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Frequency-dependent mechanical damping in alloys
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We perform oscillatory shear simulations to determine the loss modulus for three solids with identical
interaction yet distinct structures: ordered, random, and glassy alloys. Random and glassy alloys show more
pronounced high-frequency loss in the THz regime than the ordered alloy. Ordered and random alloys exhibit
a power-law decay in damping strength as frequency decreases over nearly five decades. Glassy alloy, with a
limited frequency range of power-law decay, retains significant damping at low frequencies extending down to
∼100 MHz due to slow irreversible deformation of local clusters.
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I. INTRODUCTION

Structure has traditionally played a very important role in
determining a host of material properties that can be exploited
to engineer materials with novel applications. Alloys, includ-
ing ordered and random alloys, have been studied intensely
for several decades [1,2], and their crystal structure-property
relations have been well understood in general. Equally
important has been the study of noncrystalline materials (such
as glasses) for a wide range of structural and other applications
[3,4]. The contrast in structure between the three classes of
materials (ordered, random alloys, and glasses) confers diverse
mechanical, thermal, and optical properties [5].

In this paper, we focus on mechanistic understanding of
mechanical damping in alloys with vastly different structures.
Mechanical damping, referred to alternately as dissipation
[6] and internal friction [7], can be broadly understood as
a measure of energy dissipated during a particular mode of
deformation and has been a been a subject of focus recently.
Our paper is motivated by the fact that frequency-dependent
damping is an important characteristic of materials, yet it is
poorly understood for hard inorganic materials. Mechanisms
for damping and the inherent frequency response are strongly
governed by the structural makeup of materials. In the low-
frequency range, particularly in the case of soft materials,
damping originates from structural relaxation and naturally
depends on the frequency [8], as typically demonstrated by
dynamical mechanical analysis [9]. At the higher frequen-
cies, up to GHz, large quality factors (low damping) are
desired for micromechanical and nanomechanical resonators
[10–12]. Finally, in the THz range, which is relevant, e.g.,
for phononic interconnects [13], and in the high-frequency
sound attenuation [13–15], damping arises from anharmonic
phonon-phonon coupling [16,17] and is in the so-called
Akhiezer regime [18].

While structural effects on mechanical properties under
constant strain or stress has been extensively studied with
atomic-level simulations in crystalline materials and inorganic
glasses [4], a characterization of viscoelastic damping proper-
ties by such simulations is limited. Here, we study frequency-
dependent damping mechanisms in materials representative
of metallic alloys described by the same interatomic potential
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but with widely different structures, namely, ordered, random,
and glassy alloys. We employ nonequilibrium (NE) molecular
dynamics simulations to impose oscillatory shear deformation
(referred to alternatively as “mechanical spectroscopy” in
literature [6,7]) at frequencies spanning five decades.

II. SIMULATION MODELS AND METHODOLOGY

A. Model structures and interaction potential

We employ the Lennard-Jones (LJ) potential to describe
binary, equiatomic ordered, random, and glassy alloys. The
energy interaction parameter, ε, and the length scale parameter,
σ, parametrize the interatomic energy, E = 4ε [(σ/r)12 −
(σ/r)6]. The parameters used for the two components sys-
tems are as follows: ε11 = 0.15 eV and σ11 = 2.7 Å,ε22 =
0.5 ε11,ε12 = 1.5 ε11, σ22 = 0.91 σ11, and σ12 = 0.95 σ11. The
masses for the two species are made equal to 46 g/mol to simu-
late a system comparable to Ni-Nb 50-50 alloy [19,20]. These
parameters are inspired from the classic Kob-Anderson model
for binary LJ glass [21,22], with two notable differences:
(a) Our system is equiatomic compared to a 80:20 atomic
ratio in the original work, and (b) the σ values are modified
slightly to yield stable ordered, random, and glass structures
for the same set of parameters. The original Kob-Anderson
parameterization yields an unstable (against glass formation)
random alloy phase.

The ordered structure consists of the two atom types placed
in a face-centered-cubic (fcc) lattice in alternate basis positions
with the simulation cell face oriented with the (100) family
of planes. Random structure is generated from a pure fcc
crystal (that is, type 1 atoms) by randomly switching 50%
of atoms to type 2. Glass is generated from the random phase
by a melt-quench process involving heating from 300 K to
1500 K, equilibrating and quenching back to 300 K under
zero hydrostatic pressure using a quench rate of 6.8 K/ps. Pair
correlation functions for all three structures are shown in Fig. 1.
To check for stability of the glass structure, we performed an
11 ns constant moles, constant volume, constant energy (NVE
ensemble) simulation, and no change in the pair correlation
function was observed at the end of the simulation. We note
that the pair correlation function for the glass is similar to the
original Kob-Anderson glass [22], and yet the same interaction
parameters can describe stable ordered and random alloys as
well.
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FIG. 1. Pair correlation function for ordered, random, and glassy
alloys. For the glassy alloy, g(r) remained unchanged over a long
NVE simulation (11 ns), indicating stability.

Our standard simulation cell consists of 32000 atoms in
a cubic simulation cell (box length ∼8.2 nm) with periodic
boundary conditions applied along all three directions. Model
structures were initially equilibrated at 300 K and at zero exter-
nal pressure, before characterizing damping via NE, oscillatory
shear simulations in the constant moles, constant volume,
constant temperature (NVT) ensemble. All simulations were
performed with a timestep of 0.44 fs using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
simulation package [23]. Temperature was controlled with a
Nosé-Hoover thermostat [24,25] with a damping constant of
110 fs.

B. Physical characteristics of models

We have characterized the physical properties of the
three model solids, including the stress-strain response under
steady-state shear (to ascertain the elastic limit and shear
moduli), the melting point of ordered and random alloys,
and the glass transition temperature. Elastic limit for each
solid was calculated from the linear portion of the shear
stress-strain curve under a constant strain rate (=10−3 ps−1)
shear deformation, as shown in Fig. 2, where normalized

FIG. 2. Shear stress-strain plots for ordered, random, and glass
alloys for determination of the elastic limit.

TABLE I. Elastic limit and shear modulus for ordered, random,
and glassy alloys under a constant strain rate shear deformation.

System Elastic limit (%) Yield stress (GPa) Shear modulus (GPa)

Ordered 13.2 12.0 90.9
Random 9.9 6.4 64.6
Glass 4.2 1.0 23.8

shear stress (τxy/τxy, max) and shear strain (γxy) are plotted.
Values of yield stress (stress at the elastic limit) and the
corresponding shear moduli are tabulated in Table I. The
glassy alloy exhibits ∼2 to 3 times lower elastic limit and ∼3
to 4 times lower shear modulus compared to the crystalline
counterparts. We also note that ordered and random alloys
exhibit yield stresses that are significantly larger (by about
12 and 6.4 times, respectively) compared to glass. The (100)
planes thus constitute a strong orientation with respect to shear.
Indeed, the large anisotropy for the crystals could result in
quantitative differences in damping with respect to orientation
as the coupling between system and the external perturbation
dictates the extent of damping; however, qualitatively, the
frequency dependence will still be expected to be similar. Glass
also undergoes significant plastic deformation beyond a strain
of ∼6%; however, the applied strain amplitude of 2% during
oscillatory shear is well within the elastic limit of all three
structures.

The thermodynamic melting point for ordered and random
alloys were estimated by gradually heating the solid phase in
a slab geometry to mimic melting from a free surface, thus
avoiding superheating due to the phase change nucleation
barrier [26]. The solid phase was heated from T ∼ 1 K to
T ∼ 2250 K in steps of ∼ 20 K. At the end of each heating
step, constant temperature equilibration was performed for
about 20 ps. Shown in Fig. 3(a) are the results for estimation of
melting points. From the jump in potential energy, the melting
points for ordered, and random alloys are found to be in the
range 1000–1200 K.

To calculate the glass transition temperature (Tg), we heat
the original random alloy to 1500 K and equilibrate the
melt. Following this, the melt is quenched to a temperature
of 300 K under zero external pressure, with a quench rate
of 6.8 K/ps, as shown in Fig. 3(b). Tg , as estimated from
the meeting point of tangents drawn from either ends of the
volume-versus-temperature profile, is about 990 K.

C. Oscillatory shear methodology

A detailed description of the oscillatory shear deformation
methodology is presented in our previous work [27]. Briefly,
we apply a sinusoidal shear strain, γxy = γo sin(2πf t) at a
shear frequency, f, by tilting a face of the simulation cell
with a maximum amplitude, γo, of 2%. This strain is well
below the elastic limit (under shear) for the ordered, random,
and glass structures, which were found to be approximately
13.2%, 9.9%, and 4.2%, respectively (refer to Sec. II B. and
Fig. 2).

During shear, the virial stress component (τxy) is computed
and fitted to a sinusoidal profile at the same frequency as that
of the applied strain but with a phase shift, δ. This allows to
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FIG. 3. (a) Variation of potential energy with temperature during
slow melting of ordered and random alloys. (b) Variation of
volume with temperature during quenching of melt. Glass transition
temperature is estimated to be ∼990 K.

determine the storage (G′) and loss moduli (G′′) constituting
the complex shear modulus, G∗ = G cos(δ) + iG sin(δ),
where G = τxy, max/γxy, max. All simulations were performed
at a temperature of 300 K, which is well below the glass
transition temperature of 990 K (refer to Sec. II B.). At each
frequency, shear deformation is averaged over multiple cycles,
N , to ensure stationarity in the computed moduli. Sample
high-frequency (f ∼ 1 THz) stress-strain data obtained from
oscillatory shear simulations for all three structures are shown
in Fig. 4(a), where stress shown is averaged over 25 shear
cycles. Atomistic snapshots for all three structures are shown
in Fig. 4(b). To clearly depict the phase shift, the stress data
are scaled to have the same amplitude as the strain. As seen in
Fig. 4(a), the glassy alloy exhibits the largest δ of 32°, random
alloy has δ = 11◦, while ordered structure shows negligible δ.
As expected, the opposite is the case for the stress amplitude,
which are 0.87 GPa, 1.3 GPa, and 1.7 GPa for glass, random,
and ordered alloy structures, respectively. We are primarily
interested in the dependence of loss modulus, G′′ = G sin(δ),
on the structure and shear frequency, and loss modulus is used
synonymously with mechanical damping in the rest of the text.

III. RESULTS AND DISCUSSION

A. Frequency-dependent loss moduli

Figure 5(a) shows the loss modulus as a function of shear
frequency for the three structures. For random and glassy

FIG. 4. (a) Averaged shear stress, τxy (solid, colored lines),
and shear strain, γxy (dotted line), profiles for shear at frequency,
f ∼ 3.86 THz, for ordered, random, and glassy structures under NVT
conditions. Stress data for the three structures have been normalized
to show the effect of phase shift (indicated) clearly. (b) Atomistic
snapshots of all three structures (side view).

alloys, data were averaged for three independent structures. In
the high-frequency regime (f >∼ 0.3 THz), the loss moduli
data are averaged over N = 400 cycles of shear, while for
lower frequencies, data are averaged over 25 cycles. We note
that the computed loss moduli are largely cycle-independent
(error bars in Fig. 5 are less than marker size). This is more
clearly represented by Lissajous curves for variation of shear
stress as a function of strain over multiple shear cycles. In the
context of linear viscoelasticity, Lissajous curves are always
ellipses, with the limiting cases being a straight line for
perfectly elastic material (δ = 0◦) and a circle for perfectly
viscous material (δ = 90◦). In Fig. 6, Lissajous curves for
the three structures are plotted for a few intermediate cycles,
corresponding to a shear frequency close to the peak damping
frequency (f = 2.36 THz). Random and glassy alloys are
observed to be highly stationary, i.e., show cycle-independent
damping, while ordered alloy exhibits stationary damping
beyond N ∼ 80 cycles.

There are several key observations in the frequency de-
pendence of damping, as seen in Fig. 5(a). First, there is a
pronounced peak in damping in the random and glassy alloys in
the high-frequency range and two somewhat less pronounced
peaks in the ordered alloy. Second, upon lowering of frequency,
an approximate power-law behavior in the dependence of
loss modulus on shear frequency is observed [see Fig. 5(b)].
Finally, in the low-frequency range (extending down to ∼100 s
of MHz), loss modulus shows a constant power-law decay for
ordered and random alloys. For the glassy alloy, power-law
decay persists only in a limited frequency range spanning
about two decades in frequency (that overlap with the range
of vibrational frequencies), below which persistent, nearly
invariant damping is observed.
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FIG. 5. (a) Frequency-sweep simulations showing the variation of loss modulus for ordered, random, and glass structures under NVT
conditions. Data are averaged over 400 shear cycles in the high-frequency regime and over 25 cycles in intermediate and low frequencies. (b)
Same data for loss moduli as in (a) but in a log-log scale, depicting power-law scaling between loss modulus and frequency (solid lines indicate
power-law fits). Data are averaged over three independent structures for random and glassy alloys, and error bars are on the order of ∼0.1 GPa
(smaller than marker size).

B. Damping in high and intermediate frequencies (GHz to THz)

Damping in disordered solids, such as in the random and
glassy alloys in this paper, at frequencies overlapping with
vibrational frequencies can be understood from the harmonic
theory, as studied extensively in literature [6,28–31]. The plane
wavelike shear deformation excites vibrational eigenmodes
close to the driving frequency, which then act as damped
harmonic oscillators [6].

To provide an explicit evidence for the damping mecha-
nism, we performed oscillatory shear simulation where the
thermostat was turned off, and thus the structure exhibited
heating. We then characterized the frequency-dependent tem-
perature, T (f ), according to Eq. 1 [32],

T (f ) = TEQ

∫f +�f/2
f −�f/2 CNE(f ′)df ′

∫f +�f/2
f −�f/2 CEQ(f ′)df ′ . (1)

Here, CNE and CEQ are the velocity autocorrelation func-
tions computed during the NE shear and under equilibrium
(EQ), respectively. TEQ is the system temperature at EQ, equal
to 350 K. Numerical integration is performed over frequency
windows of length, �f , centered at frequency, f .

Figure 7 shows the temperature of modes for two driving
frequencies: (a) f = 1.44 THz and (b) f = 3.85 THz for
all three structures. For all shear simulations, the starting
temperature was fixed at 300 K, and velocity autocorrelation
data were accumulated till the temperature reached 400 K,
thereby yielding a mean temperature equal to TEQ = 350 K.
As seen from the figure, for both random and glassy alloys,
modes close to driving frequency have higher temperature.
This phenomenon was also observed by Damart et al. [6]
under oscillatory isostatic deformation of silica.

We note that no such clear correlation is found for the
ordered system, where damping is most likely due to anhar-
monic coupling between vibrational modes, as observed in
crystalline composites and superlattices [27]. Also interesting
is the observation of two peaks in damping exhibited by the
ordered alloy (Fig. 5), akin to damping in superlattices [27]; in
a way, one could consider the ordered alloy to be an extreme
case of superlattice with the repeating lattice period equal to
one unit cell.

Additionally, glasses exhibit an excess in vibrational den-
sity of states (VDOS) near the low-frequency band, referred
to commonly as the Boson peak [33], which gives rise to
anamolous thermophysical properties [34]. To quantify the

FIG. 6. Lissajous figures for (a) ordered, (b) random, and (c) glassy alloy at the maximum damping frequency of f = 2.36 THz. Data
represented by colored markers correspond to stress-strain values from different cycle numbers, N : red (•), N = 25; green (�), N = 200; and
blue (�), N = 400. Solid line indicates the averaged value over N = 400 cycles.
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FIG. 7. Temperature of vibrational modes during shear at two
frequencies, (a) f = 1.44 THz and (b) f = 3.85 THz, for ordered,
random, and glassy alloys. The driving frequency is indicated by a
solid line for each case. Modes closest to the driving are selectively
excited for random and glassy alloys.

position of Boson peak in the model glass in relation to the peak
in high-frequency damping, we computed the VDOS, g(f ),
and the reduced DOS, g(f )/f 2, from the Fourier transform
of the velocity autocorrelation function [35]. These are plotted
in Fig. 8, along with the computed loss moduli data from
Fig. 5(a). We used a system size of 256000 atoms for these
calculations in order to clearly observe the Boson peak. As

FIG. 8. Correlation between the vibrational density of states
(VDOS) of the glass and the computed loss moduli. (a) VDOS, g(f )
of glass calculated from velocity autocorrelation function; (b) reduced
VDOS computed as g(f )/f 2 showing a modest excess DOS (see
inset) around 0.1−0.3 THz that is associated with the Boson peak.
(c) Loss modulus (G′′) reproduced from Fig. 5(a) for comparison.

seen from the figure, the reduced VDOS shows a modest
excess around 0.1–0.3 THz, indicative of the Boson peak,
below which the quasielastic peak shows a divergent behavior,
as observed for many glasses [35]. Interestingly, we observe
that the loss modulus begins to increase only around the Boson
peak and reaches a maximum (around 4 THz) well above
the Boson peak. Moreover, the frequency dependence of loss
modulus [Fig. 8(c)] is seen to be approximately proportional
to the DOS, across the whole frequency spectrum.

As noted earlier, upon lowering of the frequency, the loss
modulus (and the phase shift) can be well-described by a
power-law behavior over different frequency windows for the
three structures [see Fig. 5(b)]. The power-law exponents are
computed to be ∼0.93 for ordered, ∼0.87 for random, and
∼0.84 for the glassy alloy, respectively. Power-law scaling
holds for about two decades of frequency for glass and for
about four decades in frequency for random and ordered alloys.
This is consistent with a large body of work on sound attenu-
ation [36–39] and propagation of shock waves in viscoelastic
materials [40] and damping in nanomechanical resonators
[10], where a power-law scaling with respect to frequency
(with an exponent ranging between 0 and 2) is observed.
Indeed, widely disparate mechanisms are responsible for loss
and attenuation in various viscoelastic media [36,41], and
the precise mechanisms for the frequency dependence of our
damping results would require separate attention.

C. Low-frequency damping in glass

Finally, we focus on the intermediate and low-frequency
damping in the glassy alloy, as presented in Fig. 5 and charac-
terized by persistent loss modulus with decreasing frequency.
Such loss in glasses is associated with collective motion of
atoms such as that associated with shear transformation zones
and associated plastic deformation [42–44]. Such local atomic
motion is usually irreversible and involves pockets of local
plastic behavior (so-called soft spots) that manifest as shear
transformation zones during onset of plastic deformation. By
inspection, we verify that in the case of ordered and random
alloys, the oscillatory deformation does not lead to any atomic
rearrangements or defect formation at any shear frequency.

To detect and characterize such possible collective motion
of atoms, we define deformation clusters as being composed
of atoms that are displaced by more than 1.6 Å (equal to shear
amplitude) by the end of the 25-cycle deformation, and that any
atom in the cluster has at least one displaced neighbor within
3.8 Å (corresponding to the first shell of nearest neighbors).

Figure 9 shows the distribution of soft spot clusters
for various frequencies in the low-frequency regime (f �
4.5 × 10−2 THz) for the three independent structures used
in computing loss moduli, as reported in Fig. 5. Clusters
are indexed by a cluster number (x axis) according to the
increasing order of cluster sizes. According to Fig. 9, there
is a clear trend of simultaneous increase in both cluster
sizes and the number of clusters, with decreasing shear
frequency. This frequency-dependent cluster size distribution
could arise from two possible sources: either (a) at lower shear
frequencies, the mechanism of dissipation could be domi-
nated solely by structural rearrangements, which leads to a
frequency-dependent soft spot distribution, or (b) the larger
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FIG. 9. Evolution of cluster size distribution at the end of 25
cycles of shear of glass for multiple shear frequencies in the low-
frequency regime. Cluster size (y axis) is the number of atoms forming
the soft spot, and the cluster number (x axis) is just an index of each
cluster sorted by ascending order of cluster sizes. Data correspond to
cluster sizes from three independent structures (same as Fig. 5). Also
shown are typical snapshots of atomic regions forming the clusters for
three frequencies, color-coded according to their atomic displacement
(see color bar for range of displacement in Å) with respect to the
initial, undeformed state. Atoms that do not contribute to the clusters
are made highly transparent for clarity. Snapshots are generated using
the Open Visualization Tool (OVITO) [47].

amount of physical time spent during deformation for a given
number of cycles could lead to larger soft spots at lower
frequencies (an effect similar to aging in glasses [45,46]).

To understand the reason behind frequency-dependent
distribution of soft spots more clearly, we perform oscillatory
shear simulations at various frequencies in which the total
simulation time is kept constant. These simulations are
performed under NVT conditions. Coupling to a thermostat
(Nosé-Hoover [24,25] in this case) was necessitated by the
need to prevent significant temperature rise during shear at high
frequencies over long time scales. The total time simulated
is 11 ns, which corresponds to a total of five shear cycles at
the lowest frequency (f = 4.5 × 10−4 THz) and over 100000
cycles at the highest frequency (f = 10.3 THz).

Shown in Fig. 10 are the cluster distribution characteristics
in these NVT shear simulations. As seen in Fig. 10(a), which
shows variation of cluster sizes, we observe a general trend of
increasing cluster size and number of clusters as frequency is
lowered. This particularly holds for frequencies spanning from
the THz regime (where harmonic coupling is the dominant
damping mechanism) to ∼4.5 × 10−2 THz (which is roughly
the onset of enhanced cluster formation). In some sense,
the shear agitation activates different shear transformation
zones, depending on the frequency of agitation. For reference,
we also show cluster distribution for a no-shear case, in
which we ascertain atomic displacements arising solely from
aging, i.e., without the application of shear. Interestingly,
the no-shear case exhibits cluster statistics intermediate to
those characterizing low- and high-frequency shear. This is
particularly apparent in Fig. 10(b), where the average cluster
size is plotted as a function of frequency for clusters larger
than four atoms. Data are averaged over five independent
structures to ensure good statistics. As frequency is lowered,
we observe a sharp increase in cluster sizes around 1 THz,

FIG. 10. Evolution of cluster sizes for oscillatory shear simula-
tions run for a constant time (about 11 ns) instead of constant number
of cycles, as shown in Fig. 9. (a) Distribution of cluster sizes for
various frequencies computed for five independent glass structures.
Also shown is the case corresponding to no shear, i.e., NVT simulation
without the application of oscillatory shear, to capture the effect of
aging. (b) Variation of average cluster size and percentage of atoms
that contribute to irreversibly deformed clusters with frequency. The
corresponding average size and deformed volume for the no shear case
are indicated by dashed lines, with the range of error bars depicted
by semitransparent colored bands.

followed by a weak variation. A similar trend is also exhibited
by the total number of atoms forming the cluster (the cluster
volume), also shown in Fig. 10(b). An effect concomitant
with the low-frequency local deformation is the relaxation of
shear stress; we observe significant stress relaxation (∼56%)
in glass during NVE simulations from an initially sheared
state (with shear strain of 2%) over a total simulation time
of 3.5 ns. Ordered and random structures, on the other
hand, maintain perfect crystallinity and do not exhibit stress
relaxation.

In addition to the frequency-dependent evolution of clus-
ter sizes, we observe that the clusters exhibit significant
irreversibility between cycles, i.e., atoms that form clusters
remain as clusters for multiple shear cycles. As an example,
in Fig. 11, we plot the total fraction of atoms that belong
to clusters as a function of cycle number, Ni [Fig. 11(a)]
and the fraction of cluster atoms that are identical between
cycles separated by �Ni [Fig. 11(b)] over N = 25 shear cycles
at f = 4.5 × 10−4 THz. The weakly increasing fraction of
cluster atoms with N and the slow decorrelation effect of
cluster atoms with cycles [the fraction of identical cluster
atoms falls from ∼0.88 for cycles separated by �Ni = 1
to ∼0.81 for �Ni = 20, as seen in Fig. 11(b)] signify a
high degree of irreversible deformation. Qualitatively similar
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FIG. 11. Correlation between atoms forming clusters between
individual cycles, Ni . Data shown here correspond to a total of N =
25 shear cycles at f = 4.5 × 10−4 THz. (a) The total fraction of
atoms that contribute to clusters as a function of cycle number, Ni .
(b) Fraction of atoms that are identical between cycles separated
by �Ni .

behavior was observed at other shear frequencies where cluster
formation is observed.

The results described above strongly indicate that low-
frequency agitation of the glass structure enhances structural
relaxation via local clusters that undergo irreversible defor-
mation. The nearly invariant cluster size distribution with
frequency describes the qualitative variation of loss modulus
for glass in the low-frequency regime. Moreover, the clusters
observed originate in a random manner, and there is less than
10% overlap between atoms contributing to clusters between
any two frequencies.

In addition to oscillatory shear deformations that show
frequency-dependent activation of deformation cluster sizes
and cluster volume, we also observed formation of soft spots
during constant strain rate shear deformation simulations
performed at a range of strain rates. Figure 12 shows the
fraction of deformed volume (soft spots) as a function of
time for strain rates that correspond to the same set of strain
rates during oscillatory shear deformation (computed as the
product of strain and frequency). Data are averaged over five
independent structures for good statistics. The maximum shear
strain at each strain rate is set equal to 0.1. These cluster
sizes and volume were observed to be time-dependent in
this case, which is analogous to the frequency dependence
for the case of oscillatory shear deformation. A clear trend
for larger rates (lower deformation time) suppressing cluster
formation akin to oscillatory shear deformation is clearly
evident.

Secondly, we observe that the deformation volume for all
rates collapses on to the curve for the no shear case and on
to each other for low values of strain and begins to deviate

FIG. 12. Variation of deformation volume as a function of time
for various strain rates during constant-rate shear deformation. The
maximum shear strain for each case is 0.1. Also, shown in black is
the case for no shear. The strain at which the four lowest frequencies
depart from the curve for no shear (indicated by red circles) is plotted
in the inset. Data are averaged over five independent structures.

at larger strains. The approximate strain at deviation from
the no shear curve for the four lowest strain rates is plotted
in the inset in Fig. 12 and shows that the deviation sets
in approximately at a small window of strain between 0.2
and 0.4%. This further ties well with the oscillatory shear
damping results in that the inverse relation between the time
for formation of deformation clusters and strain rates gives rise
to a nearly invariant loss modulus below a certain threshold
frequency. This low-frequency damping via formation of soft
spots is, in fact, also observed by us in a wide range of other
model glasses as well (a topic for a separate publication),
leading us to believe that it is a more universal phenomenon in
glasses.

IV. CONCLUSIONS

In summary, we elucidate the mechanisms of frequency-
dependent mechanical damping (as characterized by the loss
moduli) in ordered and random alloys and glass, using
NE, oscillatory shear, and molecular dynamics simulations.
The differences in structure bring distinct dependence of
damping on the applied shear frequency. At high frequencies
overlapping with vibrational frequencies in the THz range, all
three systems exhibit pronounced damping in the decreasing
order of glass, random alloy, and ordered alloy. For glassy
and random alloys, damping in this high-frequency regime is
harmonic and occurs via excitation of vibrational eigenmodes
close to the driving shear frequency. As we do not find
a clear correlation for excitation of vibrational modes in
the ordered alloy, anharmonic coupling is likely to be the
dominant damping mechanism. We show that below the peak
damping frequency, loss modulus can be fitted by power-law
behavior over a different frequency range in each of the
three structures. A unique damping mechanism in glass is
observed at intermediate to low frequencies, arising from local,
irreversible atomic motion, which in turn results in finite,
nearly constant damping.
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