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Delocalized carriers in the t- J model with strong charge disorder
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We show that electron-magnon interaction delocalizes the particle in a system with strong charge disorder.
The analysis is based on results obtained for a single hole in the one-dimensional t-J model. Unless there
exists a mechanism that localizes spin excitations, the charge carrier remains delocalized even for a very strong
charge disorder and shows subdiffusive motion up to the longest accessible times. Moreover, upon inspection of
the propagation times between neighboring sites as well as a careful finite-size scaling, we conjecture that the
anomalous subdiffusive transport may be transient and should eventually evolve into a normal diffusive motion.
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I. INTRODUCTION

The many-body localization (MBL) represents a promising
concept of macroscopic devices which do not thermalize
[1–18] and may store quantum information [14,19]. Most of
the inherent properties of MBL systems have been investigated
using the generic one-dimensional (1D) disordered models of
interacting spinless fermions [20–32]. Emerging characteristic
features of MBL systems are the existence of localized
many-body states in the whole energy spectrum that lead
to vanishing of dc transport at any temperature [33–40],
Poisson-like level statistics [41], and the logarithmic growth of
entanglement entropy [5,7,42–46]. Numerical calculations of
dynamical conductivity [35,38,39] and other dynamic proper-
ties based on the renormalization-group approach [7,36,47,48]
indicate that in the vicinity of the transition to the MBL
state the optical conductivity shows a characteristic linear
ω dependence. In the presence of strong disorder but still
below the MBL transition, several studies predict subdiffusive
transport [35,36,49,50].

The presence of MBL has been rigorously shown so far
only for the transverse-field Ising model [51], whereas indis-
putable numerical evidence is available mostly for interacting
spinless fermions or equivalent spin Hamiltonians. However,
in real systems, the particles are coupled to other degrees
of freedom, and this coupling may be important not only
for solids but also for cold-atom experiments. In particular,
recent experiments [4,52,53] address the problem of MBL
in the spin-1/2 Hubbard model, where charge carriers are
coupled to spin excitation. On the other hand, well-established
results [54,55] indicate that phonons destroy the Anderson
localization; hence, they should destroy the MBL phase as
well. Nevertheless, in contrast to phonons, the energy spectrum
of many other excitations in the tight-binding models (e.g., the
spin excitations) is bounded from above. It remains unclear
whether strict MBL survives in the presence of the latter
excitations. Solving this problem is important for answering
the fundamental question of whether MBL exists also in more
realistic models, including the Hubbard model [56,57]. The
preliminary numerical results suggest that charge carriers may
indeed be localized despite the presence of delocalized spin
excitations [57]. Nonetheless, studies for larger systems and
longer times are needed in order to eliminate the transient or
finite-size (FS) effects.

We study the dynamics of a single charge carrier coupled
to spin excitations which propagates in a system with a charge
disorder. Our studies are carried out for the 1D t-J model,
which should be considered as a limiting case of the Hubbard
model for large on-site repulsion. The common understanding
of MBL is that it originates from a (single-particle) Anderson
insulator [58–61] which persists despite the presence of
carrier-carrier interaction [54,62]. The choice of a single
particle (hole) in the t-J model eliminates the latter interaction;
hence, it should act in favor of localization. Note, however,
that nontrivial many-body physics emerges from interaction
between the spin excitations. The dimension of the Hilbert
space in the present studies is of the same order as in the
commonly studied model of spinless fermions; hence, the
numerical results are obtained for rather large systems and
long times far beyond the limitations of the Hubbard model.

We demonstrate that localization of charge carriers is
possible only for localized spin excitations, whereas their
dynamics is subdiffusive even for very strong disorder (or
diffusive for weak disorder) when spins are delocalized. The
latter result resembles the dynamics of interacting spinless
fermions for strong disorder but still below the MBL transi-
tion [35,36,49,50]. Here, we demonstrate that the subdiffusive
behavior originates from an extremely broad distribution of
propagation times for transitions between the neighboring
lattice sites. However, this distribution may also suggest
that the subdiffusive behavior is a transient yet long-lasting
phenomenon. The transition to the normal diffusive regime
takes place at extremely long times and cannot be observed
directly from numerical data.

II. MODEL AND NUMERICAL METHODS

We study a single hole (a charge carrier) in the 1D t-J
model on L sites with periodic boundary conditions

H =
∑
i,σ

[−thc
†
i+1σ ciσ + H.c. + εiniσ ] +

∑
i

Ji
�Si+1 �Si, (1)

where c
†
iσ creates an electron with spin σ at site i, �Si is

the spin operator, and niσ = c
†
iσ ciσ . The states with doubly

occupied sites are excluded (ni↑ni↓ = 0), and for simplicity,
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the hopping integral is taken as the energy unit (th = 1). The
on-site potentials εi are random numbers that are uniformly
distributed in the interval [−W,W ]. In the special case Ji = 0,
the spins are frozen (at least in the 1D case), and the hole
dynamics should be the same as in the 1D Anderson insulators.
For the same reason, the hole is localized also in the disordered
t-Jz model, where spin excitations are frozen.

Considering the Hamiltonian (1) as a large-U limit of the
Hubbard model, one finds that each Ji depends on εi and εi+1.
In order to discuss also a more general case of localized spin
excitations, Ji and εi will be set independently of each other.

The transport properties will be discussed mainly from the
numerical results for the time propagation of pure states |ψt 〉.
We take |ψ0〉 = |σ1 · · · σj−10j σj+1 · · · σL〉 as an initial state,
where the position of the hole j and the spin configuration,
σi =↑ , ↓, are chosen randomly. The latter choice means that
the system is at infinite temperature. The essential information
about the charge dynamics will be obtained from the hole
density ρi(t) = 〈ψt |1 − ni↑ − ni↓|ψt 〉. Note that ρi(t) � 0
because states with doubly occupied sites are excluded and∑

i ρi(t) = 1 because the system contains only a single hole.
Then, one can define also the mean-square deviation of the
hole distribution [63],

σ 2(t) =
∑

i

i2ρi(t) −
[∑

i

iρi(t)

]2

. (2)

Throughout the paper, the averaging over the charge disorder
will be marked by a subscript d. We typically take 103

realizations of the disorder.
In order to gain a deeper understanding of the anomalous

charge dynamics, numerical data for the t-J model will be
compared with results for a classical particle which randomly
walks on the same 1D lattice. As a toy model, we employ
the continuous-time random walk in which a particle waits
for a time τ on each site i before jumping to the neighboring
site i − 1 or i + 1. This model is well understood for various
distributions of the waiting times f (τ ) [64]. In particular,
if the average waiting time is finite, τ̄ = ∫

dτ f (τ )τ < ∞,
the model shows at long times normal diffusion, σ 2(t) ∝ t .
However, for a broad distribution of waiting times f (τ ) ∼
1/τμ+1, with 0 < μ < 1, τ̄ becomes infinite, and one obtains
a subdiffusive transport with σ 2(t) ∝ tμ (see [64,65]).

III. RESULTS

First, we apply the Lanczos propagation method [66] and
study a system with weak charge disorder and homogeneous
Ji , where one expects normal diffusion, i.e., σ 2

d (t) ∝ t . Such
linear behavior is indeed visible in Fig. 1(a) but only for short
times. In order to explain the subsequent breakdown of this
linear trend we have studied the toy model for exactly the
same lattice and p(τ ) ∝ θ (τ0 − τ ). The average waiting time
τ̄ = τ0/2 has been tuned to fit the linear regime in the t-J
model. Figures 1(a) and 1(b) show clear similarity between
σ 2(t) in both models. However, in the toy model any departure
from the normal diffusion must originate from the FS effects.
Due to these effects, the numerical results are of physical
relevance only for small values of the mean-square deviation
σ 2

d < σ 2
max ∼ 10.
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FIG. 1. (a) and (c) The mean-square deviation of the spatial
distribution of holes vs time obtained for Ji = 1. Note logarithmic
scale in (c). (b) Results for the toy model which reproduces the
short-time linear regime in (a). (d) αd obtained from fitting σ 2

d (t) ∝ tαd

for L = 16 and various J and W .

In Figs. 1(c) and 1(d) we present results for the central
problem of this work, i.e., for the hole dynamics in the t-J
model with strong charge disorder. The power-law dependence
σ 2

d (t) ∝ tαd is evident over at least two decades of time, and
the transport is clearly subdiffusive. The exponent αd 
 1/2
for W = 6 and decreases further for stronger charge disorder.
Within the studied time window σ 2

d � σ 2
max. Therefore, we

do not expect any essential influence of the FS effects. The
latter hypothesis is confirmed by numerical results on a larger
system (L = 20) where only a slightly larger value of the
mean-square deviation is obtained (W = 6), also shown in
Fig. 1(c). Next, we have repeated the same calculations for
various (homogeneous) exchange interactions Ji = J and
various disorder strengths. For each case we have obtained
αd , and these exponents are shown in Fig. 1(d) as a function
of J/W . Nearly overlapping points on this plot suggest that
αd = αd (J/W ). Then, the charge localization (αd = 0) should
occur only for W → ∞ or for J → 0. Localization in the
former case is rather obvious, whereas the latter one is just the
Anderson insulator. Otherwise, the transport is subdiffusive or
diffusive.

The essential question is whether the model in Eq. (1) may
show charge localization under some particular conditions. In
the following we demonstrate that such localization is indeed
possible, provided that spin excitations are also localized, i.e.,
when carriers are coupled to a reservoir which can absorb only
limited energy [67]. In order to localize the latter degrees of
freedom we put Ji = 0 for every second or every fourth site
i; otherwise, we keep Ji = 1. Results are shown in Fig. 2(a)
together with the data for the subdiffusive case (Ji = J = 0.5)
and the Anderson insulator (Ji = J = 0). Within the time
window that is accessible to our numerics, we do not observe a
complete saturation of σ 2

d (t) except for the Anderson insulator.
However, since the increase is visibly slower than logarithmic,
we conclude that that hole is indeed localized. An extremely
slow charge dynamics within the localized regime is not very
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FIG. 2. (a) σ 2
d for L = 16, W = 6 and various spatial distribu-

tions of Ji . The latter quantity takes the value denoted by J except
for every second or every fourth site i, where Ji = J2nd = 0 or
Ji = J4th = 0, respectively. (b) The 1/L scaling of the exponent αd for
homogeneous Ji = 1. (c) and (d) Cumulative distribution functions,
Eq. (4), for homogeneous Ji = 1. Results in (a) are obtained from
diagonalization of the Hamiltonian in the full Hilbert space, while in
(c) and (d) we used the functional space.

surprising. It has previously been reported also for the MBL
phase in a system of interacting spinless fermions [68]. Note
that the spatially averaged values of the exchange interaction
〈Ji〉i are the same for the subdiffusive system (Ji = J = 0.5)
and for the localized case (Ji = 0 and 1 for odd and even
i, respectively). Therefore, the average energy or the average
coupling strength of the magnetic excitations is not essential
for the charge localization. The finite localization length of
magnetic excitations seems to be the key factor that enables
localization of charge carriers.

The question arises whether the spin excitations have been
artificially delocalized by introducing homogeneous exchange
interaction J . When deriving the t-J Hamiltonian from the
disordered Hubbard model, one obtains also inhomogeneous
J . For the neighboring sites i and j one obtains [69]

Jij = 4t2
hU

U 2 − (εi − εj )2
, (3)

where U is the Coulomb interaction in the Hubbard model.
It is clear that Jij in the disordered system is not smaller
than J = 4t2

h/U obtained for the homogeneous case. Since the
disorder in the Hubbard model always enlarges the exchange
interaction, such disorder alone should not localize the spin
excitations. As follows from Eq. (3), elimination of the doubly
occupied states is possible for U > 2W . In the case of strongly
disordered systems (e.g., W ∼ 10), the values of Jij obtained
directly from Eq. (3) are too small to be studied numerically.
It is the reason why we do not apply the latter equation in the
present work.

From now on, we study the details of the subdiffusive
transport in a system with homogeneous exchange interaction
and, for simplicity, we set Ji = 1. Figure 2(b) shows the
exponents αd for various L. While the FS effects are not

essential, they are not negligible either. Therefore, it is
important to employ a method which allows to study even
larger systems. In the case of a single carrier instead of
diagonalizing the Hamiltonian in the full Hilbert space we use
the limited functional Hilbert space [70]. Such an approach
has successfully been applied to studies on the real-time
dynamics of t-J and Holstein models [71–74], and it is
briefly explained also in Appendix A. In this approach one
accounts for all spin excitations in the closest vicinity of the
hole but only for selected more distant excitations. In contrast
to the previous method, L does not represent the geometric
size of the lattice but the maximal distance between the hole
and the spin excitation. However, in both approaches one is
interested in the limit L → ∞, and the corresponding 1/L

scaling of αd is shown in Fig. 2(b). Both methods obviously
give the same extrapolated value of the exponent αd . However,
diagonalization in the functional Hilbert space shows much
weaker FS effects than the other approach.

Next, we check whether possible isolated cases with a
localized hole have been overlooked when discussing results
averaged over the charge disorder. To exclude the latter
possibility, we have fitted σ 2(t) ∝ tα independently for each
realization of the disorder, thus generating the distribution of
the exponents f (α). The calculations have been carried out for
times t � 103. In Figs. 2(c) and 2(d) we show the cumulative
distribution function,

Fα =
∫ α

0
dα′f (α′), (4)

which vanishes for small α according to the power law αμ.
As shown in Fig. 2(d), μ depends on the disorder strength but
seems to be free from the FS effects. Therefore, we conclude
that Fα→0 = 0 also in the thermodynamic limit. In contrast,
Fα→0 = F0 > 0 would indicate localization. For delocalized
spin excitations in the t-J model, the charge dynamics may
be very slow, but the hole is never localized, at least not in the
studied time window (0,103).

It has recently been argued that the SU(2) symmetry
precludes conventional MBL [75–77]. In order to show that the
latter mechanism is not responsible for delocalization of holes
in the present system, we have considered anisotropic spin-spin
interaction. Results in Appendix B show that breaking the
SU(2) symmetry does not lead to the charge localization even
for W = 20.

Finally, we show that the hole dynamics in the t-J model
with strong charge disorder may be qualitatively understood by
studying the classical toy model. The properties of the latter
model are determined by the distribution of waiting times;
hence, one should first specify which quantity obtained for
the t-J model bears the closest resemblance to the classical
waiting time. Since the toy model describes the sequence of
hoppings between the neighboring sites, in the t-J model
we define τ as the shortest time for which the mean-square
deviation (2) equals the lattice constant, σ 2(τ ) = 1. Such a
τ is well defined for each realization of the charge disorder,
and one obtains the distribution of the waiting times f (τ ) in
the quantum model. Since we are particularly interested in the
large-τ properties of f (τ ), we study the integrated distribution
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FIG. 3. (a) Integrated distribution of waiting times, Eq. (5), for
L = 28 and various disorder strengths. The dashed line marks the
border between diffusive and subdiffusive regimes in the toy model.
(b) The same but for W = 6 and various L. Here, the dashed line
shows the best fit. (c) α2

d for the t-J model with L = 28 (labeled
“data”) and the toy model. The latter results were obtained for the
distribution of waiting times shown in (b) as the best fit. (d) σ 2

d for
various L together with the linearly extrapolated value 1/L → 0.
Results were obtained from diagonalization of the t-J Hamiltonian
in the limited functional Hilbert space.

function ∫ ∞

τ

dτ ′f (τ ′) = 1 − Fτ , (5)

where Fτ is the cumulative distribution. For the algebraically
decaying f (τ ) ∼ 1/τμ+1 one gets 1 − Fτ ∝ 1/τμ, where μ =
1 is the threshold value for the subdiffusive long-time behavior
of the toy model.

Figure 3(a) shows the integrated distribution of the waiting
times obtained in the t-J model for the largest accessible
systems and various strengths of the charge disorder. This
distribution closely follows predictions of the toy model. In
a system showing normal diffusion (W = 2) the distribution
is very narrow, 1 − Fτ decays much faster than 1/τ , and
the average waiting time is quite short τ̄ ∼ 1. In strongly
disordered subdiffusive systems 1 − Fτ decays slower than
1/τ , and τ̄ should be very large, if not infinite. Therefore,
our results strongly suggest that the subdiffusive transport
originates from a very broad distribution of the waiting times.
A broad distribution of the propagation times between the
neighboring lattices sites has its origin in the strength of
the charge disorder, which is by far the largest energy scale
in the Hamiltonian. However, large disorder is frequently
used in studies of systems showing MBL. Therefore, the
present explanation of the subdiffusive transport may apply
also to other strongly disordered systems with many-body
interactions [35,36,49].

The integrated distributions of waiting times shown in
Figs. 3(a) and 3(b) suggest that in the thermodynamics limit
and for sufficiently large τ the decay of 1 − Fτ may eventually
become faster than 1/τ . Then, the average waiting time will
be huge but finite, and the subdiffusive transport should be

a long-lasting yet transient phenomenon. The time scale for
the onset of the normal diffusion is far beyond the reach of
any direct numerical studies of interacting quantum systems.
However, such a long-time regime can still easily be studied in
the toy model. In order to check this scenario, we have fitted
numerically obtained results for the waiting times of the t-J
model, as shown in Fig. 3(b), and used this fit in the toy model.
The resulting mean-square deviation of the particle distribution
is shown in Fig. 3(c), confirming the onset of normal diffusion
at t � 104 for W = 6 and t � 105 for W = 8.

The conjecture with respect to the transiency of the
subdiffusive transport may also be supported by the analysis
of numerical results for the t-J model without invoking the toy
model. As shown in Fig. 3(b), the width of the distributions of
the waiting times decreases when L increases. Therefore, one
may expect that properly carried out FS scaling may reveal at
least a clear tendency for the transition to normal diffusion. In
Fig. 3(d) we show results for W = 8 and various L together
with σ 2

d (t) obtained from a linear in 1/L extrapolation to
1/L → 0. These extrapolated results together with the specific
size dependences found for the exponents αd [Fig. 2(b)], the
cumulative distribution function Fα [Figs. 2(c) and 2(d)], and
the distribution of the waiting times [Fig. 3(b)] consistently
suggest that in the thermodynamic limit the transport may be
normal-diffusive in the long-time regime. However, the related
diffusion constant Dnorm is extremely small,

σ 2
d (t) = 2Danomtαd + 2Dnormt, αd < 1, (6)

and the subdiffusive dynamics prevails up to very long times
tnorm ∼ (Danom/Dnorm)1/(1−αd ). Such a time scale is too large
to study directly within the present numerical approach.
Consequently, the onset of the normal diffusion for long
times should be considered the simplest but still conjectural
explanation of our results. In order to confirm this hypothesis,
one should develop an approach that allows one to study the
dynamics of larger quantum systems for much longer times.

IV. CONCLUSIONS

We have studied the dynamics of a single hole (charge
carrier) in the t-J model with strong charge disorder. Our
main result is that localization of the charge carriers should
be accompanied by localization of the spin degrees of
freedom; otherwise, the charge dynamics is subdiffusive up
to the longest times accessible to numerical calculations.
This holds true also for t-J -like Hamiltonians with broken
SU(2) symmetry. However, based on the distribution of
propagation times between the neighboring sites and after
careful finite-size scaling of the mean-square deviation, we
conjecture that the subdiffusive transport is transient and may
eventually be replaced by a normal diffusion. According to
the latter conjecture, the delocalized magnetic excitations
in the thermodynamic limit become an infinite heat bath,
which, similar to electron-phonon coupling [54,55], restores
nonzero albeit very small conductivity. Such an expectation
is also supported by Refs. [78,79]. While this conjecture
requires further study, the exceptionally broad distribution
of propagation times indicates that the utmost care should
be taken when formulating the claims about the asymptotic
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dynamics based on numerical results obtained for times ∼ 103

of the inverse hopping integrals.
We believe that our qualitative claims should also be valid

for other concentrations of charge carriers since each carrier
is coupled to an infinite set of magnetic excitations, provided
that the latter excitations remain delocalized. Contrary to this,
localized spin excitations may absorb only limited energy;
hence, sufficiently strong disorder in the charge sector localizes
the carriers. Our studies have been carried out only for a single
hole; hence, we have neglected the influence of charge disorder
on the spin dynamics. While the results in Ref. [57] suggest
that the charge disorder does not localize the spin degrees
of freedom, the spin dynamics may be much slower than in
systems without the charge disorder. However, an essential
open problem is which results reported here for the t-J model
also remain valid for the Hubbard model [56,57]. Both models
are equivalent, provided that the Hubbard repulsion is stronger
than all other energy scales, including the disorder strength.
Therefore, in strongly disordered systems the equivalence of
both models is restricted to very strong repulsions when the
coupling between charge carriers and spin excitations is too
weak to study with purely numerical methods. For strong
disorder and moderate interactions both models may lead to
qualitatively different results.
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APPENDIX A: LIMITED FUNCTIONAL HILBERT SPACE
FOR THE t- J MODEL

Generators of the limited functional Hilbert space (LFHS)
are derived from off-diagonal parts of the Hamiltonian (1) in
the main text,

O1 =
∑
i,σ

c
†
i+1σ ciσ + H.c.,

O2 =
∑

i

S+
i+1S

−
i + S−

i+1S
+
i . (A1)

The generating algorithm starts from a hole at a given position,
e.g., i = 0 in a Néel state of spins, |ψ (0)〉 = c0σ |Neel〉. We then
apply the generator of basis L times to generate the whole FHS:

{|ψ (l)〉} = (O1 + Õ2)l|ψ(0)〉 (A2)

for l = 0, . . . ,L. The operator Õ2 acts only on pairs of spins
that due to hole motion deviate from the original Néel state.
L represents the largest distance that the hole travels from
its original position. In the case of LFHS we impose open
boundary conditions. Sizes of LFHS span from Nst ∼ 4000
for L = 16 up to 5 × 105 for the largest L = 28 used in our
calculations. While even the largest size of LFHS seems rather
small when performing exact-diagonalization procedures, that
is not the case when performing time propagation as well as

 0.1
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L=16, W=20, J=1

σ2 d

t

isotropic exchange
anisotropic exchange

FIG. 4. Disorder-averaged mean-square deviations [see Eq. (2)
in the main text] vs time for isotropic (J z = J = 1) and anisotropic
(J z = 2,J = 1) exchange interactions.

sampling over more than 1000 samples. To achieve sufficient
accuracy of time propagation, we have used time-step size
�t = 0.02 and performed up to 5 × 105 time steps. The
advantage of LFHS over the exact-diagonalization approach is
that it significantly reduces the Hilbert space by generating spin
excitations in the proximity of the hole, which in turn allows
for investigations of larger system sizes. After completing
generation of LFHS, we time evolve the wave function
using the Hamiltonian in Eq. (A1) while taking advantage
of the standard Lanczos-based diagonalization technique.
The finite-size scalings of various quantities with increasing L

are presented in Figs. 2(b), 3(b), and 3(d) in the main text. The
method has been successful in computing static and dynamic
properties [70] as well as nonequilibrium dynamics [71–73]
of correlated electron systems.

APPENDIX B: HOLE DYNAMICS IN THE ANISOTROPIC
t- J MODEL WITH STRONG CHARGE DISORDER

Our main result concerns the diffusive or subdiffusive
charge transport which persists in the t-J model despite the
presence of very strong charge disorder, W ∼ 20, unless the
spin excitations are localized. It has recently been argued
that the SU(2) symmetry precludes conventional many-body
localization [75–77]. Hence, it is important to check whether
the SU(2) invariance is responsible for the robust delocalized
nature of charge carriers also in the t-J model. In order to
answer this question, we study a modified version of the t-J
model,

H =
∑
i,σ

[−thc
†
i+1σ ciσ + H.c. + εiniσ ]

+
∑

i

[
J
(
Sx

i+1S
x
i + S

y

i+1S
y

i

) + J zSz
i+1S

z
i

]
. (B1)

When this version is compared to the Hamiltonian (1) in the
main text, we have introduced anisotropic but site-independent
exchange interaction such that the SU(2) invariance is broken
for J z �= J . Otherwise, we use the same notation as in the
main text.
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In Fig. 4 we compare the disorder-averaged mean-square
deviations σ 2

d (t) obtained for isotropic (J z = J = 1) and
anisotropic (J z = 2,J = 1) systems from the Lanczos prop-
agation method [66]. Despite a very strong charge disorder,
W = 20, breaking the SU(2) symmetry does not lead to lo-

calization of charge carriers. On the contrary, the subdiffusive
transport σ 2

d (t) ∝ tαd is clearly visible in both cases, and the ex-
ponent αd is even slightly larger in a system with broken SU(2)
symmetry. The latter result indicates that αd is influenced by
increasing J z rather than by breaking the SU(2) symmetry.
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[49] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive and
Subdiffusive Spin Transport in the Ergodic Phase of a Many-
Body Localizable System, Phys. Rev. Lett. 117, 040601 (2016).

[50] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman,
U. Schneider, and I. Bloch, Evidence for griffiths-type dynamics
near the many-body localization transition in quasi-periodic
systems, arXiv:1612.07173.

[51] J. Z. Imbrie, Diagonalization and Many-Body Localization for a
Disordered Quantum Spin Chain, Phys. Rev. Lett. 117, 027201
(2016).

[52] S. S. Kondov, W. R. McGehee, W. Xu, and B. DeMarco,
Disorder-Induced Localization in a Strongly Correlated Atomic
Hubbard Gas, Phys. Rev. Lett. 114, 083002 (2015).

[53] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I. Bloch,
and U. Schneider, Coupling Identical 1D Many-Body Localized
Systems, Phys. Rev. Lett. 116, 140401 (2016).

[54] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-insulator
transition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. (N.Y.) 321, 1126
(2006).

[55] N. F. Mott, Conduction in glasses containing transition metal
ions, J. Non-Cryst. Solids 1, 1 (1968).

[56] R. Mondaini and M. Rigol, Many-body localization and ther-
malization in disordered Hubbard chains, Phys. Rev. A 92,
041601(R) (2015).
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[69] M. M. Maśka, Ż. Śledź, K. Czajka, and M. Mierzejewski,
Inhomogeneity-Induced Enhancement of the Pairing Interaction
in Cuprate Superconductors, Phys. Rev. Lett. 99, 147006
(2007).
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