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The recent discovery of shape memory behavior in Mg-Sc alloys has opened the door to the possibility of
lightweight shape memory alloys. Very little is known, however, about martensitic phase transformations or
about equilibrium phase stability in this alloy system. Here we report on a first-principles statistical mechanics
study of zero Kelvin and finite temperature phase stability of hcp, bcc, and fcc based phases in the Mg-Sc
binary. Our calculations reveal a rich array of phase transitions among the different low-temperature ordered
and high-temperature disordered phases. Ground state orderings on hcp, bcc, and fcc belong to families of
hierarchical structures containing rods of scandium atoms assembled in layers that repeat periodically. Both fcc
and bcc are found to undergo a series of second-order phase transformations with increasing temperature until
they completely disorder. A high degree of degeneracy is predicted at low and high temperatures among hcp,
bcc, and fcc, a property that is likely to play an important role in the shape memory effects observed in this alloy.
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I. INTRODUCTION

Growing demand for lightweight materials in industrial
applications, ranging from cellular phones to automobiles,
has led to vigorous research into magnesium based alloys
[1,2]. While Mg alloys are actively being developed to replace
heavier materials in structural applications, a recent study by
Ogawa et al. [3] on Mg-Sc alloys has opened the possibility
that these lightweight alloys may also be viable for shape
memory applications.

The study by Ogawa et al. [3] was inspired by the
similarities between the Mg-Sc binary phase diagram and
those of titanium alloys that show the shape-memory effect.
By quenching a bcc Mg-Sc alloy down to 123 K, Ogawa
et al. [3] were able to demonstrate the onset of superelasticity
upon straining. The study showed the formation of temperature
induced martensite at low scandium compositions, but only
stress induced martensites at higher scandium contents [3].
Although the formation of an hcp based martensite was
reported, the identity of the superelastic phase remains unclear.

Unlike some of the other rare-earth based magnesium
alloys [2,4–7], very little is known about phase stability in
the Mg-Sc binary system. The first extensive study of the
magnesium-rich portion of this phase diagram was performed
by Beaudry and Dane [8]. They used a combination of thermal,
metallographic, and x-ray methods to study alloys having
scandium compositions up to 60 at. % and established the
liquidus and solidus curves in the magnesium rich part of
the phase diagram. The study also reported the formation
of a disordered B2 (CsCl type) phase at scandium com-
positions around 30%. Alloys with similar compositions at
higher temperatures were observed to form a disordered bcc
solid solution. Higher scandium contents (50%) that were
annealed at 450 ◦C did not show the formation of any phases
other than an additional disordered scandium-rich hcp phase.
Subsequent studies [9,10] were in qualitative agreement with
the observations by Beaudry [8]. More recent work by Ogawa
et al. [11,12] using diffusion couples helped establish the
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bounds of a two-phase region separating a Mg-rich hcp solid
solution (α) and a bcc solid solution (β).

The limited experimental data about phase stability in
the Mg-Sc binary motivates a number of questions. All
experimental studies to date have primarily focused on the
high-temperature behavior of this alloy system. Very little
is known about the low-temperature region of the phase
diagram or about the existence of metastable phases that
may play a role in the observed shape memory effect. A
previous first-principles investigation of the formation energies
of several crystal structures and orderings in the Mg-Sc binary
predicted the stability of an fcc based ordering at intermediate
scandium compositions as well as an hcp-based ordering at
higher scandium compositions [13]. Neither of these orderings
have been observed at high temperature. A peculiar feature of
the currently assessed Mg-Sc binary phase diagram is the
remarkably wide composition interval in which a B2 phase
is reported to be stable. While a perfectly ordered B2 phase
(CsCl ordering on a bcc lattice) has a composition of xSc = 0.5,
experimental evidence in the Mg-Sc binary suggests a B2
phase that can tolerate a 20% excess of Mg [8]. The mechanism
with which the excess Mg is accommodated and the degree of
disorder it introduces in the B2 phase is not known. Yet the
off-stoichiometry and order-disorder phenomena in Mg rich
bcc likely play an important role in the shape memory effect
observed in these alloys.

Ab initio approaches have proven valuable in shedding light
on shape memory phenomena in titanium [14–16] and nickel
[17–22] based alloys. Here we study finite temperature phase
stability in the Mg-Sc binary alloy from first principles. Forma-
tion energies calculated from first principles of symmetrically
distinct orderings on the hcp, bcc, and fcc crystal structures
show the stability of hierarchical orderings on the global and
metastable convex hulls. hcp and fcc based orderings are found
to be energetically competitive at scandium compositions rang-
ing from xSc = 0.125 to xSc = 0.5, with bcc based orderings
having comparable energies in a relatively small composition
window centered around xSc = 0.35. The low energy fcc
based orderings are surprising since there is no experimental
evidence for fcc at high temperature. Free energies calculated
with Monte Carlo simulations applied to cluster expansions
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parametrized from first principles show that all three crystal
structures are predicted to form disordered solid solutions at
relatively low temperatures. A wide stability range is predicted
for B2 ordering on bcc, with off stoichiometry accommodated
by excess Mg on the Sc sublattice. The calculated metastable
bcc phase diagram at Mg rich compositions where shape
memory effects are observed experimentally shows a second-
order phase transition separating Mg-excess B2 at high
temperature from a low-temperature ordering at a composition
of xSc = 0.25. We find that global phase stability among hcp,
bcc, and fcc at intermediate and high temperatures is very
sensitive to small perturbations to their free energies. This
indicates a high degree of degeneracy among hcp, fcc, and bcc
in Mg-Sc, which is likely to have important consequences for
observed martensitic transformations.

II. METHODS

Total energies at 0 K for orderings on a crystal structure
were calculated within the Perdew-Burke-Ernzerhof (PBE)
parametrization of the generalized gradient approximation
(GGA) [23] to density functional theory (DFT). Projecter
augmented wave (PAW) pseudopotentials with eight valence
electrons for magnesium and 11 valence electrons for scan-
dium were used. Total energies were calculated by relaxing
all configurations with respect to their cell shape, size, and
internal positions of the atoms with the Vienna Ab-Initio
Simulation Package (VASP) [24–27]. An energy cutoff of
450 eV was used for the plane-wave basis set. A reference
25 × 25 × 13 �-centered k-point mesh was used for the hcp
magnesium configuration with lattice constants a = 3.19 Å
and c = 5.18 Å. The grids were scaled appropriately for the

larger supercells to contain 67–69 k points per Å
−1

.
An arrangement of Mg and Sc atoms over N sites on a

crystal can be represented by a vector of occupation variables
�σ = {σ1,σ2, . . . ,σN }. The occupation variable, σi , is assigned
a value of zero if magnesium is present at site i or 1 if scandium
occupies the site. Formation energies of a configuration (�σ )
must be defined relative to some reference configurations.
In this study we use the total energies of magnesium and
scandium in the hcp state at 0 K as reference:

Ef (�σ ) = E(�σ ) − NMgE
hcp
Mg − NScE

hcp
Sc

NMg + NSc
, (1)

where Ef (�σ ) is the formation energy of a particular arrange-
ment of atoms (�σ ) on a crystal, NMg and NSc are the number
of magnesium and scandium atoms in the configuration, E(�σ )
is the total energy for the configuration, and E

hcp
Mg and E

hcp
Sc are

the total energies per atom for magnesium and scandium in
the hcp crystal structure at 0 K.

Finite temperature free energies and phase stability were
calculated by using statistical mechanics approaches as applied
to a configurational cluster expansion. A configurational
cluster expansion, informed by DFT formation energies, can
be used to predict the formation energy of any ordering of
atoms on a particular crystal structure. Within this formalism,
the formation energy of an ordering of atoms (�σ ) on a crystal,
is parametrized with an expansion of polynomials of site

TABLE I. Details of the cluster expansion and grand canonical
Monte Carlo calculations for hcp, bcc, and fcc crystal structures.
The table lists the root mean square error (rms), weighted root mean
square error (wrms), cross-validation score (CV), number of clusters,
and the size of the GCMC simulation cell. The errors are listed in
units of eV/atom.

Type No. train rms wrms CV No. clusters GCMC size

hcp 505 0.007 0.003 0.003 25 18 × 18 × 8
fcc 452 0.006 0.003 0.003 23 12 × 12 × 12
bcc 373 0.010 0.002 0.002 17 16 × 16 × 16

occupation variables according to [28–30]

Ef (�σ ) = V0 +
∑

α

Vαφα(�σ ), (2)

where the sum extends over all clusters of sites α, the φα(�σ )
are products of the occupation variables of the sites belonging
to the cluster α, and Vα are expansion coefficients referred to
as effective cluster interactions.

The CASM software package [31–34] was used to enumerate
symmetrically distinct orderings on the hcp, fcc, and bcc parent
crystal structures, parametrize the expansion coefficients of
cluster expansions, and perform Monte Carlo simulations.
Separate cluster expansions for each crystal structure were
parametrized using least squares regression on a set of
clusters chosen using a genetic algorithm [35]. A k-fold cross-
validation score with 15 folds was used to select clusters within
the genetic algorithm. In order to increase the accuracy of
the cluster expansions for low-energy orderings, all formation
energies were weighted with Boltzmann weights dependent
on the distance from the metastable convex hull, with a kT

around 0.01 eV/atom.
Phase stability at finite temperature was determined by

applying the common tangent construction to the free en-
ergies of all the relevant phases. Ensemble averages from
grand-canonical Monte Carlo (GCMC) applied to the cluster
expansions parametrized from first principles were used in
free energy integration schemes to calculate high temperature
free energies. Subsequently, phase diagrams were constructed
based on the convex hull applied to the calculated free
energies. Details of the cluster expansion fits and Monte Carlo
calculations are summarized in Table I. The cluster expansion
for the hcp crystal structure was trained to reproduce the
important ground states across the full composition region,
while the bcc and fcc cluster expansions were only required to
reproduce the grounds states up to a composition of xSc = 0.5.

III. LOW-TEMPERATURE PHASE STABILITY

Phase stability at 0 K can be predicted by applying the
common tangent construction to the formation energies of all
relevant orderings. Often, it is useful to consider not just global
phase stability but also metastability. For instance, during
aging heat treatments, metastable precipitates are often formed
due to the lower barrier to nucleate them as compared to
other phases that might be thermodynamically more stable.
Metastable phases may also be formed through a variety
of different processing conditions, such as quenching, that
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FIG. 1. Formation energies of orderings on the hcp crystal
structure calculated with DFT. Both the metastable and global convex
hull are shown. Orderings on the metastable convex hull are circled.

freeze in high-temperature phases. We start by investigating
the orderings that are on the convex hull of the three parent
crystal structures that occur in most binary alloys: bcc, hcp,
and fcc.

A. Formation energies across the individual crystal structures

Formation energies, calculated with DFT, of orderings on
the hcp, bcc, and fcc crystal structures are shown in Figs. 1
to 3. Each figure also shows the global convex hull (evaluated
over orderings on all three crystal structures) in addition to the
metastable convex hull (indicated by empty black circles).

Low energy orderings (Fig. 1) on hcp are predicted to
contain Sc atoms arranged as rods along the [0001] direction.
A hierarchy of orderings, that we have labeled β ′′′

S , are
predicted to be stable at low scandium compositions between
xSc = 0.125 and xSc = 0.25. This family of orderings can be

0.0 0.2   0.6 0.8 1.0
xSc

−0.04

−0.02

0.00

0.02

0.04

E
ne

rg
y

(e
V

/a
to

m
)

BCC HCP FCC

Metastable Convex HullGlobal Convex Hull

FIG. 2. Formation energies of orderings on the bcc crystal
structure calculated with DFT. Both the metastable and global
convex hull are shown. Orderings on the metastable convex hull are
circled. The formation energy of Sc in the bcc crystal structure is
0.103 eV/atom relative to hcp Sc.
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FIG. 3. Formation energies of orderings on the fcc crystal
structure calculated with DFT. Both the metastable and global convex
hull are shown. Orderings on the metastable convex hull are circled.

generated by combining the β ′
S ordering [Fig. 4(a)], containing

Sc rods arranged as “zig-zags” and having a Sc composition
xSc = 0.125, with the β ′′ ordering [Fig. 4(d)], containing
Sc rods arranged as hexagons and having a Sc composition
xSc = 0.25. The β ′′′

S family of orderings have compositions
that lie between those of the parents, β ′

S and β ′′. Figures 4(b)
and 4(c) show two examples of β ′′′

S orderings. An in depth
discussion of their crystallography as well as a generating
algorithm and naming scheme may be found in a previous
study [5]. The hcp based ground-state ordering at the higher
Sc concentration of xSc = 0.667 also consists of Sc rods that
arrange as strips of hexagons as shown in Fig. 4(e). The rods of
each hexagon, however, are closer together compared to those
in β ′′ [Fig. 4(d)] and the distance between adjacent strips of
hexagons is also closer than in β ′′′

S [Fig. 4(c)].
Energies and crystal structures of metastable orderings on

the bcc crystal structure are shown in Figs. 2 and 5. The
metastable orderings on bcc consist of chains of scandium
atoms along the [001] direction. The simplest of these
orderings have compositions of xSc = 0.25 and xSc = 0.5.
The phase at xSc = 0.5, shown in Fig. 5(g) and labeled β,
is identical to the well-known B2 structure (CsCl). It may be
viewed as a square arrangement of [001] scandium rods. The
stable ordering with a composition of xSc = 0.25 is shown in
Fig. 5(c). This ordering consists of chains of alternating Sc
and Mg atoms along the [001] direction. Neighboring chains
are “out of phase,” in the sense that they are shifted relative
to each other by a single bcc lattice translation. This ordering,
referred to in the literature [2] as β1, is often observed as an
equilibrium phase in other Mg-RE alloys.

As with hcp, families of hierarchical orderings are also
stable on bcc. Starting from the two simplest metastable
orderings, β and β1, and Mg in the bcc crystal structure,
two sets of hierarchical structures may be generated. The
first consists of (010) layers consisting of [001] Mg-Sc chains
separated by blocks of Mg, as shown in Figs. 5(a) and 5(b).
The chains of Mg-Sc atoms are similar to those found in the
β1 ordering [Fig. 5(c)]. We will label this hierarchy as δ′′. At
higher scandium concentrations, a second family of orderings
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(a) βS
(xSc = 0.125)

(b) βS
(xSc = 0.15)

(c) βS
(xSc = 0.1667)

(d) β (xSc = 0.25) (e) β2
(xSc = 0.667)

FIG. 4. Schematic crystal structures of orderings on the
metastable hcp convex hull. Scandium atoms are drawn in green and
magnesium atoms are depicted by the smaller white circles. Orderings
are shown as viewed along the [0001] axis. The triangular basal layers
are stacked with an “AB”-type stacking when viewed along this axis.
The basal plane is denoted by the atoms on the corners of the triangular
grid, while the layer above is shown as the atoms that are at the center
of the triangles.

emerges by combining layers of β1 with β along the [010]
direction. These δ′ orderings consist of layers of scandium rods
and Mg-Sc chains arranged within (010) planes. The layers
that are fully filled are similar to β, while the slabs containing
Mg-Sc chains have β1 ordering. The DFT results suggest that
the β1 and β orderings may be combined along both the
[010] and [110] directions. This ordering has a composition
of xSc = 0.375, and is energetically degenerate to within the
DFT accuracy with the δ′ orderings.

While the experimental Mg-Sc phase diagram shows the
formation of bcc and hcp based phases, our first-principles
calculations and those of Taylor et al. [13] suggest that fcc
based orderings are also energetically competitive as illustrated
in Fig. 3. Similar to the hcp orderings, all metastable fcc
orderings consist of rods of Sc atoms arranged along the
[001] direction as shown in Fig. 6. The stable ordering at a
composition of xSc = 0.25 (γ ′) corresponds to the well known

(a) δ
(xSc = 0.125)

(b) δ
(xSc = 0.1667)

(c) β1 (xSc = 0.25)

(d) δ (xSc = 0.35) (e) δ
(xSc = 0.375)

(f) δ (xSc = 0.4)

(g) β (xSc = 0.5)

FIG. 5. Schematic crystal structures of orderings on the
metastable bcc convex hull. Scandium atoms are drawn in red and
magnesium atoms are depicted by the smaller white circles. Crystal
structures are viewed along [001]. Some orderings contain fully filled
columns of scandium atoms, which are depicted as filled circles. Other
orderings consisting of alternating scandium and magnesium atoms
are shown as half filled circles, similar to the depiction of a partial
occupancy on a sublattice. Since neighboring chains of Sc and Mg
atoms can either be stacked “in phase,” where scandium atoms are all
on the same layer and magnesium atoms are on adjacent layers or “out
of phase,” the filling of the circle is used to depict how neighboring
chains are oriented relative to each other.

L12 crystal structure. As shown in Fig. 6(c), this ordering
can be viewed as scandium rods arranged at the corners
of the centered-square lattice of the (001) fcc planes. At
equiatomic composition (xSc = 0.5), the stable γ2 ordering
consists of two layers of scandium alternating with two
layers of magnesium [Fig. 6(e)] along the [010] direction.
Lower scandium compositions around xSc = 0.125 promote
the formation of an ordering (γ1) with layers of Sc rods as
seen in Fig. 6(a). This phase may be viewed as layers of Sc

214107-4



FIRST-PRINCIPLES INVESTIGATION OF PHASE . . . PHYSICAL REVIEW B 95, 214107 (2017)

(a) γ1 (xSc = 0.125) (b) γ1
(xSc = 0.1667)

(c) γ
(xSc = 0.25)

(d) γ2 (xSc = 0.375) (e) γ2
(xSc = 0.5)

FIG. 6. Schematic crystal structures of orderings on the
metastable fcc convex hull. Scandium atoms are drawn in blue and
magnesium atoms are depicted by the smaller white circles. Crystal
structures are viewed along [001]. Relative to this zone axis, the
crystal structure can be viewed as a stacking of two centered square
lattices that are shifted relative to each other. The atoms at the corners
and center of a square belong to one layer, while the atoms at the
edge centers are in the layer above.

rods that are stacked along the [010] direction and separated by
three layers of magnesium. Adjacent layers are shifted relative
to each other along the [100] direction. A possible hierarchy
of structures (γ ′

1), ranging in composition from xSc = 0.125
to 0.25, may be generated by combining γ ′ with γ1 along the
[010] direction as shown in Fig. 6(b). A particular ordering
within this hierarchy is predicted to be less than 1 meV/atom
of the metastable convex hull (which is within the DFT error).
Our calculations show a second hierarchy of orderings (γ ′

2)
to also be stable on the fcc crystal structure. The orderings,
shown in Fig. 6(d) may be formed by removing a single
column of scandium rods from the γ2 phase at regular intervals
[in Fig. 6(d) the interval is 3]. Very short intervals, i.e., less
than 3, are not found to be energetically favorable.

B. Global phase stability

The global phase stability across all orderings on the bcc,
hcp, and fcc crystal structures at 0 K is shown in Fig. 7.
Pure magnesium and scandium are hcp at 0 K. The hcp-based
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FIG. 7. DFT calculated formation energies of orderings on all
three crystal structures: hcp (green triangles), bcc (red squares), and
fcc (blue circles). Orderings on the global convex hull are circled.

β ′′′
S family of orderings is found to be globally stable at

compositions ranging between xSc = 0.125 and xSc = 0.25.
Surprisingly the β ′

S ordering with a composition of xSc =
0.125 is energetically degenerate with the fcc γ1 ordering at
the same composition. Up to a composition of 0.25, the fcc
based orderings are within a few meV of the convex hull, but
are higher in energy than the hcp orderings. For xSc ranging
from 0.25 up to 0.5, fcc-based γ ′

2 and γ2 orderings are stable.
The hcp crystal structure is preferred again at higher values of
xSc with the β2 ordering forming at xSc = 2

3 .
The experimental phase diagrams show that bcc based or-

derings form in this binary alloy [3,8–12]. Our first-principles
calculations suggest that bcc orderings are metastable at 0 K.
As is evident in Fig. 2, bcc phases have energies above the
global convex hull at the extreme compositions, i.e., xSc = 0
and xSc = 1. However, bcc orderings around a composition of
xSc = 0.35 show a large drop in formation energies, bringing
some within a few meV of the global convex hull. These low
energy configurations on the bcc structure, shown in Figs. 5(d),
and 5(f), can be viewed as Mg-Sc orderings on the Sc-rich
sublattice of β (B2 or CsCl-type).

IV. FINITE TEMPERATURE PHASE STABILITY

Statistical mechanics methods based on the cluster expan-
sion approach and Monte Carlo simulations were used to cal-
culate finite temperature free energies and composition versus
temperature phase diagrams. Three different configurational
cluster expansions [Eq. (2)], one for each crystal structure,
were parametrized using the first-principles formation energies
of Figs. 1–3. The cluster expansions were used as input
to grand canonical Monte Carlo simulations to generate
finite temperature thermodynamic quantities for use in free
energy integration schemes to predict finite temperature phase
stability. Second order phase transitions were estimated by in-
spection of inflection points in temperature versus composition
curves and corresponding peaks in heat capacities at constant
chemical potential as calculated with grand canonical Monte
Carlo simulations.
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FIG. 8. Metastable phase diagram for hcp calculated using finite
temperature free energies from Monte Carlo simulations applied to a
configurational cluster expansion. Single phase fields are colored and
labeled.

All three cluster expansions reproduce the formation
energies of configurations to within a few meV/atom for
the low energy orderings and have a root mean square error
across all configurations of around 8 meV/atom (Table I).
Each cluster expansion is able to predict the strong DFT
ground-state orderings as residing on the convex hull of the
parent crystal structure they describe. These are the orderings
that are stable in a wide chemical potential window at zero
Kelvin. Many of the more complex hierarchical ground-state
orderings, however, are not predicted as ground states by the
parametrized cluster expansions. These hierarchical orderings
are predicted by DFT to be weakly stable ground states in
that they barely break the convex hull and are therefore
only stable in a very narrow chemical potential window.
The cluster expansions predict their energies to be either
degenerate with simpler ground-state orderings (i.e., reside on
a zero Kelvin common tangent) or to have formation energies
that are only several meV/atom above the convex hull. The
inability to predict the larger and more complex hierarchical
phases as ground states can be attributed to the truncation
of the cluster expansions beyond a finite interaction distance.
Larger clusters are likely to stabilize the more complicated
orderings. However, the weak stability of the higher order
hierarchical phases at zero Kelvin suggests that they have
relatively low order/disorder transition temperatures. In fact,
the bcc cluster expansion is able to predict δ′ [Fig. 5(e)], one of
the hierarchical orderings on bcc, as residing on the convex hull
and Monte Carlo simulations predict that it disorders around
300 K. Since the cluster expansions do not capture the subtle,
very long-range, interactions responsible for the stability of
the weak hierarchical phases, which is only of importance
at low temperature, they are unable to accurately resolve the
true equilibrium phase diagrams at low temperature where
DFT predicts that the hierarchical ground-state orderings
coexist with the strong ground states. We therefore only show
calculated phase diagrams above 400 K, where only the strong
ground-state orderings that are accurately described with the
cluster expansions remain stable.

Figure 8 shows the calculated metastable phase diagram
for the hcp crystal structure. Our calculations predict the β ′′
and β2 orderings to be stable until approximately 700 K.
Both ordered phases tolerate some degree of magnesium
excess relative to their stoichiometric composition at elevated
temperatures but only allow a negligible scandium excess.
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FIG. 9. Metastable phase diagram for bcc calculated using finite
temperature free energies from Monte Carlo simulations applied to a
configurational cluster expansion. Single phase fields are colored and
labeled. Dashed lines represent second-order phase transitions.

A disordered solid solution is predicted at high temperature
and at both magnesium and scandium rich compositions. The
ordered phases undergo first-order phase transitions to the solid
solution at around 700 K.

In contrast to the first-order phase transitions predicted
for the hcp based orderings, bcc orderings are predicted
to undergo a series of second-order phase transitions as
shown by the dashed lines in Fig. 9. The metastable phase
stability in this system has similarities with the well studied
Fe-Al binary [36,37]. Three low-temperature orderings are
predicted in the bcc phase diagram: β1 (xSc = 0.25), δ′ (xSc =
0.375), and β (xSc = 0.5). The δ′ ordering is predicted to be
stable only up to about 300 K. At higher temperatures, the
ordered β1 phase undergoes a second-order phase transition
into β. This second-order transition is possible due to the
group/subgroup relationship between the β and β1 orderings.
At temperatures above 500 K the β phase becomes stable
over a wide concentration interval, similar to what is observed
experimentally. At high enough temperatures, the β phase
eventually disorders into a solid solution.

The metastable fcc phase diagram (Fig. 10) shows a number
of invariant peritectoid reactions. Most orderings, with the
exception of γ2, do not tolerate much off-stoichiometry and
undergo first-order phase transitions to a high-temperature
fcc solid solution. The γ2 phase is predicted to have a large
magnesium solubility at higher temperatures and undergoes a
second-order phase transition to the disordered solid solution.
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FIG. 10. Metastable phase diagram for fcc calculated using finite
temperature free energies from Monte Carlo simulations applied to a
configurational cluster expansion. Single phase fields are colored and
labeled. Dashed lines represent second-order phase transitions.
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Similar to the bcc and hcp metastable phase diagrams, the
low-temperature ordered phases are stable up to about 600 K.

V. DISCUSSION

First-principles calculations reveal the stability of complex
hierarchically ordered ground states across the hcp, bcc,
and fcc crystal structures at 0 K. This is similar to other
Mg-RE alloys that exhibit long period orderings [4,5,38]. The
calculated metastable phase diagrams for hcp, bcc, and fcc
Mg-Sc alloys of Figs. 8, 9, and 10 display a rich variety of
order/disorder phase transitions. In all three metastable phase
diagrams, the Mg rich orderings disorder around 600 K to form
either a disordered solid solution or a highly off-stoichiometric
ordered phase. The metastable bcc phase diagram is especially
remarkable with its very wide stability range of the B2
ordering, which is predicted to accommodate an excess Mg
concentration of more than 0.3 relative to the ideal B2
stoichiometric composition of xSc = 0.5. These predictions
show that configurational entropy plays a crucial role in
determining the thermodynamic properties of Mg-Sc alloys
at intermediate to high temperatures.

Figure 11 shows calculated free energies that rigorously
account for configurational degrees of freedom for hcp, bcc,
and fcc at 772 K. The free energy diagram clearly reveals a
very high degree of degeneracy among the three phases in
a Sc composition interval between xSc = 0.2 and 0.5. This
also happens to be the composition interval in which shape
memory phenomena were recently observed by Ogawa et al.
[3]. The degeneracy at high temperature is already present at
zero Kelvin where the formation energies of ordered ground
states on hcp, bcc, and fcc are all within a few meV from each
other in the same composition interval. The high degree of
degeneracy among hcp, fcc, and bcc likely plays an important
role in determining the mechanisms with which this alloy
system manifests shape memory behavior.

The equilibrium phase diagram calculated by applying
the common tangent construction to the configurational free
energies of all three crystal structures is shown in Fig. 12.
The phase diagram predicts the formation of hcp and fcc
based orderings at intermediate to low temperatures and an
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FIG. 11. Free energies of the bcc, hcp, and fcc crystal structures
calculated using the cluster expansion, Monte Carlo simulations, and
free energy integration at 772 K.
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FIG. 12. Global phase diagram, accounting for the finite temper-
ature phase stability of all three crystal structures. Single phase fields
are colored and labeled, with hcp based phases shown in green and
fcc based phase fields shown in blue.

hcp solid solution at high temperature. The phase diagram
does not agree with experimental studies [3,8–12] as it does
not predict bcc to be stable. Experiments have shown the
formation of a high-temperature bcc phase at intermediate
scandium compositions (around xSc = 0.3–0.5).

We can identify several reasons as to why the pre-
dicted equilibrium phase diagram is inconsistent with high-
temperature experiments. First, the degeneracy among the
three phases between xSc = 0.2 and 0.5 (Fig. 11) leads to free
energy differences that are of the same order as numerical
errors associated with the DFT calculations and cluster
expansion parametrization of DFT formation energies. More
importantly, the free energies of Fig. 11 neglect contributions
from vibrational excitations [32,39–41] and entropy due to
point defect formation at high temperatures [42,43]. It is
empirically known that more open crystal structures such
as bcc tend to have a higher vibrational entropy than the
more tightly bound close packed crystal structures such as
hcp and fcc [39,40]. Therefore, we expect that the inclusion
of vibrational excitations will decrease the free energy of bcc
more than those of hcp and fcc with increasing temperature.

While accounting for vibrational excitations is computa-
tionally very demanding, especially in phases also exhibiting
configurational disorder, we can estimate their importance by
empirically shifting the free energy of the bcc phase relative to
those of hcp and fcc to match high-temperature features of the
experimental phase diagram. The simplest approximation is to
assume that the vibrational contributions to the free energies of
the close packed fcc and hcp phases are similar, but that those
to the bcc free energy are different. To represent this difference,
we introduce an excess free energy for the bcc phase relative
to both hcp and fcc, 	Gbcc

xs , that can be added to the bcc
configurational free energy. The excess free energy can be
parametrized with a simple temperature (T ) and composition
(xSc) dependence:

	Gbcc
xs = (a0 + a1xSc)T + (b0 + b1xSc)T ln T , (3)

where {a0,a1,b0,b1} are fitting coefficients. At constant tem-
perature, this excess free energy provides a rigid shift as well
as a linear offset to the bcc free energy relative to that of fcc and
hcp. Neither of these modifications will change the metastable
phase diagram shown in Fig. 9. To fit the coefficients in Eq. (3),
we used the two-phase equilibrium data from the diffusion
couple study of Ogawa et al. [11]. Diffusion couples provide
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FIG. 13. Recalculated phase diagram, based on empirical shifts
to the configurational free energies of bcc based phases. Shifts are
parametrized using the data from diffusion couples as reported by
Ogawa et al. [11]. Single phase fields are colored and labeled, with
hcp based phases shown in green, fcc based phase fields shown in
blue, and bcc phase fields shown in red. The experimental phase
boundaries from the study by Ogawa et al. [11] are also shown, with
the β phase field as red squares and the α phase fields as green
triangles. The bcc free energy was shifted by (0.1 − 0.13xSc)T +
(−0.0169 + 0.0229xSc)T ln T meV/atom.

accurate estimates of the phase boundaries between different
phase fields.

Shifting the bcc free energies by augmenting the config-
urational free energies calculated from first-principles with
experimental data leads to a qualitatively different phase
diagram as shown in Fig. 13. The two-phase field between α

(disordered hcp) and β (disordered CsCl-type) is reproduced
in this phase diagram as reported in previous experimental
studies. Although experiments suggest the formation of a
completely disordered bcc solid solution, we predict a Mg
excess B2 phase characterized by Mg-Sc disorder over the Sc
sublattice to be stable at the experimental temperatures. Many
other two-phase regions appear in Fig. 13 due to the lowered
free energies of the bcc phase, including bcc-fcc two-phase
fields. Low-temperature phase stability remains unaffected
since the excess free energy, as parametrized with Eq. (3),
tends to zero as T approaches 0 K.

The magnitude of free energy shifts required to replicate
the experimental two-phase field are very small. In the
composition region we are fitting to, free energy shifts are
of the order of 10 meV/atom at a temperature of 953 K
and are sufficient to reproduce the experimental data at high
temperature. The calculated phase diagram is, therefore, very
sensitive to small relative shifts of the individual free energies.
While we have argued that a sizable fraction of the shift that
is required to reproduce the high-temperature phase diagram
is likely due to differences in vibrational entropy between bcc
and the close-packed fcc and hcp phases, the empirical shifts
of Eq. (3) undoubtedly also account for errors arising from
approximations to DFT and cluster expansion fitting errors.
The exact source is difficult to single out due to the very small
magnitude of the excess free energy.

Though the exact phase stability might be difficult to
resolve in this system, the small differences in free energies
at elevated temperatures suggests the importance of the fcc
phase in the Mg-Sc system either as an easily accessible
metastable phase or as a thermodynamically stable phase at
low temperatures. The formation of an fcc based phase has

never been reported in this system. The formation energies of
all three crystal structures (bcc, fcc, and hcp) are very close
at lower temperature. However, our predictions suggest that
fcc is consistently lower in energy than bcc for low scandium
compositions. As a result, any quenching heat treatments at
compositions ranging between xSc = 0.2 and 0.5 may promote
martensitic phase transformations to both hcp and fcc. The
fcc based martensites would be expected to form through a
Bain transformation from the bcc solid solution. Some degree
of tetragonality may be expected for these martensites due
to both the symmetry of the ordering and any remnant local
stresses/strains. These fcc based martensites, if formed, may be
related to the shape memory phenomena that has been reported
in this alloy system [3].

In addition to exhibiting a high degree of degeneracy
between hcp, bcc, and fcc, the Mg-Sc binary also favors an
intriguing array of complex ordered phases at low temperature.
Remarkably, the ground-state orderings on all three crystal
structures share many common features. All the low-energy
configurations (either metastable or stable) consist of scan-
dium rods arranged as clusters or layers that arrange two
dimensionally. Many ground-state orderings consist of several
layers of pure magnesium locally adopting an fcc or bcc crystal
structure, even though pure Mg is either highly metastable or
unstable in fcc and bcc. Also striking is the large number
of hierarchical phases that are stable or metastable in all
three crystal structures. The two-dimensional nature of the
many ground-state orderings makes them readily discernible
using HAADF-STEM (high angle annular dark field-scanning
transmission electron microscopy) [2,4,5] when viewed along
the appropriate zone axis.

VI. CONCLUSION

We have performed a first-principles statistical mechanics
study of phase stability in the Mg-Sc binary. Our calculations
predict that ordered and disordered phases on hcp, bcc,
and fcc have energies and free energies that are very close
to each other between xSc = 0.2 and 0.5, corresponding to
compositions where shape memory effects have recently been
observed [3]. The predicted stability of fcc based orderings
is especially surprising since they are not observed in high-
temperature experiments. Ground-state orderings on all three
crystal structures are found to contain rods of scandium atoms
arranged in layers, with adjacent layers being separated from
each other by blocks of magnesium. Monte Carlo simulations
applied to first-principles cluster expansions for hcp, bcc,
and fcc predict a rich variety of order/disorder transitions.
The calculated metastable bcc phase diagram is especially
interesting as it contains a B2 phase field that exhibits a very
wide solubility range, with excess magnesium accommodated
on the scandium sublattice. This prediction is consistent with
limited high-temperature experimental information. Empirical
shifts to the free energy of bcc using inputs from past diffusion
couple experiments [11] showed that small differences in the
vibrational entropy could be responsible for the experimentally
observed bcc phases at high temperatures. The predicted
degeneracy of fcc based phases with hcp may be a key
to unraveling mechanisms and crystallographic pathways of
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FIG. 14. Predicted energies from the three different cluster
expansion fits. Each figure shows the metastable convex hull predicted
by the cluster expansion fit, as well as the metastable hull from the
DFT calculations. The disordered free energy at 0 K is also shown as
a solid line. Configurations that are on the cluster expansion convex
hull are circled.

martensitic transformations responsible for the observed shape
memory alloys in quenched bcc Mg-Sc alloys.
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APPENDIX: CLUSTER EXPANSION FITS

Formation energies predicted with three different cluster
expansions across the hcp, bcc, and fcc crystal structures
are shown in Figs. 14(a)–14(c). The cluster expansions were
trained to reproduce the important features of the formation
energies calculated from DFT. The strong ground states
(orderings that are stable in a wide chemical potential interval)
are reproduced very accurately by the cluster expansions,
with the more complicated orderings predicted to be either
degenerate or nearly degenerate in energy.

The hcp cluster expansion [Fig. 14(a)] predicts the impor-
tant orderings (β ′′ and β2) to be thermodynamically stable,
while the hierarchical β ′′′ orderings are very close in energy to
the predicted convex hull but not on the hull. The bcc cluster
expansion [Fig. 14(b)] was trained to reproduce the ground
states with compositions between xSc = 0.25 and 0.5. This
corresponds to the composition region where bcc orderings
are found to be energetically competitive relative to the global

Predicted Global Convex Hull

DFT Global Convex Hull

Cluster expansion 
formation energies

HCP

FCC

BCC

DFT 
formation energies

HCP

FCC

BCC

FIG. 15. Formation energies across orderings on hcp, bcc, and
fcc as predicted from three cluster expansions. The configurations on
global convex hull are circled, and correspond to β ′′, γ ′

1, γ1, and β2.
The predicted DFT convex hull is also shown with solid symbols.
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ground states. The fcc based cluster expansion was trained
to predict orderings with compositions less than xSc = 0.5.
The γ ′

1 ordering predicted to be a ground state by the cluster
expansion resides on the convex hull between γ1 and γ ′
as predicted by DFT. The DFT calculations predict the γ1

ordering on fcc to be energetically degenerate with the β ′
S

ordering on hcp; both orderings have a composition of xSc =
0.125. This degeneracy is not reproduced by the two cluster
expansions presented in this study. The orderings are within
4 meV/atom of each other based on the predictions, which is
within the numerical accuracy of our cluster expansions. The
cluster expansions are however in qualitative agreement with
the DFT calculations.

The global phase stability predicted by the cluster ex-
pansions and the DFT calculations are shown in Fig. 15.
The formation energies predicted by the cluster expansion
are very close to the DFT calculated values. In the context
of global phase stability, the stronger ground states are
reproduced well by the cluster expansion, i.e., β ′′, β2, and
γ2. The γ ′

2 ordering is also predicted to be globally stable
similar to the calculated DFT formation energies. The cluster
expansions however differ slightly from the DFT calculations
at scandium poor compositions with the β ′′′

S and γ1 orderings
not being reproduced as ground states. However, these are
more complicated hierarchical orderings and are expected to
disorder at relatively low temperatures.
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