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Substitutional solutes in metals generally diffuse by successive exchanges with vacancies, that is, via the so
called vacancy mechanism. However, recent density functional theory (DFT) calculations predicted an atypical
behavior for the oversized solute atoms (OSAs) in bcc and fcc iron. These solutes exhibit a very strong attraction
with a nearby vacancy (V) at a first neighbor (1nn) distance. The attraction is so large that the 1nn OSA-V pair
is no longer stable and relaxes spontaneously towards a new configuration where the OSA sits in the middle
of the two half-vacancies (V/2). As a consequence, the diffusion of OSAs cannot be described by the standard
vacancy mechanism. A new migration mechanism with a new formulation of correlation effects is required. The
present study rests on a revised expression of the diffusion coefficient of the OSAs in bcc and fcc lattices, which
introduces the concept of macrojumps. The formalism is applied presently to the case of yttrium (Y: a principal
alloying element of advanced steels) in iron, using DFT data. But it is directly transferable to other OSAs in cubic
metal lattices. At variance with the standard substitutional solutes, the Y atom is found to diffuse more rapidly
than iron at all temperatures by orders of magnitude in the two cubic-Fe structures. This finding is opposite to
the recent common belief that yttrium is a slow diffusing species in Fe alloys, based on experimental evidences.
Several suggestions are proposed to solve this apparent inconsistency.
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I. INTRODUCTION

Diffusion of solutes in solids plays a crucial role controlling
a large variety of kinetic processes, such as precipitation,
segregation to surfaces, dislocations and grain boundaries,
etc. Recently, significant advances in predicting diffusion
properties of solutes in metals have been achieved, from both
modeling and atomistic simulation viewpoints [1–4], in par-
ticular from a more accurate description of correlation effects
including solute-vacancy interactions beyond the first neighbor
shells in various lattice structures (cubic [5], hexagonal [6],
arbitrary lattice structure [7]) up to a thorough evaluation
of phenomenological coefficients in dilute alloys [8]. But,
beyond the standard vacancy mechanism, an exact and rigorous
formalism for various atypical substitutional-solute diffusion
is still missing.

For instance, first-principles calculations predicted recently
that oversized solute atoms (OSAs) are dissolved as substitu-
tional species in bcc and fcc iron. These OSAs include the
transition metal elements (TM) at the beginning of the series
(Sc, Y, Lu, Zr, and Hf) due to their big atomic size, compared
with the host atom [9]. Also, the noble-gas elements can behave
as OSAs in a TM lattice, because of the strong repulsion with
the host atoms which creates a large effective solute volume
[10,11]. As expected, there is a strong attraction of the OSAs
with a nearby vacancy (V): for some of them it is so large that a
1nn OSA-V pair is no longer stable and relaxes spontaneously
towards a new configuration where the OSA sits in the middle
of the bond, the two ends of which are decorated with two
half-vacancies (V/2) [1–3,10–13]. It is worth mentioning that
the same type of complex was reported earlier for cadmium in
silicon and germanium [14], and for helium in bcc iron [10]; it
is also the case for yttrium in iron, as presented below. It is clear
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that this new feature cannot be captured by today’s existing
diffusion formalisms and that the standard expressions for the
diffusion coefficient and correlation factor cannot be used.

The oversized solutes can act as important alloying ele-
ments in advanced steels, which is the case of yttrium in ODS
(oxide dispersion strengthened) steels. The ODS steels are of
paramount importance in the future design of fusion devices,
due to their exceptionally high resistance to creep: the pinning
of dislocations is obtained thanks to a very high density of
small immobile precipitates [15]. Among the possible alternate
candidates [16], mixed yttrium-titanium oxides still occupy
the pole position: they have been the subject of a large number
of mainly experimental studies [17–22], the main effect of
Ti being a decrease of the size of Y-Ti-O nanoscale clusters
or precipitates [23–25], and also theoretical studies mixing
first-principle calculations [26–32] and numerical simulations
[18,33–35]. The fabrication of such alloys with a fine dis-
persion of Y-Ti-O nanoclusters or precipitates is, up to now,
mainly done by a mechanical alloying of nanopowders mixing
Y2O3 oxide with the iron-based matrix, with Ti as an additional
impurity. At the end of the process the original Y2O3 oxides
are no longer detectable, which is interpreted as a complete
dissolution of Y and O in the lattice of the base matrix. The
crucial step is then the annealing of the mixture at a high
temperature in order to produce the small precipitates which
are desired. The success of this complex nucleation-growth-
coarsening process rests on basic key mechanisms, among
which the yttrium diffusivity is one of importance. Since to
our knowledge, no direct measurement of yttrium diffusivity
through tracer technique has ever been reported [36], the
only way out was to evaluate at best the diffusion coefficient
at work in the precipitation process described above. This
was done experimentally by Alinger [18,37] who proposed a
diffusivity having a very high activation energy equal to 3.1 eV;
kinetic Monte Carlo simulations performed afterwards could
reproduce the experimental results (precipitate density and
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size) with these experimentally deduced diffusion coefficients
[33,34]. But the fabrication process incorporates a large
supersaturation of dislocations, grain boundaries, vacancies,
and oxygen. Due to a known strong trapping of Y atoms by
the structural defects and by O atoms, such an experiment can
only yield at best an environment-dependent effective value for
the Y diffusivity, while giving no information on the intrinsic
transport mechanism of yttrium and its diffusion coefficient.

The present contribution proposes a new variant of the
vacancy mechanism for an exact determination of the OSA
transport, which takes into account the existence of the
V/2 + OSA + V/2 complex. The chemical species of the
OSA will be denoted by B for generality and B∗ will stand
for a tagged atom of the B species, also called a tracer for
short.

The first section sums up the theoretical analysis and recalls
the analytical expressions to be used for the solute diffusion
coefficient DB∗ and for the correlation factor fB in the bcc and
fcc lattices. In the second section we apply the new approach
to yttrium diffusivity in bcc and fcc iron. Density functional
theory calculations provide the atomic ingredients entering
the diffusion coefficients, i.e., the solute-vacancy interactions,
together with the migration barriers in the vicinity of the
OSA. The variation with temperature of the corresponding
diffusion coefficient and correlation factor is presented. Also,
we discuss the implications of the results in the light of recent
experimental and simulation results. Finally, conclusions are
given in the third section.

II. THE NEW MIGRATION MECHANISM: A MODIFIED
FORMULATION OF TRACER DIFFUSIVITY AND

CORRELATION FACTOR

In the course of the new migration path, the tracer B∗
occupies alternatively regular lattice sites as well as interstitial
sites located at the middle of nearest neighbor bonds (denoted
afterwards as intermediate sites). The analysis must then take
this new feature into account in order to calculate correctly
the mean square displacement. The migration mechanism
is therefore a two-step process which can be described as
follows:

(1) The 1nn neighbor vectors are denoted by {ωi} (with
length ω); the tracer B∗ sits initially on the origin [Figs. 1(a)
and 2(a)]; let us assume that a vacancy V jumps from some site
Rinit with Rinit ⊂ {ωi + ωj } belonging to more distant shells
than the first neighbor one (|Rinit| > ω) towards a 1nn neighbor
site of B∗, say ωi0 [Figs. 1(a) and 2(a)]. Then the tracer B∗ slides
without any activation barrier towards the intermediate site
λi0 = ωi0/2 while the vacancy splits into two halves located
on r = 0 and r = ωi0 [Figs. 1(b) and 2(b)]. This is the first step
of the diffusion process which ends up by the formation of a
complex denoted (V/2+OSA+V/2) to remember that only
one unoccupied vacancy was present before the formation of
the complex.

(2) The second step of the diffusion process happens then:
(i) either the half-vacancy on ωi0 jumps back towards

one of its first neighbors ωi0 + ωj (with ωi0 + ωj �= 0)
while repelling simultaneously the tracer B∗ on the center
of the cubic cell, in which case the net displacement of B∗
is equal to zero;

FIG. 1. OSA diffusion path including the formation and the
dissociation of the V/2 + OSA + V/2 complex in a bcc lattice. The
dark brown and the light spheres represent, respectively, the OSA and
the host atoms. The cubes denote the vacant sites. The numbers on
the atoms indicate the coordination shell with respect to the OSA.
(a) Formation: various arrival paths for the vacancy; the OSA relaxes
to the midpoint of the bond (curved arrow); (b) stable configuration
of the complex; and (c) various dissociation paths: the OSA relaxes
toward a new lattice site (curved arrow).

(ii) or the half-vacancy located on r = 0 jumps towards
one of its first neighbors ωi1 (with ωi1 �= ωi0 ) while rejecting
simultaneously the B∗ atom on site ωi0 , in which case the
net displacement of B∗ is equal to ωi0 [Figs. 1(c) and 2(c)].
The net displacement of B∗ from a lattice site to a

neighboring lattice site is called a macrojump; it becomes
the new elemental displacement of the random walk.

This picture holds for both bcc and fcc lattices. An
additional migration path must be envisaged because the
pseudodivacancy (made of two half-vacancies) can also
migrate as a whole. In the fcc lattice, it migrates while
keeping its 1nn configuration: the tracer B∗ is carried from one
intermediate site to another, as symbolically sketched in Fig. 3,
where the arrows denote the net displacements of the moving
species. In the bcc lattice, the divacancy moves while adopting
temporarily a 2 nn metastable configuration: it was shown
previously that He was carried in this way in bcc iron [10].

Rigid-lattice atomic Monte Carlo simulations are often
employed for studying diffusion and other kinetic processes
(precipitation, ordering, etc.). For instance, it is worth mention-
ing that previous kinetic Monte Carlo simulations dealing with
Y in bcc iron systems did not take into account the existence of
this complex and assigned to yttrium diffusivity an effective
value which is fitted on experimental precipitation kinetics
[34]. If Monte Carlo simulations taking this effect into account
appear as conceivable, they would have however to overcome
a difficult problem of vacancy trapping in the close vicinity
of the OSA: the existence of a deep attractive well induces

FIG. 2. OSA diffusion path including the formation and the
dissociation of the V/2 + OSA + V/2 complex in a fcc lattice
(same description as Fig. 1).
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FIG. 3. Nondissociative jump of the V/2 + OSA + V/2 com-
plex in a fcc lattice. The arrows denote the net displacement of the
two species, from the initial positions to the final ones in the forefront
lattice plane. For the OSA (brown sphere), the curved arrow means
that the actual displacement passes through the substitutional site
before relaxing towards its final position

a large number of flickering events which produce no net
displacement and are highly time consuming, especially at
low temperatures. Indeed, in such systems exhibiting a large
disparity of frequencies, the brute force approach will become
ineffectual at rather low temperatures and the recourse to
specialized detrapping algorithms will therefore be mandatory
to reach a sufficient statistical accuracy [38].

This is the reason why the present paper directs its effort
on an exact modeling which starts from the detailed vacancy
jump frequencies of the vacancy around the OSA obtained
through first-principles calculations, while including the role
of the complex in the migration process. The subsections
below give the theoretical background and analysis of this
variant of the vacancy mechanism. To focus mainly on the
physical processes, only a synthetic summary is provided:
all the technical details of the calculation are reported in a
dedicated arXiv deposit [39].

A. Calculating the mean square displacement of a tagged atom

The diffusion coefficient of a tracer B∗ in infinite dilution is
related to its mean square displacement 〈R2(t)〉 during a time
interval t by the Einstein formula DB∗ = limt→∞〈R2(t)〉/6t ,
where the displacement is the result of all the jumps performed
with a large number of distinct defects. These jumps can
however be considered as:

(1) bunched in space: the number of jumps performed with
only one vacancy is small (hardly larger than unity in 3D
walks [40]) resulting in an overall displacement of a few lattice
parameters only;

(2) bunched in time: the total vacancy concentration CV 0

is small and the time interval separating the arrival of two
different vacancies on the tracer is large compared to the time
spent by one given vacancy in its vicinity. This implies that, on
average, a vacancy labeled k will arrive in the neighborhood
of the tracer only a long time after the vacancy labeled k − 1

definitely escaped after completion of its exchanges with the
tracer.

The collection of solute jumps performed with the same
vacancy can thus be gathered together into what is called an
encounter [41]. The average time interval which separates the
successive arrivals of two different vacancies in the neighbor-
hood of the tracer B∗ is denoted by �tEnc; in other words it
is nothing but the duration allotted to an encounter. Because
the vacancy concentration is very low, these encounters do not
noticeably overlap: their contributions can be considered as
independent from one another and additive. This is the reason
why the general formula above can be replaced by

DB∗ = 〈R2〉Enc/6�tEnc, (1)

where 〈R2〉Enc is the mean square displacement of the tracer
B∗ during one encounter.

The encounter starts at time zero, when the tracer B∗, which
was previously located on a substitutional site (denoted S), is
pushed onto an intermediate site (denoted I), by a vacancy
which it never encountered before, at a frequency denoted
by �SI. The possible vectors {λi} = {ωi/2} for this S → I
jump are collinear with the first neighbor vectors {ωi} and
their length is denoted by λ = ω/2. Then the tracer atom
B∗ comes back onto a lattice site through an I → S jump
of length λ, while expelling the vacancy on some neighboring
site, at a frequency denoted by �IS. This set of elementary
displacements (S → I + I → S) which carries B∗ from a
regular lattice site to a regular lattice site is the macrojump
introduced above. After this first macrojump, the tracer can
initiate a second one thanks to the same vacancy with a
probability P (strictly smaller than unity for a 3D walk [40]), a
third macrojump with a probability P 2, etc. Finally the vacancy
will escape definitely to infinity or will be absorbed by a sink,
which puts an end to the encounter.

The calculation of the mean square displacement of the
tracer requires the introduction of probability functions SI
and IS attached to S → I and I → S jump, respectively, and
consists of establishing recurrence relations between them:
for instance the tracer B∗ reaches a site r through the I → S
jump number n only if it has reached the intermediate site of
a bond having one end on r through the S → I jump number
n − 1. The mean square displacement corresponding to the
encounter is expressed thanks to the second order moment
of those functions which bring the tagged atom back onto
a substitutional site, i.e., the IS ones [39]. Summing the
recurrence equations over n from 1 to � yields the desired
moments. Hence the final expression:

〈R2〉Enc = ω2

2(1 − P )
(1 + Qbcc), (2)

where P is the total probability of performing a S → I
jump after an I → S one with the same vacancy, Qbcc is
the average cosine between an I → S jump vector and the
next S → I one in the bcc lattice. The average number of
macrojumps in an encounter is given by 1 + P + P 2 + · · · =
(1 − P )−1. The mean square length of a macrojump is obtained
thanks to Eq. (2) while setting P = Q = 0, which yields
〈R2〉MJ = ω2/2. The mean square displacement produced by
(1 − P )−1 macrojumps is 〈R2〉rand = 〈R2〉MJ(1 − P )−1 and the
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FIG. 4. Jump vectors for the OSA from an intermediate site to
its eight neighbors in a fcc lattice; light spheres stand for fcc lattice
sites; big and small brown spheres stand for intermediate sites.

correlation factor is by definition given by the ratio

fB = 〈R2〉Enc/〈R2〉rand = 1 + Qbcc. (3)

In this transport mechanism, the only correlation effect
takes place between an I → S jump and the S → I one
belonging to the next macrojump.

For a fcc lattice, the recurrence equations must be modified
in order to take into account the additional I → I jump (Fig. 3)
of frequency WII: indeed, a tracer B∗ sitting on an intermediate
site can jump either toward a lattice site at a frequency WIS (two
possibilities) or toward another interstitial site at a frequency
WII (eight possibilities), as described in Fig. 4.

It can be shown that the II functions associated with this
additional type of jump can be eliminated at the benefit of the
IS ones [39]. As before the second order moments of the IS
functions yield the desired result:

〈R2〉Enc = (1 + 2α)ω2

8α(1 − P )

(
1 + 4α

1 + 2α
Qfcc

)
, (4)

where 2α = �IS/(�IS + 8WII) and Qfcc is the average cosine
for the fcc lattice.

The mean square length of the macrojump is no longer
constant but depends on the temperature through the frequency
ratio 2α:

〈R2〉MJ = ω2(1 + 2α)/8α, (5)

and the correlation factor is defined as above by

fB = 〈R2〉Enc

〈R2〉Rand
= 1 + 4α

1 + 2α
Qfcc. (6)

The smaller α, the larger the length of a macrojump, and
the larger the displacement during an encounter. As expected
intuitively, the correlation factor becomes close to unity when
the tracer B∗ migrates mainly from an intermediate site to
another without passing through a lattice site, a situation which
mimics in a close way a direct interstitial mechanism.

B. Calculating the time duration for an encounter

Let us set the reference state of the energy as the crystal
containing a tracer atom B∗ on the origin and a noninteracting
vacancy far apart in the bulk. The vacancy concentration in
the bulk is denoted by CV 0 and that at closer distances CV i =
CV 0e

βEi , where Ei is the vacancy-solute binding energy when
the vacancy sits on the ith neighbor shell of the tracer (Ei >

0 for an attraction and Ei < 0 for a repulsion). Assuming
an isotropic interaction, the jump frequency WRi→Rj of the
vacancy from a lattice site Ri to a neighbor site Rj depends
only on the neighbor shells sites Ri and Rj belong to. The
notation WRi→Rj can thus be replaced by W shell

i→j , where the
subscripts i and j stand for a shell index.

The macrojump is made of two steps in series: the passage
from S to I site at a frequency �SI is carried out by a vacancy
jumping from Rinit onto a site of the first neighbor shell of B∗;
the return on a substitutional site at the frequency �IS is carried
out when the vacancy (at any of the two ends of the complex)
jumps back on a lattice site which belongs to {Rinit}.

�SI is the total jump frequency of a vacancy towards a first
neighbor site of the atom B∗ which sits on a lattice site. The
sites Rinit it starts from belong to more distant shells (labeled j )
than the first one and the vacancy jump frequencies from shell
j to shell 1 are named W shell

j→1 (j = 2,3,5 for the bcc lattice,
j = 2,3,4 for the fcc lattice). The probability of finding a
vacancy on shell j is by definition its atomic concentration
CVj and the frequency �SI is thus expressed as

�SI = z
∑
jV 1

nbond1→jCVjW
shell
j→1

= zCV 0

∑
jV 1

nbond1→j e
−βEj W shell

j→1, (7)

where z is the number of first neighbors; the summation
∑

jV 1
runs on the shells j which can be reached from the first shell
through one jump; and nbond1→j is the number of bonds
connecting a given site of the first shell to sites of the j th
shell.

For the bcc lattice, using a standard notation for the
frequencies which control the formation or the dissociation
of the complex:
nbond1→2 = 3, nbond1→3 = 3, nbond1→5 = 1,
�SI = 8CV 0(3eβE2W4 + 3eβE3W ′

4 + eβE5W ′′
4 ), WIS =

3W3 + 3W ′
3 + W ′′

3 , and �IS = 2WIS = 2(3W3 + 3W ′
3 + W ′′

3 ).
Since the jumps S → I + I → S are performed in series,

their delays are additive:

�tMJ = (�SI)
−1 + (�IS)−1.

The frequency attached to a macrojump is thus defined as

�MJ = (�tMJ)
−1 = �SI�IS/(�SI + �IS). (8)

The duration of an encounter made of (1 − P )−1 macro-
jumps is then �tEnc = (1 − P )−1�tMJ and the tracer diffusion
coefficient is finally expressed as

DB∗ = 〈R2〉Enc

6�tEnc
= 1

6
�MJ

ω2

2
(1 + Qbcc). (9)

For the fcc lattice:
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nbond1→2=2, nbond1→3 = 4, nbond1→4 = 1,
�SI = 12CV 0(2eβE2W4 + 4eβE3W ′

4 + eβE4W ′′
4 ), WIS =

2W3 + 4W ′
3 + W ′′

3 , and �IS = 2WIS = 2(2W3 + 4W ′
3 + W ′′

3 ).
It can be shown that the time spent on intermediate sites

does not depend on the jump frequency WII [39] and that the
tracer diffusion coefficient is expressed as

DB∗ = 〈R2〉Enc

6�tEnc
= 1

6
�MJ

(1 + 2α)ω2

8α

(
1 + 4αQfcc

1 + 2α

)
. (10)

C. Calculation of the correlation factor

The value of the correlation effect rests on the above-
mentioned average cosine Qbcc and Qfcc between successive
macrojumps in the two lattice structures.

After the completion of a macrojump, the OSA is repelled
onto the origin and the vacancy sits on a lattice site belonging
to the set {Rinit}. The general method consists of solving the
diffusion problem corresponding to a vacancy starting from
any site of {Rinit} and coming back on any site of {Rinit}
while avoiding the origin: the average cosine is nothing but
the product of the time integral of the return probabilities
of the vacancy on the arrival sites and the jump frequency
which pushes the OSA on an intermediate site. Summing
the contribution of all possible vacancy trajectories made of
an arbitrary number of jumps is performed with a Fourier
transform. Summing the probabilities over time is easily done
with a Laplace transform. Denoting the probability of finding
the vacancy at a regular lattice site ri at time t by L(ri,t), its
Laplace transform is given by LL(ri,p) = ∫ ∞

0 e−ptL(ri,t)dt

and the time integral is defined by pret
ri

= ∫ ∞
0 L(ri,t)dt . The

latter is nothing but the value of the Laplace transform
for p = 0, i.e., LL(ri,p)|p=0. Hence the use of a double
Laplace and Fourier transform of the transport equation for
the vacancy, which yields the desired quantities [5,39]. The
return probabilities take into account all the jump frequencies
W shell

i→j which are different from the jump frequency WO in the
bulk. In the general case, their analytical expressions are out of
reach for interactions ranging beyond the first neighbor shell;
their values can however be calculated exactly as the solution
of a linear system. The coefficients of this system combine the
above modified frequencies with quantities which depend only
on the random walk propagator for the lattice structure under
study, i.e., lattice integrals calculated in the first Brillouin zone
[5,39].

For the bcc lattice, the average cosine is found to be equal
to

Qbcc = −4pret
2 W4 − 8pret

3 W ′
4 − 4pret

5 W ′′
4 , (11)

where pret
i is the time-integrated probability on a lattice site

belonging to neighbor shell i.
For the fcc lattice, the average cosine is found to be equal

to

Qfcc = −4pret
2 W4 − 8

(
pret

3,1 + pret
3,2

)
W ′

4 − 4pret
4 W ′′

4 , (12)

where the time-integrated probabilities on the sites of the
third neighbor shell pret

3,1 and pret
3,2 have to be distinguished

for symmetry considerations.

III. THE CASE OF YTTRIUM IN BCC AND FCC IRON

A. Vacancy-yttrium interactions and migration barriers from
first principles

We have investigated the diffusion of yttrium, as a represen-
tative OSA, in the bcc and the fcc iron lattices. We confirm the
formation of the very stable V/2 + Y + V/2 complex in both
bcc and fcc iron, as proposed by previous DFT studies [11,13].
First-principles calculations within the density functional
theory (DFT) framework were performed using the SIESTA
code [42]. They provide key data for determining the solute
diffusion coefficients, that is, the solute-vacancy interaction
energies and the barriers for vacancy jumps, as functions of
the solute-vacancy separation distance. The SIESTA approach
has already been extensively applied for predicting energetics
and migration properties of solutes in Fe systems [3,10,43–45].

The calculations were spin polarized in the case of yttrium
in bcc iron, in order to account for the ferromagnetism. The
fcc iron phase exhibits spin spirals at the ground state, and it is
stabilized with the paramagnetic state above the α-γ transition
temperature. Simulating the complex magnetic configurations
including magnetic disorder is out of the scope of the present
work. For simplicity, we only assumed a nonmagnetic state for
fcc iron.

We adopted the generalized gradient approximation (GGA)
with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [46]. Core electrons were replaced by norm-
conserving pseudopotentials. Valence electrons were de-
scribed by linear combinations of numerical pseudoatomic
orbitals. The pseudopotential and the basis set for Fe are the
same as in Refs. [3,45], with a pseudopotential cut-off radius
of 1.15 Å and a basis set of ten localized functions per atom.
The cut-off radii for the pseudopotentials of yttrium are set
to 1.37, 0.76, and 0.82 Å, respectively for the 5s, 4p, and 4d

states. The basis set of each Y atom consists of two strictly
localized functions for the 5s states, three for the 4p, and five
for the 4d states. The cut-off radii are respectively 4.14, 2.74,
and 3.65 Å. Three functions for the 5p states are also included
as polarized orbitals in order to increase angular flexibility.
The charge density is represented on a regular 0.067 Å width
grid in the real space.

A cubic supercell of 250-atom sites with a 2 × 2 × 2
k-point grid were used for the case of bcc-Fe, and a 256-sites
supercell with 3 × 3 × 3 k grid were employed for the fcc-Fe.
The Methfessel-Paxton broadening scheme with a 0.3 eV
width was used [47]. We have checked that the obtained
binding energies and migration barriers are well converged
with respect to the supercell size and the k-point grid. The
estimated uncertainties are all smaller than 0.05 eV.

In all the cases, a system containing a solute and/or a va-
cancy was relaxed by optimizing the atomic positions keeping
the volume of the supercell constant as in the defect-free
system (constant-volume approximation). The convergence
criterion was set to be 0.04 eV/ Å for the residual forces.

The binding energy between a yttrium solute and a vacancy
is determined as

EB = E[(N − 1)Fe] + E[(N − 1)Fe,Y]

−E(NFe) − E[(N − 2)Fe,Y], (13)
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FIG. 5. Definition of neighborhoods in the bcc lattice. The
yttrium atom (brown sphere) sits on the lower left site of the forefront
lattice plane.

where E[(N − 1)Fe], E[(N − 1)Fe,Y], and E[(N − 2)Fe,Y]
are the total energy of the system containing, respectively, a
vacancy (V), a substitutional Y atom, and a vacancy near a
substitutional Y. E(NFe) denotes the total energy of a perfect
bcc or fcc iron lattice, with NFe atoms. Here a positive binding
energy means attraction.

Migration barriers and paths were calculated using the drag
method [48], that is, the atomic positions are constrained to
relax in a hyperplane perpendicular to the vector connecting
the initial and final positions. This method has shown to
provide results with satisfactory precision for calculating
migration barriers in solid systems [3,10,43–45,49–51].

B. Application to the case of Y in bcc iron

Due to the high technological interest of the advanced
ODS steels, properties of yttrium in a bcc-iron lattice has
been investigated by various authors. It is worth noticing
that the existence of the V/2 + Y + V/2 complex was not
always recognized previously. A tiny but positive migration
barrier (0.02 eV) for the jump of an yttrium atom toward
a first neighbor vacancy was reported, based on ab initio
calculations, which apparently prevents the formation of the
complex [52]. But the same authors also mentioned that in such
a configuration, the yttrium atom significantly shifts towards
the incoming vacancy. The positive barrier allowed the authors
to calculate the diffusion coefficient with the expressions of the
standard model for the bcc structure. To our knowledge, this
result was however never reproduced later on, neither with the

same ab initio code [11], nor with other DFT implementations
[12]. Therefore, unless future contradictory reports, we take
the existence of the complex for granted.

In order to study the Y diffusion with our new model, we
have adopted a vacancy formation energy of 2.12 eV, based
on our DFT calculations, and a vacancy formation entropy
of 4.08 kB according to previous DFT estimations [53]. For
simplicity, the pre-exponential term is taken equal to the Debye
frequency 1013s−1 for all jump frequencies. The vacancy
migration energy in the bulk, as obtained by DFT, is equal
to 0.69 eV. The lattice parameter found is 2.87 × 10−10m.

The relative positions of the yttrium atom and of the
vacancy are depicted in Fig. 5. The values of interaction
energies and migration barriers are gathered in Table I. The
diffusion coefficient of a tracer iron atom is expressed as
Dbcc

Fe∗ = 4
3CV 0W0f0ω

2, where the correlation factor f0 is a
constant which depends only on the geometry of the bcc lattice
(f0 = 0.727). The total activation energy for diffusion is the
sum of the vacancy formation and migration energies.

The results of our calculation are displayed in Table II
and Fig. 6. In spite of the complex migration mechanism, the
Arrhenius plot does not exhibit any noticeable curvature over
the explored temperature range. Because the correlation factor
is a complicated function of the jump frequencies which are
thermally activated, it has also an activation energy; in all
the cases known up to now, this activation energy is much
smaller than that for the diffusion jump itself, but it can be
non-negligible. In the present case the effective activation
energies coming from the f exact

Y and �exact
MJ terms amount to 0.18

and 1.96 eV, respectively, yielding a total effective activation
energy Eexact

act = 2.14 eV and a pre-exponential factor DO =
2.4 × 10−6 m2 s−1.

Besides this exact calculation, a first approximate evalu-
ation of yttrium diffusivity was recently proposed [12]. The
approximation consists of ignoring the 1nn ↔ 5 nn transitions
(W ′′

3 ,W ′′
4 ) which leads to flicker events without producing

any net transportation of the yttrium atom, as well as the
1nn → 2 nn transition (W3,W4) which requires too high an
energy. Only the 1nn → 3 nn jump (frequency W ′

3) and the
reverse jump (frequency W ′

4) are kept. At last, a constant
correlation factor f

approx
Y = 0.5 was assumed: indeed, when

sitting on a 3nn site after a W ′
3 jump, the vacancy has only

two possibilities for an immediate return of equal probability:

TABLE I. Binding energies of the vacancy + OSA configurations at various distances in bcc iron and the migration barriers between the
configurations, where i stands for ith neighbor shell of the yttrium atom (a positive sign means an attraction). Binding and migration energies
are given in eV.

Vacancy Binding Jump toward Migration barrier Migration barrier
on shell i energy shell j for jump W shell

i→j for jump W shell
j→i

1 + 1.2 2 2.0 0.89
3 1.22 0.16
5 1.02 0.05

2 + 0.09 4 0.69 0.61
3 + 0.14 4 0.79 0.66

7 0.83 0.69
4 + 0.01 5 0.69 0.91

6, 8, 9 0.70 0.69
5 + 0.23 7, 10 0.91 0.69
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TABLE II. Correlation factor, macrojump frequency (s−1), and diffusion coefficient (m2s−1) for yttrium tracer in bcc iron. The exact result
is compared with the approximation [12].

T (K) f exact
Y �exact

MJ Dexact
Y∗ D

approx
Y∗

300 4.358×10−4 1.213×10−17 2.723×10−41 1.576×10−41

400 2.993×10−3 1.719×10−9 2.649×10−32 1.041×10−32

500 9.368×10−3 1.356×10−4 6.542×10−27 2.038×10−27

600 1.966×10−2 2.545×10−1 2.576×10−23 6.875×10−24

700 3.275×10−2 5.650×10+1 9.526×10−21 2.276×10−21

800 4.720×10−2 3.306×10+3 8.033×10−19 1.767×10−19

900 6.190×10−2 7.934×10+4 2.528×10−17 5.215×10−18

1000 7.613×10−2 1.017×10+6 3.985×10−16 7.820×10−17

the first cancels the macrojump and the second produces a
macrojump length equal to the 1nn distance. The diffusion
coefficient DBarouh

Y∗ is then expressed by a single thermally
activated term DO exp[−Eact/(kBT )], with Eact = 2.10 eV
and DO = 3.0 × 10−6 m2 s−1.

Very interestingly, the resulting approximate diffusion
coefficients are different from the exact values only by a factor
ranging from 1.6 at the lower temperatures to 5.3 at the higher
ones, thanks to the simple physical arguments considered
above. This approximate model is actually a particular case
of the called “one-shot” model, as detailed in the Appendix,
where we demonstrate why this approximation works so well.
The one-shot model consists of allowing the vacancy, after its
dissociation from the OSA, to perform only one further jump
for returning to a 1nn site of the OSA. Such approximation
induces mechanically a nearly constant correlation factor close
to 0.33 (which is not too far from the adopted value of
0.5), and this overestimated value of the correlation effect is
fortuitously compensated by an underestimation of the macro-
jump frequency. Please note that the one-shot approximation
gives simplified expressions for the diffusion coefficients and
the correlation factors (Appendix). It is expected to give a
reasonable estimation of diffusion coefficients as long as the
vacancy-solute interaction is very strong at a 1nn separation,

FIG. 6. Diffusion coefficients of yttrium and iron tracer in bcc and
fcc iron resulting from the exact calculation or from the approximation
given in Sec. III B.

with a rapid decrease with increasing separation distances,
which is clearly the case of Y in bcc iron (Table I).

One additional comment is worth being made about the
importance of correlation effects. It can be shown that the
smallness of the correlation factor f exact

Y is not implied by the
existence of the vacancy + OSA complex and its intervention
in the migration mechanism, but only by the particular set of
vacancy jump frequencies around the yttrium atom. Indeed, in
such a mechanism, the OSA occupies alternately the sites of the
regular bcc lattice and the sites at the middle of first neighbor
bonds. If this mechanism is considered independently of any
energetic considerations by assuming that all jump frequencies
are equal to a common value Wo, then the correlation factor
is found equal to 0.761603 [39], that is, close to the value of
the correlation factor for self-diffusion with a pure vacancy
mechanism in the bcc structure.

The conclusion of this section points out the fact that the
yttrium atom is definitely more rapid than the iron atom in the
bcc structure, at the thermal vacancy regime.

This result is however at variance with the common belief
that yttrium is a slow diffuser in bcc Fe. To our knowledge, the
very high activation energy for Y relies on the only reported
experiment-based Y diffusion coefficients, obtained by fitting
to experimental small angle neutron scattering data in an ODS-
FeCr alloy, using a classical nucleation-growth-coarsening
model [37].

Some reasons can contribute to explain the low diffusivity
of yttrium from the experiments:

(1) The introduction of yttrium into iron through me-
chanical alloying with yttrium oxide induces a large number
of vacancies and oxygen atoms in supersaturation. DFT
studies [12,49] showed that the binding energy of yttrium
to vacancy and to vacancy clusters is high. Furthermore,
if considering the migration of a complex as a unit,
and adopting the effective migration energy Eeff

m of the
cluster to be the largest barrier along the most probable
migration path, as explained in Ref. [3], we found that
the Eeff

m increases with n for YVn clusters. For instance,
the value calculated via the same DFT implementation as
the present work for the YV complex is 1.22 eV, while that
for YV2 and YV3 clusters are as high as 1.80 and 2.09 eV,
respectively [12]. In addition, the dissociation energy of these
clusters (via emission of a vacancy) also increases with the
cluster size, for example, 1.89, 2.14, and 2.60 eV for YV,
YV2, and YV3, respectively [12]. A vacancy supersaturation
is therefore expected to favor the YV2 and YV3 clusters at

214108-7



JEAN-LOUIS BOCQUET, CAROLINE BAROUH, AND CHU-CHUN FU PHYSICAL REVIEW B 95, 214108 (2017)

FIG. 7. Definition of neighborhoods in the fcc lattice. The yttrium
atom (brown sphere) sits on the lower left site of the forefront lattice
plane.

the expense of the most mobile YV, which can decrease the
apparent diffusivity of yttrium by orders of magnitude.

(2) Also, there is as expected a strong oxygen-yttrium
and oxygen-vacancy attraction [12,54,55]. The presence of
oxygen induces the production of oxygen-vacancy clusters.
Certain ones (the small OVn) can be significantly mobile [55].
The strong attraction between yttrium, oxygen, and vacancies
together with the high mobility of oxygen, vacancy, and their
small clusters can lead to the formation of VnYmOp clusters
which are expected to be very stable but showing reduced
mobility.

C. Application to the case of yttrium in fcc iron

In order to determine the tracer diffusion coefficients of
Y in fcc iron, we have adopted a vacancy formation energy
of 2.543 eV, based on our DFT calculations and a vacancy
formation entropy of 2.0kB, which is a commonly accepted
value for fcc metals [56]. For simplicity, the pre-exponential

term is taken equal to the Debye frequency 1013 s−1 for
all jump frequencies. The vacancy migration energy in the
bulk, as obtained by DFT, is equal to 1.34 eV. The lattice
parameter found is 3.51×10−10 m. The configurations which
were calculated are depicted in Fig. 7; the associated yttrium-
vacancy binding energies and the relevant migration barriers
are gathered in Table III.

As above, the large attractive interaction energy between
the yttrium atom and the vacancy is accompanied by small
dissociation frequencies W3,W

′
3,W

′′
3 and high re-association

frequencies W4,W
′
4,W

′′
4 . The additional feature is now the

existence of the rotation frequency WII = W1(Fig. 3). For
this jump, the calculation shows that during the ascent of
the migrating iron atom toward its saddle, the yttrium atom is
progressively pushed back on its lattice site. During the descent
towards the new equilibrium position, the yttrium atom relaxes
again towards the new position of the moving vacancy at the
end of the process. As a result, the rotation of the divacancy is
accompanied by a net displacement of the yttrium atom from
an intermediate site to a neighboring one, as described in Sec. I
and schematically depicted in Fig. 3.

In Table IV are gathered the values of the calculated
correlation factor f exact

Y and yttrium diffusion coefficient
Dexact

Y∗ , to be compared with the values of self-diffusion in
fcc iron given by Dfcc

Fe∗ = 2CV 0W0f0ω
2, with (f0 = 0.781) as

displayed in Fig. 6.
Correlation effects are still noticeable, but less marked than

in the bcc structure and with a weaker temperature dependence.
In the present case the impact of the rotation frequency
WII = W1 is negligible, because of its large activation barrier
(2.47 eV): the factor 2α remains very close to unity.

Once more, the smallness of the correlation factor is not
linked to the migration mechanism as such but is mainly due to
the high interaction energy at first neighbor distance, together

TABLE III. Binding energies of the vacancy + OSA configurations at various distances in the fcc lattice and the migration barriers between
the configurations, where i stands for ith neighbor shell of the yttrium atom (a positive sign means an attraction). Binding and migration
energies are given in eV.

Vacancy Binding Jump toward Migration barrier Migration barrier
on shell i energy shell j for jump W shell

i→j for jump W shell
j→i

1 + 1.32 1 2.47 2.47
2 2.10 0.69
3 1.72 0.54
4 1.65 0.54

2 − 0.09 3 1.25 1.48
5 1.25 1.36

3 + 0.14 3 1.48 1.48
4 1.58 1.65
5 1.25 1.13
6 1.32 1.19
7 1.29 1.22

4 + 0.21 5 1.55 1.36
7 1.24 1.10
9 1.55 1.34

5 + 0.02 5 1.36 1.36
7 1.36 1.41

8, 9, 10 1.36 1.34
6 + 0.01 7 1.31 1.37
7 + 0.07 7, 9, 10 1.41 1.34
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TABLE IV. Correlation factor, macrojump frequency (s−1), and
tracer diffusion coefficient (m2s−1) for yttrium tracer in fcc iron.

T (K) f exact
Y �exact

MJ Dexact
Y∗

1100 0.1664 1.782×102 2.538×10−20

1200 0.1710 2.326×103 3.405×10−19

1300 0.1754 2.047×104 3.074×10−18

1400 0.1797 1.322×105 2.033×10−17

1500 0.1841 6.655×105 1.049×10−16

1600 0.1888 2.737×106 4.428×10−16

with high re-association frequencies W4,W
′
4,W

′′
4 , as in the bcc

case. Please note that if a common value is assigned to all
jump frequencies, the correlation factor for this mechanism is
found equal to 0.787081, which is close to the value for the
pure vacancy mechanism in the fcc structure [39].

At last, based on the present prediction, the yttrium atom
diffuses more rapidly than iron also in the fcc phase at the
thermal vacancy regime.

IV. CONCLUSIONS

At variance with standard substitutional solutes in a cubic
lattice, an oversized solute atom (OSA) close to a vacancy can
form a tightly bound complex, in which the solute sits in the
middle of a first neighbor bond. This specific behavior has been
theoretically predicted for various early series transition-metal
elements and some noble gas atoms in both bcc and fcc iron
lattices.

Since the diffusion of the OSAs cannot be carried out via
the standard vacancy mechanism, the present study works
out a new approach which includes a new mechanism for
a quantitative determination of diffusion properties of the
OSAs in bcc and fcc lattices. Splitting the OSA trajectory
into encounters and macrojumps provides a simple way
to define the quadratic displacement and the macrojump
frequency. The theoretical results are applied to the case of
yttrium diffusion in bcc and fcc iron, based on first-principles
results as starting physical ingredients. Under thermal-vacancy
conditions, yttrium is found to diffuse orders of magnitude
faster than iron in the two structures. To the best of our
knowledge, there is no tracer diffusion data available for
Y in pure iron. The present result is opposite to previously
reported Y diffusion coefficients deduced from experimental
data in ODS-FeCr alloys. A significant amount of vacancies
and oxygen atoms present in the experimental samples during
the precipitation, which strongly binds to Y and slows down
its diffusion, can be a plausible explanation of the apparent
discrepancy.

The present modeling approach is directly transferable to
other OSAs in cubic lattices, with the most probable corollary
that those OSAs, which form tightly bound complexes with
a vacancy, are most probably rapid diffusers in the thermal
vacancy regime.

With the diffusion coefficients calculated in the present
way, effective activation energies for the macrojumps can be
derived, monitoring the transport of the OSA. These energies
can be then used to parametrize Monte Carlo simulations with

a twofold advantage: the simulations will not need to include
explicitly the intermediate sites in the rigid-lattice model, and
will escape the penalty attached to the trapping-detrapping
problem mentioned in the first section.
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APPENDIX: ONE-SHOT EVALUATION OF AVERAGE
COSINE QBCC

1shot IN THE BCC LATTICE

The one-shot approximation is rough and consists of
allowing the vacancy, after its dissociation from the OSA,
to perform only one further jump for returning close to the
OSA.

Let us assume that the OSA is at site λ111. When the
half-vacancy at ω111 = 2λ111 dissociates from the OSA, the
latter slips back to lattice site r = 0 with a jump λ111
parallel to ω1̄1̄1̄. The vacancy pops up into seven parts on
its seven possible neighbors with weights proportional to the
dissociating frequencies and reaches:

(1) Three second neighbors of the origin at ω111 +
ω1̄1̄1,ω111 + ω1̄11̄,ω111 + ω11̄1̄ with a relative probability c3 =
W3/(3W3 + 3W ′

3 + W ′′
3 ) for each of them.

(2) Three third neighbors of the origin at ω111 +
ω111,ω111 + ω111,ω111 + ω111 with a relative probability c′

3 =
W ′

3/(3W3 + 3W ′
3 + W ′′

3 ) for each of them.
(3) One fifth neighbor of the origin at r = 2ω111 with a

relative probability c′′
3 = W ′′

3 /(3W3 + 3W ′
3 + W ′′

3 ).
The vacancy is then allowed to perform one jump. We define

the relative probabilities of occurrence for the association
jumps: p4 = W4/(4W4 + 4W5), p′

4 = W ′
4/(2W ′

4 + 6W0), p′′
4 =

W ′′
4 /(W ′′

4 + 7W0), where W5 is the standard name for the jump
frequency from second to fourth neighbor shell.

The values of the corresponding cosine are calculated with
respect to the direction ω1̄1̄1̄ of the preceding I → S jump of
the OSA. The probabilities that the vacancy comes back on
a first neighbor site of the OSA are listed below in Table V.
The multiplicative factor in the last column accounts for the

TABLE V. Contributions to the average cosine from the first
returning jump.

Starting Arrival Rel. Contribution
Weight site site prob. cos(θ ) to Qbcc

1shot × factor

c3 ω111 + ω1̄1̄1 ω111 p4 −1 c3[p4(−1)]
ω11̄1or ω1̄11 p4 −1/3 c3[2p4(−1/3)] 3

ω1̄1̄1 p4 +1/3 c3[p4(+1/3)]

c′
3 ω111 + ω11̄1 ω111 p′

4 −1 c′
3[p′

4(−1)]
ω11̄1 p′

4 −1/3 c′
3[p′

4(−1/3)] 3

c′′
3 2ω111 ω111 p′′

4 −1 c′′
3 [p′′

4 (−1)] 1
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TABLE VI. Comparison of the exact and approximate values of
the correlation factor for OSA yttrium tracer in bcc iron.

T (K) f exact
OSA∗ f 1shot

OSA∗ f
1shot+approx

OSA∗ �
approx
MJ

300 4.356×10−4 4.356×10−4 0.3333 1.587×10−20

400 2.993×10−3 2.993×10−3 0.3333 1.543×10−11

500 9.368×10−3 9.370×10−3 0.3333 3.812×10−6

600 1.966×10−2 1.969×10−2 0.3334 1.501×10−2

700 3.275×10−2 3.293×10−2 0.3337 5.550
800 4.720×10−2 4.787×10−2 0.3342 4.679×10+2

900 6.190×10−2 6.368×10−2 0.3355 1.471×10+4

1000 7.613×10−2 8.003×10−2 0.3376 2.314×10+5

number of sites bringing the same contribution to the average
cosine.

Summing up all the contributions gives the average cosine
Qbcc

1shot:

Qbcc
1shot ≈ − 1

3W3 + 3W ′
3 + W ′′

3

×
[

4W3W4

4W4 + 4W5

+ 4W ′
3W

′
4

2W ′
4 + 6W0

+ W ′′
3 W ′′

4

W ′′
4 + 7W0

]
.

(A1)

This approximation is known to yield a returning probabil-
ity always smaller—and a correlation factor always larger—

than the exact one since it neglects all the trajectories of the
returning vacancy which are made of more jumps.

Applying these approximations to the case of yttrium in
bcc iron (OSA � Y) yields the values of the correlation
factor f 1shot

OSA displayed below in Table VI, assuming W5 =
W0. Comparison with Table II shows that, although crude,
the approximation retains most of the physics and yields a
reasonable magnitude for the correlation factor over the whole
range of temperature: as expected, the agreement deteriorates
with increasing temperatures.

Then the approximation used in Ref. [12] is introduced:
dropping of W3,W

′′
3 ,W4,W

′′
4 reduces the expressions of the

average cosine and correlation factor to

Qbcc
1shot+approx ≈ − 4W ′

4

3(2W ′
4 + 6W0)

,

f
1shot+approx
OSA ≈ W ′

4 + 9W0

3W ′
4 + 9W0

= 1

3
+ 2W ′

4

3W ′
4 + 9W0

. (A2)

Table VI displays the values of f
1shot+approx

OSA which are nearly
constant and slightly larger than 1/3. This is, after all, not
too far from the value 0.5 retained originally by this author.
Dropping W3,W

′′
3 ,W4,W

′′
4 in the expression of the macrojump

frequency leads to the values �
approx
MJ which are reported in

Table VI. The comparison with Table II of the main section
shows that the underestimation of the macrojump frequency
�

approx
MJ is practically compensated by the overestimation of the

correlation factor f
1shot+approx
OSA ; this explains the closeness of

the approximated value with our own one,with the one-shot
and with the physical approximation retained in Ref. [12].
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