that E(2τ ) �
0.05 E(0) is the restriction for the observation time, we find
that for α → ∞ the contact HFI spectrum is not distorted if
ν � 1.5 MHz. At the same time, from Fig. 3(a) one can see
that Fc(τ ) is essentially nonzero for τ � 0.5 μs, meaning that
the basic spectral features are detectable for ν � 3 MHz.

For α → ∞ and larger ν, the signal decay is faster and the
spectrum distortion is progressively stronger. Furthermore, in
the regime of fast hopping, η � 1, the fine structure of E(2τ )
is completely destroyed, even though the signal decays slower
because of the motional narrowing. Instead of Eq. (24), here
we get

E(2τ ) = ESC(2τ ). (25)
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FIG. 6. The decay of echo modulation for slow polaron hopping,
η ≡ ν/ωhf 
 1. The right-hand sides of Eq. (24) are plotted for α ≡
T/T0 � 1 (green) and α = 2 (magenta). The corresponding left-
hand sides are plotted with black dotted lines. The hopping attempt
frequencies and corresponding values of η are ν = 0.4 MHz, η =
0.0085 (a), ν = 1 MHz, η = 0.021 (b), ν = 3 MHz, η = 0.063 (c),
and ν = 10 MHz, η = 0.21 (d). The plots clearly confirm the validity
of Eq. (24).

Therefore, for ν > 3 MHz, low-temperature (small-α) mea-
surements can be crucial for the assessment of the primary
ESEEM spectrum.

The experiment in Ref. [14] confirms that the primary echo
signal in MEH-PPV decays exponentially, for at least T �
10 K. This experiment does not address the fine structure of
E(2τ ). However, the results of Ref. [14] suggest a uniform
polaron hopping; α � 1. At T = 10 K, the hopping rate is
estimated to be ν ≈ 1.64 MHz, whereas at T = 295 K, it is
ν ≈ 2.87 MHz. This refers to the slow hopping regime, where
the ESEEM fine structure is shown to be observable.

B. Stimulated ESEEM of hopping polarons

The stimulated ESEEM of an ensemble of hopping po-
larons, E(τ,T ), is treated in the same way. We introduce
its semiclassical counterpart, ESC(τ,T ), and determine its T

dependence. Unlike the above analysis, however, here we
restrict ourselves to the hopping regime, η < 1, relevant for
MEH-PPV.

In the high-temperature limit, α → ∞, we find the simple
exponential decay,

ESC(τ,T ) = ESC(2τ ) exp(−νT ). (26)

For finite α, this decay slows down and becomes nonexponen-
tial. Similar to the primary ESEEM, the fine structure of the
stimulated ESEEM is accurately described by the relation

E(τ,T ) = 〈E(τ,T )〉ESC(τ,T ), (27)

with 〈E(τ,T )〉 characterized in the previous section.
The same question as to whether the decay destroys any

information enclosed in 〈E(τ,T )〉 on the contact HFI, i.e.,
in 〈Ec(τ,T )〉, should be answered in this case. The question

is relevant for stimulated ESEEM measurements aimed at
the detection of the contact HFI, which imply τ = (π/ωI )n
with even n. The answer is found from Eqs. (26), (27),
and the fact that the amplitude of 〈Ec(τn,T )〉 is very small
for T > 0.5 μs and nearly vanishing for T > 0.75 μs (see
Appendix A). Assuming that the observation time is restricted
by E(τn,T ) � 0.05 E(τn,0), for α � 1, the complete contact
HFI spectrum of the stimulated ESEEM is detectable for
ν � 4 MHz, while its essential spectral features are preserved
for ν � 6 MHz. These limits are less restrictive than those on
the primary ESEEM also because the decay of ESC(τ,T ) with
T is twice slower than that of ESC(2τ ) with τ , cf. Eqs. (22) and
(26).

Thus, in the absence of hopping, when the coherence
of individual polaron and nuclear spins is retained, the
total time-domain signal decays because of the orientational
disorder (Sec. IV). The functions Fc and Fd , as introduced
in Eqs. (17) and (18), describe the corresponding decrease
of the signal. However, the spectral analysis still provides
convenient means for probing the system, since the spectra
remain undistorted. The distortion happens only when the
coherence between polaron and the proton spins is reduced.
This reduction happens primarily due to the polaron hopping,
and in the situation of very slow polaron motion, the spectra
remain reasonably undistorted.

Generally, the polarons undergoing multiple hops during
an experimental run do not contribute in the ESEEM spec-
trum. The regimes where the spectrum is not distorted are
characterized by a slow polaron motion. The polaron hopping
destroys the coherence between the polaron and nuclear spins;
already a single hop of the polaron destroys this coherence,
and the signal from that individual polaron vanishes (the only
exception is the case when the hop occurs either right after
initial pulse or right before the final echo detection). As a result,
the contribution of the polarons undergoing multiple hops
is almost completely suppressed. The ESEEM signal can be
detected when only a few hops occur, or no hops at all. Thus our
use of the multiple trapping model is justified by the physics
of the problem, capturing the most important phenomena
occurring in experiments. Based on these arguments we expect
that using the multiple hopping or other transport models
instead of the multiple trapping model will have only marginal
consequences.

VI. CONCLUDING REMARKS

We have studied the ESEEM spectroscopy of the polarons
in organic semiconductors, focusing on the experimentally
relevant example of the π -conjugated polymer MEH-PPV. We
use the microscopic picture of the polaron orbital state derived
from earlier experiments [24–26]. Our study incorporates the
random orientations of polymer chains and the polaron random
hopping. The resulting ESEEM spectra demonstrate features
caused by the interaction of the polaron spin with different
groups of protons. In particular, for the stimulated ESEEM
experiments, we formulate a method that allows separate
observation of the distant protons (coupled to the polaron spin
via long-range dipolar interactions) and the nearby protons
(coupled to the polaron via contact HFI).
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Electrical or optical detection of any magnetic resonance
relies upon the phenomenon of spin-dependent charge carrier
recombination and transport. Since the work of Kaplan,
Solomon, and Mott [50], this phenomenon in commonly
explained in terms of weakly coupled polaron spin pairs.
Correspondingly, the pEDMR based ESEEM studies should
take into account the weak coupling between the spins of dif-
ferent polarons. The perturbatively established effect of such
a coupling on ESEEM spectra [51] results in the partial shifts
of modulation frequencies δω± ≈ ±(J + D)2/ωI , where J

and D are the strengths of the polaron pair spin exchange and
dipolar coupling, respectively. In the case of MEH-PPV, it is
reasonable to neglect the spin exchange. The dipolar coupling
can be neglected if D2/ωI 
 ωI . This condition is met for
the polaron separation greater than 2 nm. We neglected the
effect of polaron-polaron spin coupling, assuming such large
inter-polaron distances.

In a conventional ESR experiment, the echo modula-
tion decays due to the electron-nuclear, spin-lattice, and
dipole-dipole interactions. In addition, in the pulse ODMR
and EDMR experiments on organic semiconductors, various
recombination-dissociation processes can contribute to the
ESEEM decay. However, the decay timescales measured so
far [10,14,16] show that the polaron hopping constitutes the
fastest channel of decay. We address the destructive effect of
the polaron hopping and determine the hopping regimes where
the ESEEM spectral features are not distorted. Based on the
experiment of Ref. [14], we conclude that the polaron hopping
in MEH-PPV is within this regime and our approach is correct.

A pulse EDMR study of the stimulated ESEEM spectrum
of polarons in MEH-PPV [15] reports the observation of a
single spectral peak at about 14.5 MHz in regular MEH-PPV
and two peaks at 2.2 and 14.5 MHz in deuterated MEH-PPV.
The ESEEM sidebands are not observed in either of these
cases. Apparently, the working point in Ref. [15] is close
to τ = (π/ωI )n with n = 3, where the signal of the nearby
protons is suppressed, and the spectral peak originating from
the distant protons is dominant. We believe that by choosing
the parameters as proposed above it is possible to measure the
spectrum of the nearby protons using the same experimental
settings. Moreover, the theory can be straightforwardly gener-
alized to other organic semiconductors.
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APPENDIX A

In this appendix, we describe the details of the theoretical
framework for the analysis in Sec. IV. Particularly, we
address the disorder-averaged time-domain modulation signals
〈E(2τ )〉, 〈E(τ,T )〉, and their spectral functions, Ẽ(ω) and
Ẽ(τ,ω), in line with Ref. [20].

In real experiments, as well as during numerical simula-
tions, time-domain signals are found at discrete values of
time. Typically, one obtains an array of values, f (tk), for
equidistant time points, tk = k�t, k = 0,1, . . . ,L. For the
spectral analysis of such a signal it is convenient to introduce
the discrete cosine Fourier transform, Ft [f (t)](ω) ≡ f̃ (ω), as

f̃ (ωj ) =
L∑

k=0

2f (tk) cos(ωj tk) − f (t0) + f (tL), (A1)

where ωj = j�ω with �ω = 2π/(�t[L + 1]) and integer
j , while the last two terms are included to ensure a zero
background. Because of the symmetry, f̃ (ωj ) = f̃ (2π/�t −
ωj ), it is appropriate to confine 0 � j � L/2, restricting the
frequency domain to 0 � ω < π/�t . Without going into the
details we assume �t small enough to cover the necessary
frequencies, and L large enough to ensure small frequency
steps. Then one can regard f̃ as a function of continuous ω.
This defines the cosine Fourier transforms we employ for the
spectral analysis of modulation signals:

Ẽ(ω) = Fτ [〈E(2τ )〉], Ẽ(τ,ω) = FT [〈E(τ,T )〉]. (A2)

Direct numerical evaluation of modulation depths from
Eq. (13) shows that, for all orientations of the polymer chains,
the maximum modulation depth of the contact hyperfine
protons is 0.05 and the maximum depth of the distant protons
is 0.007 (recall that, for MEH–PPV, in Eqs. (10) and (11),
the contact protons are labeled by the subscript, 1 � j � Nc,
where Nc = 22, and the distant protons are labelled by Nc <

j � N ). This allows us to approximate the factors in Eqs. (10)
and (11) with exponents. For the primary ESEEM, one gets

E(2τ ) = exp

⎡
⎣−

N∑
j=1

2kj sin2

(
ωj+τ

2

)
sin2

(
ωj−τ

2

)⎤
⎦.

(A3)

To some extent, the argument in Eq. (A3) is characterized
by the sum of all depths, κ = ∑N

j=1 kj . With the polymer
orientation, κ varies between 0.03 and 0.242, and averages
at about 0.136. The contribution of distant protons in this
sum, κd = ∑

j>Nc
kj , is less than 0.06, with the average

over the orientation disorder, 〈κd〉 = 0.047. Dominant in κ is
the contribution of contact hyperfine protons, κc = ∑Nc

j=1 kj ,
which has a maximum of 0.2 and averages at about 0.089.
However, the contact hyperfine protons have a large dispersion
of modulation frequencies, and even relatively large fluctua-
tions of κc do not generate a large argument in Eq. (A3).
Therefore it is reasonable to expand the exponent (A3) and
write

E(2τ ) ≈ 1 −
N∑

j=1

2kj sin2

(
ωj+τ

2

)
sin2

(
ωj−τ

2

)
. (A4)

This approximation is further reinforced by averaging
Eqs. (10) and (A4) over orientation disorder numerically and
comparing the results in Fig. 7. After a simple transformation
Eq. (A4) goes into Eq.(14) of the main text.

The approximation Eq. (15) in the main text for the distant
protons is based on the fact that the polaron spin coupling to
these protons is weak, Aj ,Bj 
 ωI . The following arguments
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FIG. 7. Comparison of the polymer chain orientation disorder
averaged exact relation Eq. (10) (black points) and approximation
Eq. (A4) (red line).

substantiate the same approximation for the contact protons.
From Eq. (12), it is seen that the approximation error is ∝
B2

j /(ωI ± Aj/2). Consistent with this, we numerically find
the largest error, ωj+ − (ωI + Aj/2) ≈ 0.1 MHz, occurring
for the largest Bj . It results for a C–H proton at vinyl site
E, when the external magnetic field is parallel to x̂ + ŷ in
the principal axes at E (see Fig. 1). This error is about 1%
of the corresponding frequency values, so the approximation
is quite accurate.

The stimulated ESEEM is analyzed in a similar way. By
virtue of small values of kj , Eq. (11) is reduced to the sum
Eq. (19) in the main text. After averaging over the disorder in
polymer chain orientations and separating the contact and the
distant proton contributions 〈Eβ(τ,T )〉, β = d, c, one gets

〈Eβ(τ,T )〉 = − 1
2κβ + 1

2Fβ(τ ) cos ωIτ + 1
2Fβ(τ + T )

× cos ωI (τ + T ) − 1
4Fβ(T ) cos ωI (2τ + T )

− 1
4Fβ(2τ + T ) cos ωIT , (A5)

from which Eq. (20) of the main text is written.
The T dependence of 〈Ed (τ,T )〉 is simple modulation with

the frequency ωI . To find its τ dependence, we rewrite the
modulation part of Eq. (A5) as

〈Eβ(τ,T )〉 � 1
2�β(τ,T ) cos(ωIT + ϕβ(τ,T )), (A6)

with ϕβ = arg Zβ(mod π ) and �β = Zβe−iϕβ , where

Zβ = eiωI τFβ(τ + T ) − 1
2e2iωI τFβ(T ) − 1

2Fβ(2τ + T ).

(A7)

As defined, �d (τ,T ) and ϕd (τ,T ) are smooth functions of
T , varying insignificantly at times, T ∼ 1/ωI . In contrast,
their τ dependence is abrupt, because of the presence of
exponential factors in Eq. (A7). The largest and smallest
values of �d (τ,T ) for a fixed T can be found in an adiabatic
accuracy, by differentiating the fast exponents with respect to
τ , while regarding the Fd factors as constants. It is in fact more
convenient to use the relation, �2

d = |Zd |2, and differentiate
|Zd |2. One gets

∂τ |Zd |2 ≈ ωI sin ωIτ [Fd (τ + T )Fd (2τ + T )

+Fd (T )Fd (τ +T )−2 cos ωIτFd (T )Fd (2τ +T )].

(A8)

This yields minima at ωIτn = πn for even integer n and
maxima at ωIτn = πn for odd integer n, as expected.

To visualize the modulation reduction, in Fig. 8, we plot
�d (τn,T ) against T for n = 1, . . . ,30. We note that these τn

include all possible critical values within the interval, 0 < τ <

FIG. 8. Plots of the amplitude �d (τn,T ) vs T at fixed τn =
(π/ωI )n, for (a) odd n = 1,3, . . . ,29, and (b) even n = 2,4, . . . ,30.
The plots demonstrate the reduction of �d (τn,T ) when going from
odd to even n. For small n, the decrease of �d (τn,T ) from odd to
even n is more than two orders of magnitude. For large n, it is more
that 15 times.

1 μs, which covers the experimentally available τ domain,
taking into account the decay of the signal in a real experiment.
It is seen that for small n the reduction is more than two orders
of magnitude, and for large n it is more than 15 times.

For the contribution of contact hyperfine protons,
〈Ec(τ,T )〉, the modulation given by Eqs. (A5) and (A6)
cannot be interpreted as having a single frequency, because
the function Fc, and therefore �c(τ,T ) and ϕc(τ,T ), vary
abruptly on the timescale, T ∼ 1/ωI . Still, �c(τ,T ) gives the
overall strength of this modulation and it is useful to inspect
this quantity for the above critical values of τ . Figure 9 plots
�c(τn,T ) versus T for the first 20 values of τn. Overall, the
magnitudes of �c(τn,T ) in Fig. 9 are close to each other for
even and odd n, meaning that there is no particular reduction
of the corresponding modulation. From Fig. 9, we also infer
that �c(τn,T ), and therefore 〈Ec(τn,T )〉, is very small for
T > 0.5 μs, and nearly vanishes for T > 0.75 μs.

APPENDIX B

In this appendix, we outline the generalization of Eqs. (10)
and (11) for an ensemble of polarons hopping over the polymer
sites of random orientations. Consider pulse sequences similar
to those in Fig. 2(a), but with unequal delay times; π/2 - τ1 -
π - τ2 - echo, and π/2 - τ1 - π/2 - T - π/2 - τ2 - echo. Using

FIG. 9. The amplitude �c(τn,T ) is plotted vs T at fixed τn =
(π/ωI )n, for (a) odd n = 1, . . . ,19, and (b) even n = 2, . . . ,20.
Though the individual curves are not well resolved, it is seen that
there is no notable difference in the orders of magnitude of �c(τn,T )
with even and odd n.
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the density matrix formalism, the modulation functions are

E(τ1,τ2) = N Tr[U (τ1,τ2)ρ̂(0)U †(τ1,τ2)Sy],
(B1)

E(τ1,T ,τ2) = N Tr[U (τ1,T ,τ2)ρ̂(0)U †(τ1,T ,τ2)Sy],

where ρ̂(0) ∝ (1/2 + Sz) is the initial density operator intro-
duced in Eq. (8) and N−1 = Tr([3π/2]ρ̂(0)[3π/2]†Sy) is the
normalization factor. The evolution operators are given by

U (τ1,τ2) = e−iτ2H̃ [π ]e−iτ1H̃ [π/2],
(B2)

U (τ1,T ,τ2) = e−iτ2H̃ [π/2]e−iT H̃ [π/2]e−iτ1H̃ [π/2],

where H̃ is the Hamiltonian (1) in the coordinate system
rotating around ẑ with the frequency �. For later reference,
we also consider the free induction decay,

F (t) = −N Tr(e−itH̃ [π/2]ρ̂(0)[π/2]†eitH̃ Sy). (B3)

By taking the traces over the polaron spin space, Eqs. (B1)
and (B3) are reduced to the nuclear spin traces, involving the
nuclear spin Hamiltonians,

h± = ±1

2

N∑
j=1

(
AjI

z
j + BjI

x
j

) −
N∑

j=1

ωI I
z
j . (B4)

Subsequently, the nuclear spin traces are calculated explicitly.
More specifically, we have

F (t) = 2−NTrI (e−ith−
eith+

) =
N∏

j=1

fj (t), (B5)

E(τ1,τ2) = 2−NTrI (e−iτ2h
+
e−iτ1h

−
eiτ1h

+
eiτ2h

−
)

=
N∏

j=1

εj (τ1,τ2), (B6)

E(τ1,T ,τ2) = 2−N−1TrI (e−i(τ2+T )h+
e−iτ1h

−
ei(τ1+T )h+

eiτ2h
−
)

+(+ ↔ −)∗ = 1

2

N∏
j=1

ε+
j (τ1,T ,τ2)+(+ ↔ −)∗,

(B7)

where (+ ↔ −)∗ denote the complex conjugates of previous
expressions with the superscripts swapped, and the functions

fj (t) = cos
ωj+t

2
cos

ωj−t

2

+ ω2
I − A2

j /4 − B2
j /4

ωj+ωj−
sin

ωj+t

2
sin

ωj−t

2
,

εj (t1,t2) = fj (t1 − t2) − 2kj sin
ωj+t1

2

× sin
ωj−t1

2
sin

ωj+t2

2
sin

ωj−t2

2
, (B8)

ε±
j (t1,T ,t2) = fj (t1 − t2) − 2kj sin

ωj±(t1 + T )

2

× sin
ωj±(t2 + T )

2
sin

ωj∓t1

2
sin

ωj∓t2

2
,

are introduced, with ωj± and kj given in Eqs. (12) and (13).
To generalize Eq. (B5) for hopping polarons, consider a

polaron random walk right after the initial π/2 pulse (time

FIG. 10. Schematic definitions of polaron random walk trajecto-
ries, R(t), for free induction decay (a) and primary echo (b). The blue
lines denote the pulses. The green lines show the detection points.
The red bars are polaron random hops.

t = 0) from some polymer site r0. Its trajectory, R(t), specifies
the waiting time δtn, which the polaron spends at rn. Other
necessary details of R(t) are represented in Fig. 10(a), showing
that for time t the polaron performs M hops, arriving in the
site rM time δt ′M before the detection. The prime indicates that
δt ′M is not the total waiting time at rM . By this definition,

t = δt ′M +
M−1∑
n=0

δtn, δtM = δt ′M + δt ′′M, (B9)

The free induction decay of a polaron undergoing such a
random walk is given by

FR(t) = 21−N(M+1) Tr[uR(t)Syu
†
R(t)Sy], (B10)

with the time-ordered operator uR(t), replacing the exponential
factors in Eq. (B3),

uR(t) = e−iδt ′MHM

M−1
←−∏
n=0

e−iδtnHn . (B11)

Here the arrow indicates the inverse order of factors in the
products. The transient Hamiltonians in Eq. (B11) are

Hn =
N∑

j=1

Sz
(
Aj,rn

I z
j,rn

+ Bj,rn
I x
j,rn

) −
M∑
l=0

N∑
j=1

ωI I
z
j,rl

,

(B12)
where Ij,r is the spin operator and Aj,r, Bj,r are the hyperfine
coupling constants of the j -th proton located at site r, and
the sum over l includes all M + 1 molecular sites visited
for the random walk R(t). The time dependence of the spin
Hamiltonian is thus incorporated in the first term of Eq. (B12),
describing the hyperfine coupling of the polaron spin with
protons near the site, rn = R(t), occupied by the polaron at
time t .

The trace over the polaron spin space in Eq. (B10) can be
easily taken as the transient Hamiltonians (B12) conserve Sz.
The result is written in terms of the trace over the nuclear
spins:

FR(t) = 2−N(M+1)TrI [uR,−(t)u†
R,+(t)]. (B13)

where we have introduced

uR,±(t) = e−iδt ′Mh±
M

M−1
←−∏
n=0

e−iδtnh
±
n . (B14)

The spin Hamiltonians, h±
n , are given by Eq. (B4), with the

coupling constants and spin operators of protons at rn. Note
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that unlike Eq. (B12), the last term in Eq. (B4) involves nuclear
spin operators only for a single site. This simplification is
general for transport models neglecting the polaron returns
to the sites visited previously, such as the multiple trapping
model adopted in this study. Moreover, neglecting the polaron
returns allows to calculate the trace in Eq. (B13) explicitly.
One finds

FR(t) =
(

M−1∏
n=0

Fn(δtn)

)
FM (δt ′M ), (B15)

where Fn(t) is the free induction decay Eq. (B5) calculated for
the single site, rn.

Similar expressions can be written for the primary and
stimulated ESE modulation functions, provided the polaron
random walk trajectory is specified relative to the pulse
sequence. Namely, for the primary sequence let R(τ1 + τ2) =
rM , and the instantaneous π -pulse is applied δt ′M1

time after the
polaron arrives in the site rM1 , and δt ′′M1

time before it makes
the next hop, see Fig. 10(b). The primary ESE modulation
from a spin with this trajectory is found to be

ER(τ1,τ2) =
(

M1−1∏
n=0

Fn(δtn)

)
EM1

(
δt ′M1

,δt ′′M1

)

×
(

M−1∏
n=M1+1

Fn(δtn)

)
FM (δt ′M ), (B16)

where En(t1,t2) is the modulation function (B6), for rn.
The stimulated ESE modulation critically depends on

whether a random walk involves a hop in the interval T or
not. We separate these cases in Figs. 11(a) and 11(b). The
trajectories with no hops during the interval T , Fig. 11(a), are
denoted by R0, while those incorporating hops in T , Fig. 11(b),
by R1. With the further details of trajectories specified in

FIG. 11. Illustration of notations for polaron random walk trajec-
tories during the stimulated pulse sequence. The blue bars symbolize
the pulses. The green bars show the detection. The red lines are
polaron random hops. (a) Trajectories of type R0, Eq. (B17); no
polaron hop occurs in the time interval T . (b) Trajectories of type R1,
Eq. (B17); at least one hop occurs in the time interval T .

Fig. 11, one gets

ER0 (τ1,T ,τ2) =
(

M1−1∏
n=0

Fn(δtn)

)
EM1

(
δt ′M1

,T ,δt ′′M1

)

×
(

M−1∏
n=M1+1

Fn(δtn)

)
FM (δt ′M ), (B17)

where En(t1,T ,t2) is is given by Eq. (B7) at rn, and

ER1 (τ1,T ,τ2) =
(

M1−1∏
n=0

Fn(δtn)

)
FM1

(
δt ′M1

)

×FM2

(
δt ′′M2

)( M−1∏
n=M2+1

Fn(δtn)

)
FM (δt ′M ).

(B18)

Finally, the free induction decay and the ESE modulations
of the ensemble of randomly walking polarons is found
from Eqs. (B15)–(B18), via averaging over the random-walk
trajectories:

F(t) = 〈FR(t)〉{R}, (B19)

E(τ1,τ2) = 〈ER(τ1,τ2)〉{R}, (B20)

E(τ1,T ,τ2) = 〈ER(τ1,T ,τ2)〉{R}. (B21)

The averages are evaluated numerically, by a Monte Carlo
sampling of random walk trajectories, including the random
on-site trapping energies defining the waiting time statistics via
Eq. (21). In our simulations we also incorporate the random
orientations of polymer chains.

APPENDIX C

In this appendix, we investigate F(t), E(τ1,τ2), and
E(τ1,T ,τ2) analytically, within the multiple trapping model
at α → ∞. This implies uniform hopping rates, Wr = ν,
entailing the Poissonian waiting time distribution, P (δt) =
ν exp(−νδt). In this limit, the free induction decay obeys the
Dyson-type integral equation [42,52],

F(t) = g(t)e−νt + ν

∫ t

0
dt ′e−νt ′g(t ′)F(t − t ′), (C1)

where the on-site relaxation function,

g(t) = 〈F (t)〉, (C2)

is introduced. Here, F (t) is given by Eq. (B5), and the brackets
mean the average over random orientations of molecular sites.
In Eq. (C1), the first term is the relaxation if for time t the
polarons do not hop, which occurs with the probability e−νt ,
and the integral accounts for the relaxation with the first hop
happening at time t ′ < t .

The formal solution of Eq. (C1) is given in terms of the
Laplace transform:

F̃(s) = g̃(s + ν)

1 − νg̃(s + ν)
, (C3)
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where f̃ (s) = ∫ ∞
0 exp(−st)f (t)dt denotes the Laplace trans-

form of f (t). However, from this equation, F(t) can be found
only numerically, as the inverse Laplace transform of Eq. (C3)
is not accessible analytically.

1. Semiclassical description

A semiclassical approximation for F and E follows upon
replacing the Hamiltonian in Eqs. (B2), (B3) by its semiclas-
sical counterpart, Eq. (7). The resulting on-site free induction
decay has the simple form,

g0(t) = 〈cos(ωzt)〉ωz
= exp

(−ω2
hft

2/2
)
. (C4)

Still, the solution for the semiclassical free induction decay,
F0(t), using the inverse Laplace transform (C3), can be found
only numerically [52].

In what follows, we give a perturbative treatment for the
semiclassical echo modulation functions, ESC(2τ ) = E(τ,τ )
and ESC(τ,T ) = E(τ,T ,τ ), from which Eqs. (22) and (26) of
the main text result. In the semiclassical approximation and
within the multiple trapping model at α → ∞, Eqs. (B19)–
(B21) are related as

ESC(2τ ) = e−2ντ

[
1 + 2ν

∫ τ

0
e2νtF 2

0 (t)dt

]
, (C5)

ESC(τ,T ) = e−νT ESC(2τ ) + F 2
0 (τ )(1 − e−νT ), (C6)

detailed derivation of which will be given elsewhere [53]. Thus
ESC(2τ ) and ESC(τ,T ) are determined by F0(t). Note that the
first term in Eq. (C6) is the contribution of type R0 trajectories,
Fig. 11(a), while the last term is that of the type R1 trajectories,
Fig. 11(b).

In the regime of slow hopping, η ≡ ν/ωhf 
 1, a reason-
ably good approximation can be made for F0(t) from Eq. (C1)
iteratively. To the linear order in η, one gets

F0(t) = e−νt

[
g0(t) + ν

∫ t

0
dt ′g0(t ′)g0(t − t ′)

]
. (C7)

Using this in Eq. (C5) leads to Eq. (22) in the main text.
Equation (C7) also shows that the decay of F0(t) is nearly
Gaussian and fast, so that for τ > 1/ωhf the last term in
Eq. (C6) can be neglected, and Eq. (26) in the main text can
be written.

In the fast hopping regime, η � 1, the Laplace transform
appears to be useful. One has

F0(t) = 1

2πi

∫ i∞

−i∞
ds est F̃0(s), (C8)

with F̃0(s) given by Eq. (C3) and the Laplace transform,

g̃0(s) =
√

π/2 ω−1
hf exp

(
s2/2ω2

hf

)
erfc(s/

√
2ωhf), (C9)

where erfc(x) is the complementary error function. F̃0(s)
is holomorphic on the complex half-plane, Re(s) < 0, ex-
cluding the simple poles determined by the denominator
of Eq. (C3). A thorough analysis of the inverse Laplace
transform (C8) shows that F̃0(s) has one real negative pole,
s0, and infinitely many complex poles [53]. Also, for η �
1, the contribution of s0 dominates in the integral (C8),
giving F0(t) = −(ω2

hf/νs0) exp(s0t). From the large-argument
asymptote of Eq. (C9) one finds s0 = −ω2

hf/ν, leading to
the well-known result in the motional narrowing regime,
F0(t) = exp(−ω2

hf t/ν). With this F0(t), the integral term in
Eq. (C5) is dominant, yielding ESC(2τ ) = exp(−2 ω2

hf τ/ν).
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