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Transport signatures of topological superconductivity in a proximity-coupled nanowire
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We study the conductance of a junction between the normal and superconducting segments of a nanowire, both
of which are subjected to spin-orbit coupling and an external magnetic field. We directly compare the transport
properties of the nanowire assuming two different models for the superconducting segment: one where we put
superconductivity by hand into the wire and one where superconductivity is induced through a tunneling junction
with a bulk s-wave superconductor. While these two models are equivalent at low energies and at weak coupling
between the nanowire and the superconductor, we show that there are several interesting qualitative differences
away from these two limits. In particular, the tunneling model introduces an additional conductance peak at the
energy corresponding to the bulk gap of the parent superconductor. By employing a combination of analytical
methods at zero temperature and numerical methods at finite temperature, we show that the tunneling model
of the proximity effect reproduces many more of the qualitative features that are seen experimentally in such a
nanowire system.
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I. INTRODUCTION

There has been an intense effort in recent years to
realize zero-energy Majorana bound states in condensed
matter systems [1–3] due to potential applications of such
states in quantum computing [4,5]. The most promising
proposal to date for engineering topological superconductivity
involves applying a magnetic field to a nanowire containing
both spin-orbit-coupling (SOC) and proximity-induced su-
perconductivity [6,7], as shown in Fig. 1. By increasing the
magnetic field strength in such a setup, one tunes through
a topological phase transition. In the topological phase, the
zero-energy Majorana mode that is localized at the end of
the superconducting segment of the nanowire is expected
to produce a quantized (at 2e2/h) zero-bias peak in the
differential conductance through the normal/superconducting
junction at zero temperature [8–12]. Similarly, there have
also been related proposals to detect the Majorana modes
by coupling a quantum dot to the superconducting segment
rather than a normal lead [13–17]. Because of the abundance
and relative simplicity of the required ingredients, these
theoretical proposals very quickly received a great deal of
experimental attention [18–21]. Since the first generation
of experiments, great progress has been made both in the
fabrication of cleaner devices and in the improvement of
the induced superconductivity [22–27]. However, conclusive
evidence for topological superconductivity remains elusive.

The experimental progress has in turn motivated much
theoretical investigation aimed at describing the conductance
of such a nanowire system. Most of these theoretical studies
focus on numerical simulations of complex geometries in
an attempt to quantitatively reproduce the experimentally
measured conductance [28–37], while there have been far
fewer analytical studies [38–40]. Additionally, nearly all
previous transport models (with the exception of the numerical
models of Refs. [28,36]) do not account for the fact that
electrons in the wire can spend a fraction of their time in
the proximity-coupled superconductor. Instead, the proximity
effect is most frequently modeled by the presence of an

intrinsic pairing mechanism in the nanowire, while the parent
superconductor is neglected completely. However, this is a
reasonable approximation only in the limit of low energies and
weak tunneling between superconductor and nanowire (as we
will show explicitly). There has been significant discussion of
the importance of treating the parent superconductor explicitly
when analyzing the proximity effect theoretically, as the prox-
imity coupling can strongly renormalize the bulk properties of
the nanowire [28,41–49]. As the experimentally achievable
coupling strength continues to increase, it becomes more
important to understand the effect of the parent superconductor
on the transport properties of the nanowire as well.

In this paper, we calculate the conductance spectrum in
the nanowire geometry within the Blonder-Tinkham-Klapwijk
(BTK) theory [50] using two different models for the proximity
effect between the underlying superconductor and the wire
to which it is coupled. First, we model the proximity effect
through the inclusion of an intrinsic pairing mechanism in the
Hamiltonian of the nanowire (i.e., we put superconductivity
into the nanowire by hand). Within this model of the proximity
effect, we solve for the conductance analytically in three
different limits: (1) in the absence of an external magnetic
field, (2) when the strength of SOC is much larger than both
the Zeeman splitting and the proximity-induced gap, and (3)
when the Zeeman splitting is larger than both SOC and the gap.
We show that the zero-bias conductance at zero temperature is
fixed to 2e2/h in the topological phase, and we also extend our
calculation to finite temperature, calculating the conductance
as a function of both energy and external field.

In the second model of the proximity effect, superconduc-
tivity is induced in the nanowire through a tunnel coupling
with a bulk conventional superconductor. Such a model
allows for electrons to spend a fraction of their time in the
underlying superconductor. We show that this model of the
proximity effect has several interesting features. First, as
pointed out also in Refs. [28,42,49], the topological phase
transition is determined by the strength of the tunnel coupling
between the superconductor and nanowire rather than by the
proximity-induced gap; therefore, very high magnetic fields
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FIG. 1. Model geometry. A 1D nanowire (of infinite length) with
spin-orbit coupling is placed on top of a junction between an insulator
(x < 0) and a superconductor (x > 0). A magnetic field Bext is applied
perpendicularly to the effective Rashba field. We chose the latter to
be along the z axis and Bext to be along the wire.

are required to reach the topological phase if tunneling is made
too strong. Second, the continuity equation is not obeyed in
the nanowire if the excitation energy exceeds the gap of the
superconductor; i.e., particles are lost from the nanowire to the
substrate. Third, the conductance exhibits two distinct peaks
as a function of energy; the first peak is located at the edge of
the proximity-induced gap, while the second peak is located
at the edge of the bulk gap of the superconductor. Finally, while
the zero-bias conductance is fixed to 2e2/h in the topological
phase at zero temperature, we show that finite temperature can
very drastically reduce the zero-bias conductance. Calculating
the conductance as a function of energy and external field at
finite temperature, we find that we can reproduce many of the
qualitative features observed in Ref. [25].

The remainder of the paper is organized as follows. In
Sec. II, we calculate the conductance using a model that
assumes an intrinsic pairing term in the Hamiltonian of the
nanowire. We exactly solve for the conductance in the absence
of an external field in Sec. II A. In Sec. II B, we analytically
solve for the conductance in the presence of an external field
in two different limits: strong SOC (Sec. II B 1) and strong
field (Sec. II B 2). A numerical calculation of the conductance
at finite temperature is presented in Sec. II C. In Sec. III,
we calculate the conductance using a model that accounts
for tunneling between the superconducting substrate and the
nanowire. We discuss an effective Hamiltonian describing
proximity-induced superconductivity in the wire in Sec. III A.
To illustrate the main qualitative features of this model, we
analytically solve for the conductance in the absence of an
external field in Sec. III B 1. Extension of the calculation to
finite fields and finite temperatures is discussed in Sec. III B 2.
Our conclusions are given in Sec. IV.

II. INTRINSIC PAIRING MODEL

We begin by discussing the intrinsic pairing model. The
geometry we consider is displayed in Fig. 1; an infinitely
long 1D nanowire is placed on top of a junction between
an insulator (x < 0) and a superconductor (x > 0), with an
external magnetic field applied along the axis of the wire. The
Hamiltonian of the system is taken to be

H = HNW + HB + H�. (1)

The bare wire with Rashba-type [51] SOC is described by

HNW =
∫

dx �†(x)(H0 + iασ̂z∂x)�(x), (2)

E(k)

↓ ↑

μ

Eso

(a)

J = 0
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+ −

μ
J
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FIG. 2. (a) Energy spectrum of a one-dimensional nanowire with
Rashba spin-orbit coupling. The Fermi energy μ is measured from
the degeneracy point at k = 0. The spin-orbit coupling strength
is parameterized by the spin-orbit energy Eso = mα2/2 and the
spin-orbit wave vector kso = mα. (b) Energy spectrum of a Rashba
nanowire in the presence of an external magnetic field applied parallel
to the wire. Magnetic field opens a gap of size 2J at k = 0.

where H0 = −∂2
x /2m − μ + Uδ(x), �(x) = [ψ↑(x),ψ↓(x)]T

is a spinor of second-quantized fermion operators describing
states in the nanowire, and σ̂i is a Pauli matrix acting in
spin space. The effective mass m, Fermi energy μ, and SOC
constant α are taken to be constant throughout the length of
the wire. We also allow for a delta-shaped barrier potential
separating the superconducting and normal segments of the
wire. The spin quantization axis is chosen along the direction
of the effective Rashba field. In the bulk of the normal segment,
the Rashba Hamiltonian yields an energy spectrum

E↑(↓)(k) = ξk ∓ αk, (3)

where ξk = k2/2m − μ. The spectrum of Eq. (3) is shown
in Fig. 2(a). SOC lifts the spin degeneracy of the wire at
all momenta except k = 0; the degeneracy at this point is
preserved by time-reversal symmetry, and the Fermi energy μ

is measured from this point. It is also convenient to parametrize
the Rashba spectrum by the spin-orbit energy Eso = mα2/2
and the spin-orbit wave vector kso = mα, both of which are
labeled in Fig. 2(a); we will make use of this parametrization
in what follows.

An external magnetic field parallel to the wire induces a
term in the Hamiltonian given by

HB = −J

∫
dx �†(x)σ̂x�(x), (4)

where J = gμBBext/2 > 0 is the Zeeman energy in a field
Bext (g is the Landé g factor and μB is the Bohr magneton).
By breaking time-reversal symmetry, the external field lifts the
degeneracy at k = 0 and induces a gap of size 2J separating
the two bands in the spectrum. Because this term contains σ̂x ,
spin is not a good quantum number in the presence of the field;
we instead label the two bands by chirality indices + and −:

E±(k) = ξk ±
√

α2k2 + J . (5)

The spectrum in the presence of the field is shown in Fig. 2(b).
In this section, we model the proximity effect by an intrinsic

pairing term induced in the nanowire. This term is described
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by a BCS-like Hamiltonian

H� =
∫

dx �(x)[ψ↓(x)ψ↑(x) + H.c.], (6)

where we take �(x) = �θ (x); i.e., pairing is induced in
only those parts of the nanowire contacting the underlying
superconductor (� > 0 is assumed real and constant).

The Bogoliubov-de Gennes (BdG) equation describing the
model is given by

[H0τ̂z + iα∂xσ̂z − J τ̂zσ̂x − �(x)τ̂y σ̂y]ψ(x) = Eψ(x), (7)

where ψ = [u↑,u↓,v↑,v↓]T is the BdG spinor wave function
describing states in the nanowire [u(v)σ is the wave function
of an electron (hole) with spin σ ], τ̂i are Pauli matrices acting
in Nambu space, and τ̂i σ̂j = τ̂i ⊗ σ̂j is a Kronecker product
of Pauli matrices. Following the BTK model [50], we look
to solve Eq. (7) for the scattering wave function in both the
normal (N ) and superconducting (S) segments while imposing
boundary conditions at the interface x = 0. The boundary
conditions can be obtained by directly integrating Eq. (7),

ψS(0) = ψN (0), (8a)

∂xψS(0) − ∂xψN (0) = 2mvRZψ(0), (8b)

where vR =
√

α2 + 2μ/m is the Rashba velocity and Z =
U/vR is a dimensionless barrier strength. We also identify the
quasiparticle current,

j (x) = 1

m

∑
σ

{Im[u∗
σ (x)∂xuσ (x) − v∗

σ (x)∂xvσ (x)]

− mασ [|uσ (x)|2 + |vσ (x)|2]}, (9)

which is a conserved quantity of the BdG Hamiltonian.
We will now solve for the conductance within this model

in several different limits. In Sec. II A we solve for the
conductance exactly in the absence of the external field.
Using this solution, in Sec. II B 1 we treat the external field
perturbatively assuming that SOC is much larger than both the
Zeeman splitting and the superconducting gap. This allows
us to study the topological phase transition analytically. We
are also able to treat the problem analytically deep in the
topological phase, where the Zeeman splitting is very large;
this is discussed in Sec. II B 2. In Sec. II C, we relax all
constraints on the parameters of the model. In doing so, we
can no longer treat the problem analytically, so we resort to a
numerical solution that we also extend to finite temperature.

A. Zero-field limit Bext = 0

First, we look to solve Eq. (7) when J = 0. In this case,
spin remains a good quantum number and the BdG equation
yields eight eigenstates that can be characterized by spin,
direction of propagation, and electron/hole character. In the
normal segment, we find the momenta of these eight states by
solving Eq. (3) for k(E):

k
R(L)
e↑ = ±

√
2m(μ + Eso + E) + kso, (10a)

k
R(L)
e↓ = ±

√
2m(μ + Eso + E) − kso, (10b)

−2kso 0 2kso

E(k)

i↑a↓i↓
r↑

a↑r↓

N

↑ ↓

−2kso 0 2kso

t1t2t3
t4

S

↑ ↓

Δ

E(k)

k

FIG. 3. Bogoliubov-de Gennes excitation spectra of normal (left)
and superconducting (right) segments of one-dimensional nanowire
with Rashba spin-orbit coupling in the absence of a magnetic field.
Colors denote different spin states. An incident electron from the
normal segment of the wire (iσ ) can be Andreev reflected (aσ ),
normally reflected (rσ ), or transmitted to the superconducting segment
(ti). Spectra shown here taking μ = 0.

k
R(L)
h↑ = ∓

√
2m(μ + Eso − E) − kso, (10c)

k
R(L)
h↓ = ∓

√
2m(μ + Eso − E) + kso. (10d)

The momenta of the eigenstates in the superconducting
segment, pR(L)

e(h)↑(↓), are found from Eq. (10) by simply replacing

E → √
E2 − �2. The BdG excitation spectra for both the

normal and superconducting segments are shown in Fig. 3.
The scattering wave function in the normal segment is then

found to be

ψNσ (x) = ψiσ (x) + a↑σ

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠eikL

h↑x + a↓σ

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠eikL

h↓x

+ r↑σ

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠eikL

e↑x + r↓σ

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠eikL

e↓x, (11)

where σ refers to the spin of the incident particle and aσ ′σ
(rσ ′σ ) denotes the Andreev (normal) reflection amplitude from
an electron of spin σ to a hole (electron) of spin σ ′. There are
two possibilities for the wave function of the incident particle:
ψi↑(x) = (1,0,0,0)T eikR

e↑x or ψi↓(x) = (0,1,0,0)T eikR
e↓x . The

scattering wave function in the superconducting segment is
given by

ψSσ (x) = t1σ

⎛
⎜⎝

u�

0
0
v�

⎞
⎟⎠eipR

e↑x + t2σ

⎛
⎜⎝

0
u�

−v�

0

⎞
⎟⎠eipR

e↓x

+ t3σ

⎛
⎜⎝

0
−v�

u�

0

⎞
⎟⎠eipR

h↑x + t4σ

⎛
⎜⎝

v�

0
0

u�

⎞
⎟⎠eipR

h↓x, (12)
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where we define a generalization of the usual BCS coherence
factors

uλ = sgn(λ)√
2

(
1 +

√
E2 − λ2

E

)1/2

, (13a)

vλ = 1√
2

(
1 −

√
E2 − λ2

E

)1/2

. (13b)

In Eq. (13), λ is an energy scale (specified by the subscript of
u and v) that will take several different values throughout the
remainder of the paper. For example, the coherence factors in
Eq. (12) take λ = � [with sgn(λ) = 1].

Suppose first that a spin-up electron is incident from
the normal segment on the superconducting interface. If we
assume that (μ + Eso) 
 � (i.e., the Fermi level is not too
close to the bottom of the Rashba band), then we can make
a semiclassical approximation whereby kR

e↑ = pR
e↑ = kL

h↓ =
m(vR + α) and kL

h↑ = pR
e↓ = m(vR − α). Solutions to Eq. (8)

are then given by

a↓↑ = u�v�

u2
� + (

u2
� − v2

�

)
Z2

, (14a)

r↑↑ = −
(
u2

� − v2
�

)
Z(i + Z)

u2
� + (

u2
� − v2

�

)
Z2

, (14b)

t1↑ = u�(1 − iZ)

u2
� + (

u2
� − v2

�

)
Z2

, (14c)

t4↑ = iv�Z

u2
� + (

u2
� − v2

�

)
Z2

, (14d)

with the remaining scattering amplitudes equal to 0 (i.e.,
the two spin channels scatter independently of one another).
We note that the scattering amplitudes given in Eq. (14) are
precisely the same as those found for a superconductor/normal
junction without SOC [50] (SOC enters the solution only
through the renormalization of the dimensionless barrier
strength Z = U/vR). If we instead have an incident spin-down
electron, the scattering amplitudes are found from Eq. (14)
by replacing a↓↑ → −a↑↓, r↑↑ → r↓↓, t1↑ → t2↓, and t4↑ →
−t3↓ [52].

The conductance is calculated from the various quasiparti-
cle currents [defined in Eq. (9)] carried by each of the scattering
states. In the semiclassical limit, both incident spin states carry
the same current, j i

σ = vR . The currents carried by Andreev
and normally reflected states are ja

σ ′σ = −vR|aσ ′σ |2 and j r
σ ′σ =

−vR|rσ ′σ |2, respectively. Therefore, the conductance takes the
simple form

G(E) = e2

h

∑
σ,σ ′

[2 + |aσ ′σ |2 − |rσ ′σ |2], (15)

where e is the electron charge and h is Planck’s constant.
Again, SOC modifies the conductance of an SN junction [50]
only through the renormalization of Z. At zero energy, the
conductance is given by

G(0) = 2e2

h

2

(1 + 2Z2)2
. (16)

B. Analytic solutions with external field

If we introduce the external magnetic field, the excitation
spectrum in the bulk of the superconducting segment of the
wire takes the form [6,7]

E2
±(k) = J 2 + �2 + ξ 2

k + (αk)2

± 2
√

J 2�2 + J 2ξ 2
k + (αk)2ξ 2

k . (17)

At k = 0, the lower branch of the spectrum E− has an
excitation gap of |

√
�2 + μ2 − J | which closes and reopens

upon increasing the strength of the field. The critical field
strength Jc =

√
�2 + μ2, where the gap closes, marks a

topological phase transition. For fields J > Jc, the supercon-
ducting segment of the wire is in the topological phase and
supports a Majorana fermion mode localized to its boundary
(in our geometry, this corresponds to the SN interface).
Studying transport within this model requires a solution for
the momenta of the scattering eigenstates; however, solving
Eq. (17) analytically for k(E) assuming an arbitrary set of
parameters gives a very complicated result. In order to proceed
analytically, we will treat the special cases of strong spin-orbit
coupling and strong magnetic field. For simplicity, we also set
μ = 0 throughout our analytical calculations.

We note that the following analytical calculations are very
similar to those presented in Ref. [40]. However, the model
considered in Ref. [40] is not equivalent to ours, as the
normal segment is not subjected to spin-orbit coupling or an
external magnetic field (i.e., the normal segment consists of
two degenerate spin channels).

1. Strong spin-orbit coupling (Eso � J,�)

In the normal segment of the wire (� = 0), it is possible
to solve Eq. (17) and obtain a relatively simple expression for
k(E) for an arbitrary strength of SOC. Expanding this solution
in the limit J � Eso gives a total of eight possible momenta
that take the form

ke− = kh− = 2kso, (18a)

ke+ = kh+ =
√

E2 − J 2/α, (18b)

with momenta of opposite sign also being eigenstates. To
lowest order, states near the Fermi momentum of the lower
subband are unaffected by the presence of the field, while states
near k = 0 are strongly affected (see Fig. 4). The scattering
wave function is given by

ψN (x) = ψi±(x) + a−±

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠eikh−x + r−±

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠e−ike−x

+ a+±

⎛
⎜⎝

0
0
uJ

vJ

⎞
⎟⎠e−ikh+x + r+±

⎛
⎜⎝

uJ

−vJ

0
0

⎞
⎟⎠e−ike+x, (19)

where, for example, a+− (r+−) denotes the amplitude of
Andreev (normal) reflection from an electron of momentum
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−2kso 0 2kso

E(k)

N

−a

+

J

−2kso 0 2kso

E(k)

S

−a

+

|Δ − J |Δ + J Δ

k

FIG. 4. Bogoliubov-de Gennes excitation spectra of normal (left)
and superconducting (right) segments of nanowire in the presence of
an external field in the intrinsic pairing model. Chemical potential
is fixed at μ = 0 and Eso 
 J,�. The spectra are shown here for
J/� = 0.25.

ke− to a hole (electron) of momentum kh(e)+, and uJ and vJ are
generalized coherence factors as defined in Eq. (13) taking λ =
J [with sgn(λ) = 1]. The two possible incident states are given
by ψi− = (1,0,0,0)T eike−x and ψi+ = (vJ ,−uJ ,0,0)T eike+x .
However, for E < J , the momentum ke+ is imaginary and
there is only one possible conducting channel in the normal
segment.

In the superconducting segment, we solve Eq. (17) for k(E)
in the strong spin-orbit limit to give eight possible momenta.
The four allowed momenta that enter the scattering wave
function are given by

pe− = 2kso +
√

E2 − �2/α, (20a)

−ph− = −2kso +
√

E2 − �2/α, (20b)

pe+ =
√

E2 − (� + J )2/α, (20c)

ph+ =
√

E2 − (� − J )2/α. (20d)

As shown in Fig. 4, the spectrum in the bulk of the
superconducting segment has three different excitation gaps.
States near the Fermi momentum have a gap of �, while
electrons near k = 0 have a gap of � + J and holes near
k = 0 have a gap of |� − J |. The scattering wave function in
the superconducting segment is given by

ψS(x) = te−

⎛
⎜⎝

u�

0
0
v�

⎞
⎟⎠eipe−x + te+√

2

⎛
⎜⎝

v�+J

−u�+J

v�+J

u�+J

⎞
⎟⎠eipe+x

+ th−

⎛
⎜⎝

0
−v�

u�

0

⎞
⎟⎠e−iph−x + th+√

2

⎛
⎜⎝

v�−J

u�−J

−v�−J

u�−J

⎞
⎟⎠eiph+x.

(21)

First, let us calculate the conductance through the junction
for E < J . In this case, we only need to consider a single
incident scattering channel, corresponding to ψi− in Eq. (19),
and the conductance takes the form

G(E < J ) = e2

h
[1 + |a−−|2 − |r−−|2]. (22)

Boundary conditions [Eq. (8)] can be solved analytically to
lowest order in 1/Eso, but the resulting expressions for the
scattering amplitudes are very cumbersome; we spell out both
the boundary conditions and resulting scattering amplitudes in
Appendix A rather than here.

However, the conductance takes a particularly simple form
at E = 0:

G(0) = e2

h

⎧⎪⎨
⎪⎩

0, 0 < J < �

2
1+Z4(1+Z2)2 , J = �

2, J > �

. (23)

The conductance takes the universal values 0 and 2e2/h

in the nontopological and topological phases, respectively,
while taking a nonuniversal value (dependent on the barrier
strength Z) at the phase transition J = �. While Eq. (23)
was obtained to lowest order in 1/Eso, we now show that
the universal values for the zero-bias conductance hold to
all orders (i.e., away from the strong SOC limit). To do
so, we adapt the scattering matrix theory of Ref. [9] for
a spinless normal/superconductor junction to the problem
currently under consideration. Assuming that the Fermi level
lies inside the field-induced gap at k = 0 (this is always true
for μ = 0 and J > 0), the scattering problem can be recast in
terms of a scattering matrix by(

ψL
e−(E)

ψL
h−(E)

)
=

(
r−−(E) ā−−(E)

a−−(E) r̄−−(E)

)(
ψR

e−(E)

ψR
h−(E)

)
, (24)

where ψ
R(L)
e− = [u↑(↓),u↓(↑)]T e±ike−x are the incident

(reflected) electron states in the lower subband [the particular
forms of u↑(↓) away from the strong SOC limit are
unimportant and left unspecified; also note that states of
opposite momentum are related by flipping the spin in Eq. (7)].
Similarly, the incident (reflected) hole states are given by
ψ

R(L)
h− = [v↑(↓),v↓(↑)]T e∓ikh−x . The reflection amplitudes a−−

and r−− are the same as in Eq. (19), while their counterparts
ā−− and r̄−− indicate that the incident state is a hole rather
than an electron. Taking the upper components of the spinors,
Eq. (24) can be expressed as

u↓(E) = r−−(E)u↑(E) + ā−−(E)v↑(E), (25a)

v↓(E) = a−−(E)u↑(E) + r̄−−(E)v↑(E). (25b)

Particle-hole symmetry of the BdG equation [Eq. (7)] dictates
that the electron and hole wave functions are related through
uσ (E) = v∗

σ (−E); this in turn imposes a constraint on the
scattering matrix through the relations r−−(E) = r̄∗

−−(−E)
and a−−(E) = ā∗

−−(−E). Therefore, at E = 0, unitarity of
scattering matrix requires a−−(0) = 0 or r−−(0) = 0; i.e.,
either the incident state undergoes perfect normal or perfect
Andreev reflection. Of course, this scattering matrix argument
breaks down for J = 0 (when states near k = 0 in normal
segment are available for scattering at E = 0) and for J =
Jc (when the gap in the superconducting segment closes
and transmission at E = 0 is possible). It is only for these
specific values of J that the zero-bias conductance can take
nonuniversal values [corresponding to Eq. (16) and the J = �

case of Eq. (23), respectively]. Additionally, we can extend
the scattering matrix arguments to cover the case μ �= 0; in
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(a) J = 0.5Δ

FIG. 5. Conductance spectra in strong spin-orbit limit (Eso 

J,�), plotted for several values of Z with fixed J/� at zero
temperature. (a) Nontopological phase (J = 0.5�). (b) Topological
phase (J = 1.5�). Chemical potential is fixed at μ = 0.

this case, G(0) = 0 for |μ| < J < Jc and G(0) = 2e2/h for
J > Jc.

When the excitation energy exceeds the Zeeman splitting
(E > J ), there are two possible incident scattering channels.
Therefore, to calculate the conductance we must also consider
the incident state corresponding to ψi+ in Eq. (19). We spell out
the explicit solutions to this scattering problem in Appendix A.
Accounting for both conducting channels, the conductance is
given by

G(E > J ) = e2

h

[
2 + |a−−|2 + |a++|2 − |r−−|2

− |r++|2 + (
u2

J − v2
J

)
(|a+−|2 − |r+−|2)

+ 1

u2
J − v2

J

(|a−+|2 − |r−+|2)

]
. (26)

The conductance is plotted as a function of energy in both
the nontopological and topological regimes in Figs. 5 and 6.
In the nontopological phase the conductance exhibits a dip
at low energies, while the conductance exhibits a peak in
the topological phase. In both instances, the width of the
low-energy feature is controlled by both parameters of the
problem (Z and J/�, with SOC entering implicitly through
the definition Z = U/α). In Fig. 5, we plot the conductance
at fixed J/� for various values of Z. We find that in
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FIG. 6. Conductance spectra in strong spin-orbit limit (Eso 

J,�), plotted for several values of J/� with fixed Z at zero
temperature. (a) Nontopological phase (J < �) with Z = 0.3. (b)
Topological phase (J > �) with Z = 1. Chemical potential is fixed
at μ = 0.

the nontopological phase, the width of the zero-bias dip is
decreased with decreasing Z. In Fig. 6 we demonstrate the
dependence of the low-energy feature on J/�. In both phases,
the conductance exhibits sharp features at the four energies
corresponding to gap edges in the spectra of both the normal
and superconducting segments; these energies correspond to
J,�, |� − J |, and � + J , as labeled in Fig. 4.

2. Strong magnetic field ( J � Eso,�)

In the limit of a strong external field J 
 Eso,�, the two
subbands are nearly spin polarized and the upper subband plays
no role in transport. Projecting out the upper subband, we can
map the Hamiltonian (1) directly onto the low-density limit of
the Kitaev model for spinless p-wave superconductivity [4],

H =
∫

dx

{
ψ†(x)

(
− ∂2

x

2m
− μeff

)
ψ(x)

+ [�eff(x)ψ†(x)(−i∂x/kF,eff)ψ
†(x) + H.c.]

}
, (27)

where μeff = J, kF,eff = √
2mJ , and �eff(x) = i�√

Eso/J θ (x) ≡ i�effθ (x) [53]. While the conductance
through a junction between a spinless normal metal and
spinless p-wave superconductor has been studied in several
other works [39,40,54,55], most of these studies focus on the
conductance near the topological phase transition μeff = 0.
However, in the strong-field limit we are deep in the topological
phase and the limit μeff 
 �eff is more relevant. In this limit,
it is possible to apply a semiclassical approximation (similarly
to what can be done for a conventional normal metal/s-
wave superconductor junction [50]), and the full simplified
semiclassical calculation is presented in Appendix B. The
conductance is given by

G(E < �eff) = 2e2

h

W 2

W 2 + 4E2
, (28a)

G(E > �eff) = e2

h

2E
[
E + 
eff

(
1 + 2Z2

eff

)]
[
E

(
1 + 2Z2

eff

) + 
eff
]2 , (28b)

where Zeff = Z
√

Eso/J and 
eff =
√

E2 − �2
eff, and is plot-

ted for several values of Zeff in Fig. 7. The subgap conductance
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Zeff = 0

Zeff = 1

Zeff = 5

FIG. 7. Conductance deep in the topological phase (J 
 Eso,�),
plotted for several values of barrier strength Zeff = Z

√
Eso/J . The

zero-bias conductance is fixed at 2e2/h and the width of the zero-bias
peak is controlled by Zeff.
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takes a Lorentzian form with amplitude 2e2/h and width

W = �eff/

√
Z2

eff(1 + Z2
eff).

C. Finite temperature

We now incorporate the effects of finite temperature in
our calculation in two ways. First, the pairing potential is
assumed to follow a BCS-like temperature dependence, which
is implemented using the interpolation function

�(T ) = �(0) tanh(1.74
√

Tc/T − 1), (29)

where Tc is the critical temperature such that �(Tc) = 0.
Second, finite temperature broadens the Fermi function so that
the finite-temperature conductance is given by

G(E) =
∫

dε G0(ε)

(
−∂f (ε,E)

∂ε

)
, (30)

where G0(ε) is the zero-temperature conductance and
f (ε,E) = {1 + exp[(ε − E)/T ]}−1 is the Fermi function. No-
tably, we do not incorporate inelastic scattering or dephasing
processes induced by finite temperature into our model.

Deep in the topological phase (see Sec. II B 2), we inves-
tigate the dependence of the zero-bias conductance on the
temperature T . If we assume that we are in the tunneling
limit Zeff 
 1 and at low temperatures T � �eff � �, the
zero-bias conductance is given by

G(0) = 2e2

h

∫
dε

(
1

π

W

W 2 + 4ε2

)
πW

4T cosh2(ε/2T )
, (31)

where we approximate W = �eff/Z
2
eff for Zeff 
 1. The T

dependence of the conductance is the same as for tunneling
through a resonant level. When T � W , the derivative of the
Fermi function can be replaced by a δ-function and the zero-
bias conductance is given by G(0) = 2e2/h. When W � T �
�eff, the quantity in parentheses in Eq. (31) can be replaced
by δ(ε)/2 and the conductance is given by

G(0) = e2

h

πW

4T
� 2e2

h
. (32)

The zero-bias conductance in this limit falls as 1/T as the
temperature is increased (this result was also seen numerically
in Ref. [56]). Therefore, the temperatures at which one
achieves the expected universal zero-bias conductance 2e2/h

is determined by both the strength of the tunnel barrier
and the ratio Eso/J . This is demonstrated in Fig. 8, where
we plot the zero-bias conductance as a function of T ,
calculated numerically by substituting Eq. (28) into Eq. (30).
As demonstrated analytically, temperature has a much more
severe effect on the zero-bias conductance in the tunneling
limit.

Finally, we relax all constraints on the parameters of the
model and numerically solve for the conductance at finite
temperature. In Fig. 9, we map out the energy and magnetic
field dependence of the conductance for μ/� = 1.2, Eso/� =
1.5, Z = 3, and T/Tc = 0.1. At zero field, there is a single
peak in the conductance spectrum at E = �. As the field is
increased, the position of this peak is shifted to lower energies,
signifying the closing of the nontopological gap. At fields
above the critical value Jc =

√
μ2 + �2, a zero-energy peak

0.0 0.1 0.2 0.3 0.4 0.5
T/Δeff

0.0

0.5

1.0

1.5

2.0

G
(0

)/
(e

2
/h

)

Zeff = 0.3

Zeff = 3.0

Zeff = 10.0

FIG. 8. Zero-bias conductance G(0) as a function of temperature
deep in the topological phase (J 
 Eso,�), plotted for several values
of Zeff = Z

√
Eso/J . At T = 0 the zero-bias conductance is 2e2/h,

while finite temperature more significantly alters the conductance as
the effective barrier strength is increased.

emerges due to the Majorana fermion that is present in the
topological phase.

For our specific choice of parameters, we find that the
amplitude of the zero-bias peak is about G(0) = 1.2 × e2/h.
While this value is not as low as what has been observed exper-
imentally in similar nanowire systems [which typically range
anywhere between G(0) ∼ 0.1 − 0.9 × e2/h] [18–20,25], our
calculation does demonstrate that finite temperature can effec-
tively reduce the zero-bias conductance. Whereas the tempera-
ture dependence of the zero-bias conductance is controlled by
a single parameter (Zeff) deep in the topological phase, in the
vicinity of the phase transition the temperature dependence
is determined by an interplay between all parameters of the
problem.

III. TUNNELING MODEL

A. Effective Hamiltonian

In Sec. II, the proximity effect was incorporated through a
BCS-like pairing term in the Hamiltonian of the nanowire.
However, this treatment neglects the presence of the un-
derlying superconductor. In this section, we incorporate the
superconducting substrate by describing the proximity effect
in the bulk of the superconducting segment of the nanowire
with a Hamiltonian of the form

H = HNW + HB + HS + Ht. (33)

HNW and HB are given by the Fourier transforms (to momen-
tum space) of Eqs. (2) and (4), respectively. The underlying
superconductor is described by a BCS Hamiltonian,

HS =
∑

σ

∫
d3k

(2π )3
{η†

σ (k)ξkSησ (k)

+ �[η↓(k)η↑(−k) + H.c.]}, (34)

where η†
σ (k) [ησ (k)] creates (annihilates) a state of spin σ

and momentum k in the superconductor, ξkS = k2/2mS − μS

(mS and μS are the effective mass and Fermi energy of
the superconductor), and � is the pairing potential of the
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FIG. 9. (a) Conductance as a function of energy E and Zeeman splitting J at finite temperature within the intrinsic pairing model. Plotted
with μ/� = 1.2, Eso/� = 1.5, Z = 3, and T/Tc = 0.1. (b) Line cuts of plot in (a) for different values of J , ranging from J/� = 0 to J/� = 3
in steps of J/� = 0.1. Plots offset by 0.1 × e2/h for clarity.

superconductor. The proximity effect is incorporated through
a term which describes spin- and momentum-conserving [57]
tunneling between the superconductor and nanowire,

Ht = −t
∑

σ

∫
d3k

(2π )3
[ψ†

σ (kx)ησ (k) + H.c.]. (35)

By integrating out the superconducting degrees of freedom
(see Appendix C for details), we find an effective the-
ory describing superconductivity induced in the nanowire
[1,41,42,48]. Comparing with the intrinsic pairing model of
Sec. II, the superconducting substrate can be incorporated by
renormalizing both the energy, E → E/�(E), and pairing
potential, � → �[1/�(E) − 1], where

�(E) =
[

1 + γ

−i
√

E2 − �2

]−1

(36)

and γ = πν2Dt2 is an energy scale related to the tunneling
strength (ν2D = mS/2π is the density of states of an effective
two-dimensional electron gas). Physically, the quantity �(E)
describes the fraction of time that an electron spends in the
nanowire (as opposed to the superconductor) [48].

We assume that our treatment of the proximity effect, which
assumes that the wire is infinite and that the superconductor
is unbounded in the plane of the wire, is still applicable to
the geometry shown in Fig. 1. We also neglect any feedback
effect that the wire may have on the superconductor. While
it has been shown that such feedback effects can drastically
affect the spectrum of a finite-sized system, they are negligible
in infinitely large systems like the one we are considering
here [58].

In the absence of an external magnetic field, the magnitude
of the superconducting gap that is proximity-induced in the
nanowire (Eg) is determined by the strength of tunneling.
The size of the induced gap is determined implicitly by the
equation

E2
g

/
�2(Eg) = �2[1/�(Eg) − 1]2. (37)

In the strong-tunneling limit (γ 
 �), the induced gap is
Eg = �(1 − 2�2/γ 2); in the weak-tunneling limit (γ � �),
the induced gap is Eg = γ . While γ is an important parameter
of the tunneling model that is very difficult to control,
the authors of Ref. [48] pointed out that this quantity is
experimentally accessible. By solving Eq. (37), we can express
γ in terms of the proximity-induced gap Eg (in the absence
of the applied field) and the bulk gap of the superconducting
substrate �,

γ = Eg

√
� + Eg

� − Eg

. (38)

Therefore, by measuring both Eg and �, it is possible to
experimentally determine the tunneling strength γ .

Finally, we note that the two models considered in this
paper are equivalent at low energies (E � �) and in the
weak-tunneling limit (γ � �). Under these two conditions,
�(E) = (1 + γ /�)−1 and we can approximate E/�(E) =
E and �[1/�(E) − 1] = γ . Therefore, the electron energy
in the nanowire is not renormalized by the superconduc-
tor, and the effective pairing potential is independent of
energy and equal to the induced excitation gap in the
nanowire (γ ).

B. Conductance in the tunneling model

We now move on to calculate the conductance within
the tunneling model. The BdG equation that we look to
solve is the same as in Eq. (7), with the replacements E →
E/�(E) and � → �[1/�(E) − 1]. We begin by discussing
the conductance in the absence of the external field. While
this case was rather trivial within the intrinsic pairing model
considered in Sec. II A, it is still instructive to consider this
simple limit to illustrate some of the main features of the
tunneling model.

1. Zero-field limit Bext = 0

To solve for the conductance in the tunneling model, we
can use our solution from Sec. II A, again assuming that
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(μ + Eso) 
 �. There are three energy ranges that must be
considered separately. When E < Eg , transmission into the
superconducting segment of the wire is not allowed because
the minimum single-particle excitation is Eg . Conversely, elec-
trons can be transmitted into the superconducting segment of
the nanowire over the energy range Eg < E < �. For energies
E > �,�(E) becomes a complex quantity (as opposed to the
values 0 < � < 1 it takes for E < �),

�(E > �) = E2 − �2

E2 − �2 + γ 2
− iγ

√
E2 − �2

E2 − �2 + γ 2
. (39)

A complex �(E) signifies that single-particle excitations are
able to enter the superconducting substrate. Therefore, there
is no transmission to the superconducting segment of the
nanowire.

The scattering probabilities in the tunneling model are
obtained directly from the scattering amplitudes of Eq. (14)
by making the appropriate replacements. The probability for
an incident spin-up electron to Andreev reflect as a spin-down
hole is given by

|a↓↑|2 =

⎧⎪⎪⎨
⎪⎪⎩

�̄2

�̄2(1+2Z2)2−4E2Z2(1+Z2) , E < Eg

�̄2

[E+√
E2−�̄2(1+2Z2)]2

, Eg < E < �

�2γ 2

D1
, E > �

, (40)

where we define �̄ = �[1 − �(E)],D1 = E2(γ 2 + 
2) +
(1 + 2Z2)2|β|2 + 2E(1 + 2Z2)(γ Reβ + 
 Imβ), 
2 =
E2 − �2, and β2 = E2(γ + i
)2 − �2γ 2. Similarly, the nor-
mal reflection probability of an incident spin-up electron is
given by

|r↑↑|2 =

⎧⎪⎪⎨
⎪⎪⎩

4(�̄2−E2)Z2(1+Z2)
�̄2(1+2Z2)2−4E2Z2(1+Z2) , E < Eg

4(E2−�̄2)Z2(1+Z2)
[E+√

E2−�̄2(1+2Z2)]2
, Eg < E < �

4|β|2Z2(1+Z2)
D1

, E > �

. (41)

From Eqs. (40) and (41), we see that

|a↓↑|2 + |r↑↑|2 < 1 (42)

for energies E > �. Because transmission is not allowed
for these energies, this means that the scattering probability
is not conserved within the tunneling model. Equivalently,
the continuity equation is not satisfied in the nanowire, as
particles with energies E > � are lost to the superconducting
substrate.

The conductance is found using Eq. (15),

G(E) = 2e2

h

⎧⎪⎪⎨
⎪⎪⎩

2�̄2

�̄2(1+2Z2)2−4E2Z2(1+Z2) , E < Eg

2E

E+√
E2−�̄2(1+2Z2)

, Eg < E < �

1 + �2γ 2−4|β|2Z2(1+Z2)
D1

, E > �

.

(43)

The conductance is plotted in Fig. 10 choosing Z = 3 and γ =
1.5 (corresponding to Eg ≈ 0.7�). In the tunneling model,
there are two distinct peaks in the conductance spectrum at
E = Eg and E = �, and both peaks are fixed to an amplitude
of 4e2/h [this can be seen in Eq. (43)]. These two peaks
correspond to the proximity-induced gap of the nanowire and
the bulk gap of the superconducting substrate, respectively.
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FIG. 10. Conductance obtained within the tunneling model in
the limit (μ + Eso) 
 � and J = 0 at zero temperature. Plotted for
Z = 3 and γ = 1.5, corresponding to an induced gap of Eg ≈ 0.7�.

2. Finite magnetic field and finite temperature

When an external magnetic field is introduced, the excita-
tion spectrum in the bulk of the superconducting segment of
the wire is given implicitly by the equation

E2
±/�2(E±)

= J 2 + �2[1/�(E±) − 1]2 + ξ 2
k + (αk)2

± 2
√

J 2�2[1/�(E±) − 1]2 + J 2ξ 2
k + (αk)2ξ 2

k . (44)

The topological phase transition can be found by determining
when the k = 0 gap in the spectrum closes, or when E = 0
solves Eq. (44). The critical field strength corresponding to the
transition is given by [28]

Jc =
√

μ2 + γ 2. (45)

It is not the induced gap Eg which enters the topological
criterion (as in the intrinsic pairing model), but rather the
tunneling strength γ . Therefore, if the coupling between the
superconductor and nanowire is made too strong, it will require
very large applied fields to reach the topological phase.

It is also expected that the external field applied to reach
the topological phase in the nanowire will have a detrimental
effect on the superconducting substrate. Even for large g-factor
materials like InSb (g ∼ 40) [59], the field needed to reach
the topological phase is Bext ∼ 1 T. The Zeeman splitting
induced by a magnetic field reduces the excitation gap of an
s-wave superconductor while leaving the pairing potential �

unchanged (provided that the applied field strengths do not
reach the Clogston limit [60]). To model the effects of the field,
we absorb the Zeeman splitting to define a “tunneling gap”
which depends on both the field strength and the temperature as

�(J,T ) = �(0,0) tanh(1.74
√

T/Tc − 1) − (gS/g)J, (46)

where gS = 2 is the Landé g factor of the superconductor.
We neglect the suppression of � due to orbital effects of the
field, which is a reasonable assumption if the applied field is
much smaller than Hc2 of the superconductor (as is the case
for example in Ref. [25], with NbTiN having Hc2 > 10 T).
Accounting for the suppression of the gap by the Zeeman
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FIG. 11. Bulk excitation spectrum in a nanowire with tunneling-
induced superconductivity for various field strengths at zero tem-
perature. (a) In the absence of the field, the lower branch of the
spectrum has an excitation gap Eg and the spectrum is degenerate at
k = 0. (b) Application of a field lifts the degeneracy and reduces
the gap on the lower branch at k = 0. (c) At the critical field
strength Jc = √

μ2 + γ 2, the gap closes. (d) The gap is reopened
in the topological phase as the field is increased beyond Jc. In
all cases, there are no bulk states at energies E > � − (gS/g)J ,
as the energy acquires an imaginary part. This signifies that these
states are lost to the superconducting substrate. All plots shown for
μ/� = 1.2, Eso/� = 1.5, γ /� = 1.5, and gS/g = 0.05.

splitting, the bulk spectrum of the superconducting segment of
the nanowire at zero temperature is shown in Fig. 11.

The conductance can still be determined using Eqs. (22)
and (26), as the normal segment of the nanowire is unaffected
by the superconductor, and our analytic results from Sec. II
can be easily extended to the tunneling model by making
the replacements E → E/�(E) and � → �[1/�(E) − 1].
We now investigate the effect of the tunneling energy γ

on the zero-bias conductance at finite temperature (i.e., we
extend the analytical calculations of Sec. II C to the tunneling
model). We assume that we are deep in the topological phase
(J 
 γ ), and that the tunneling strength γ is not so large that
the field needed to access this regime destroys superconduc-
tivity [�(J,0) � �(0,0)]. At low temperatures T � �,�̃eff,
where we denote � = �(J,0) and �̃eff = �eff(γ /�) (�eff =
�

√
Eso/J as before, but now � is the gap of the underlying

superconductor rather than the gap induced in the wire), and
in the tunneling limit Zeff 
 1 (recall Zeff = Z

√
Eso/J ), the

zero-bias conductance is found from Eq. (31) to be

G(0) = 2e2

h

∫
dε

(
1

π

W̃

W̃ 2 + 4ε̃2

)
πW̃

4T cosh2(ε/2T )
, (47)

where ε̃ = ε(1 + γ /�) and W̃ = �̃eff/Z
2
eff. Again, for the low-

est temperatures T � W̃ � �̃eff, the zero-bias conductance is
fixed to 2e2/h. For higher temperatures W̃ � T � �̃eff, we
replace the quantity in parentheses by δ(ε)/[2(1 + γ /�)] and
the zero-bias conductance is given by

G(0) = e2

h

π�eff

4T Z2
eff

γ

� + γ
� 2e2

h
. (48)
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FIG. 12. Zero-bias conductance deep in the topological phase
J 
 γ , plotted as a function of tunneling strength γ (in units of the
bulk superconducting gap �) for several temperatures T (in units of
�eff = �

√
Eso/J ). All curves plotted with Zeff = 3.

We see from Eq. (48) that an increased tunneling strength γ in
turn increases the zero-bias conductance at finite temperature.
This is also demonstrated in Fig. 12, where we plot the
zero-bias conductance as a function of γ for several different
temperatures. We obtained Fig. 12 by substituting Eq. (28)
(after making the appropriate replacements) into Eq. (30)
and performing the integration numerically. We also find
that the zero-bias conductance drops discontinuously to zero
for γ = 0; this is due to the fact that at T = 0,G(0) =
2e2/h if γ > 0 and G(0) = 0 if γ = 0 (when there is no
induced superconductivity in the wire and thus no topological
phase).

We now relax all restrictions on the parameter space and
numerically calculate the conductance as a function of both
energy E and Zeeman field J at finite temperature. The results
of our calculation are shown in Fig. 13, where we plot G(E,J )
choosing μ/� = 1.2, Eso/� = 1.5, γ /� = 1.5, Z = 3, gS/

g = 0.05 (or g = 40), and T/Tc = 0.1 (Tc here is the critical
temperature of the superconducting substrate).

Comparing with the intrinsic pairing model (Fig. 9), there
are a few qualitative differences. First, the conductance in the
tunneling model exhibits two distinct peaks as a function of
energy over the entire range of field strengths (as shown in
the previous section, these peaks correspond to the induced
gap in the nanowire and the bulk gap of the superconductor).
The position of the lower-energy peak starts at E = Eg in the
absence of the field, decreases as the field is turned on, and
is fixed to E = 0 in the topological phase. The position of
the higher-energy peak decreases nearly linearly with the field
due to our choice for modeling the field dependence of the
BCS gap. Second, as previously discussed, the topological
phase transition is shifted to a higher field strength Jc =√

μ2 + γ 2.

IV. CONCLUSIONS

We calculated the conductance of a one-dimensional nor-
mal/superconducting nanowire junction within the Blonder-
Tinkham-Klapwijk theory in the presence of spin-orbit cou-
pling, an external magnetic field, and conventional supercon-
ductivity, utilizing a combination of analytical methods at
zero temperature and numerical methods at finite temperature.
We directly compared two models of the superconducting
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FIG. 13. (a) Conductance as a function of energy E and Zeeman field J at finite temperature within the tunneling model. Plotted with
μ/� = 1.2, Eso/� = 1.5, γ /� = 1.5, Z = 3, T /Tc = 0.1, and gS/gN = 0.05. (b) Line cuts of plot in (a) for different values of J , ranging
from J/� = 0 to J/� = 3 in steps of J/� = 0.1. Plots offset by 0.1 × e2/h for clarity.

proximity effect: one where superconductivity is incorporated
through an intrinsic pairing mechanism in the nanowire, and
one where superconductivity is induced through a tunnel
coupling with a bulk superconducting substrate. We found that
the conductance in the tunneling model exhibits an additional
peak at the energy corresponding to the gap of the underlying
superconductor. While the zero-bias conductance is fixed to
2e2/h in the topological phase at zero temperature (in both
models), we showed that finite temperature can significantly
reduce the amplitude of the zero-bias peak when the normal
and superconducting segments of the nanowire are weakly
coupled.

Before concluding, we would like to remark on how our
numerical calculations of the conductance at finite temperature
within the tunneling model compare with the most recent
generation of experiments on InSb nanowires [25]. Choosing
realistic parameters for InSb nanowires (as we do in Fig. 13),
we are able to reproduce most of the qualitative experimental
features. These include both the profile of the gap-closing
transition as a function of the field and the presence of
a secondary peak in the conductance that persists into
the topological phase. The largest discrepancy between our
calculation and the experiment is that we need to choose
a much higher temperature than what is reported (Texp ∼
0.01Tc), as the features produced by our model at lower
temperatures are much sharper than those observed. However,
as noted in Ref. [25], the width of the observed zero-bias
peak is larger than what would be expected due solely to
thermal broadening. If we incorporate all possible broadening
effects (e.g., multiple subbands in the wire, soft tunnel
barrier, inelastic and dephasing processes, etc.) into a single
effective temperature parameter, then our choice is not so
unrealistic.
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APPENDIX A: BOUNDARY CONDITIONS AND
SCATTERING AMPLITUDES FOR Eso � J,�

In this appendix, we give explicit forms for both the
boundary conditions and scattering amplitudes in the strong
spin-orbit limit discussed in Sec. II B 1 of the main text. The
scattering wave functions in the normal and superconducting
segments are given in Eqs. (19) and (21), respectively, and
the boundary conditions that need to be imposed are given in
Eq. (8).

First, we consider the case of an incident electron from the
lower subband, which corresponds to choosing ψi− in Eq. (19).
Continuity of the wave function at x = 0 imposes a set of four
conditions given by

1 + r+−uJ = te−u� + 1√
2

(th+v�−J + te+v�+J ), (A1a)

r+−vJ − r−− = th−v� − 1√
2

(th+u�−J − te+u�+J ), (A1b)

a+−uJ = th−u� − 1√
2

(th+v�−J − te+v�+J ), (A1c)

a+−vJ + a−− = te−v� + 1√
2

(th+u�−J + te+u�+J ). (A1d)

In the boundary condition imposed on the derivative of the
wave function, we neglect terms proportional to 1/α:

1 − te−u� = iZ(1 + r+−uJ ), (A2a)

r−− + th−v� = iZ(r+−vJ − r−−), (A2b)

th−u� = iZa+−uJ , (A2c)

a−− − te−v� = iZ(a+−vJ + a−−). (A2d)

Solutions to Eqs. (A1) and (A2) are given below in Eq. (A6).
Next, we consider the case where the incident electron is

from the upper subband, which corresponds to choosing ψi+

205439-11



CHRISTOPHER REEG AND DMITRII L. MASLOV PHYSICAL REVIEW B 95, 205439 (2017)

in Eq. (19). Continuity of the wave function imposes a set of
four conditions given by

vJ + r++uJ = te−u� + 1√
2

(th+v�−J + te+v�+J ),

(A3a)

uJ + r++vJ − r−+ = th−v� − 1√
2

(th+u�−J − te+u�+J ),

(A3b)

a++uJ = th+u� − 1√
2

(th+v�−J − te+v�+J ),

(A3c)

a++vJ + a−+ = te−v� + 1√
2

(th+u�−J + te+u�+J ).

(A3d)

Again neglecting terms proportional to 1/α, the four con-
ditions imposed on the derivative of the wave function

are

− te−u� = iZ(vJ + r++uJ ), (A4a)

r−+ + th−v� = iZ(uJ + r++vJ − r−+), (A4b)

th−u� = iZa++uJ , (A4c)

a−+ − te−v� = iZ(a++vJ + a−+). (A4d)

Solutions to Eqs. (A3) and (A4) are also given below in
Eq. (A6).

To aid in expressing the solutions for the scattering
amplitudes, we define the quantities

η±
α,β = uαuβ ± vαvβ, (A5a)

ξ±
α,β = uαvβ ± vαuβ. (A5b)

With these definitions, the scattering amplitudes can be
expressed as

r+− = Z

2D

{
uJ (Z + i)

[
2v2

�v�+J v�−J Z2 + 2u2
�u�+J u�−J (1 + Z2) − u�v�ξ+

�+J,�−J (1 + 2Z2)
] − u2

�vJ ξ−
�+J,�−J (Z − i)

}
,

(A6a)

r−− = Z2

2D
{2uJ vJ η−

�,�−J η−
�,�+J − ξ+

�,J ξ−
�,J ξ−

�+J,�−J }, (A6b)

a+− = u�Z

2D
{u�vJ ξ+

�+J,�−J (Z + i) − uJ v�ξ−
�+J,�−J (Z − i) − 2vJ v�v�+J v�−J (Z + i)}, (A6c)

a−− = 1

2D

{
2u�uJ v�vJ ξ−

�+J,�−J (Z2 − 1) + ξ+
�,J ξ−

�,J ξ+
�+J,�−J Z2 − 2u�v�

(
u2

J u�+J u�−J − v2
J v�+J v�−J

)
(1 + Z2)

}
, (A6d)

r++ = 1

2D

{
2uJ vJ

(
v2

�v�+J v�−J Z4 − u�v�ξ+
�+J,�−J Z2(1 + Z2) + u2

�[u�+J u�−J (1 + 2Z2)2 − v�+J v�−J ]
)

−u2
�v2

J ξ−
�+J,�−J (Z − i)2 − u2

J u2
�ξ−

�+J,�−J (Z + i)2
}
, (A6e)

r−+ = Z(u2
J − v2

J )

2D

{
u2

�vJ ξ−
�+J,�−J (Z − i) − uJ (Z + i)

[
2v2

�v�+J v�−J Z2 + 2u2
�u�+J u�−J (1 + Z2)

−u�v�ξ+
�+J,�−J (1 + 2Z2)

]}
, (A6f)

a++ = u�

(
u2

J − v2
J

)
2D

{2v�v�+J v�−J Z2 − u�ξ+
�+J,�−J (1 + Z2)}, (A6g)

a−+ = u�(u2
J − v2

J )Z

2D
{u�vJ ξ+

�+J,�−J (Z − i) − uJ v�ξ−
�+J,�−J (Z + i) − 2v�vJ v�+J v�−J (Z − i)} (A6h)

D = u2
�v2

J v�+J v�−J + u2
�uJ vJ ξ−

�+J,�−J (Z2 − 1) − u2
J [η−

�,�−J Z2 + u�u�−J ][η−
�,�+J Z2 + u�u�+J ]. (A6i)

APPENDIX B: CONDUCTANCE OF SPINLESS NORMAL
METAL/ p-WAVE SUPERCONDUCTOR JUNCTION

In the limit of a strong external magnetic field J 
 Eso,�

the nanowire Hamiltonian (1) maps onto the low-density limit
of the Kitaev model, which is described by Eq. (27). The
BdG equation describing spinless p-wave superconductivity
is given by

(
H0 −i�(x)(∂x/kF )

−i�∗(x)(∂x/kF ) −H0

)
ψ(x) = Eψ(x), (B1)

where H0 = −∂2
x /2m − μ,�(x) = �θ (x), and kF = √

2mμ.
Deep in the topological phase the chemical potential satisfies
μ 
 |�|. Solving Eq. (B1) in the normal segment gives a
scattering wave function

ψN (x) =
(

1
0

)
eikF x + r

(
1
0

)
e−ikF x + a

(
0
1

)
eikF x, (B2)

where r and a are normal and Andreev reflection amplitudes,
respectively. In the semiclassical limit, the scattering wave
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function in the superconducting segment is given by

ψS(x) = t1

(
u�

v�

)
eip+x + t2

(−v�

u�

)
e−ip−x, (B3)

where u(v)2
� = (1 ± 
/E)/2,
 =

√
E2 − |�|2, and p± =

kF ± 
/vF (vF = kF /m is the Fermi velocity). Comparing
with the scattering wave function of a conventional s-wave
superconductor [e.g., the spin-up channel (first and last terms)
of Eq. (12)], the only difference in the p-wave case is the sign
of the upper component of the transmitted holelike state [the
second term of Eq. (B3)].

In the semiclassical limit, the boundary conditions that
must be imposed at x = 0 are ψS(0) = ψN (0) and ∂xψS(0) −
∂xψN (0) = 2kF Zψ(0), where Z = U/vF is a dimensionless
barrier strength. Solving, we obtain the scattering amplitudes

a = u�v�

u2
� + Z2

, (B4a)

r = −Z(i + Z)

u2
� + Z2

, (B4b)

t1 = u�(1 − iZ)

u2
� + Z2

, (B4c)

t2 = iv�Z

u2
� + Z2

. (B4d)

Comparing with Eq. (14), we simply replace (u2
� − v2

�) →
(u2

� + v2
�) = 1, a direct consequence of the sign difference

discussed in the previous paragraph. Given the scattering
amplitudes of Eq. (B4), we find a conductance

G(E < |�|) = e2

h

2|�|2
|�|2 + 4E2Z2(1 + Z2)

, (B5a)

G(E > |�|) = e2

h

2E[E + 
(1 + 2Z2)]

[E(1 + 2Z2) + 
]2
. (B5b)

Note that at E = 0, the conductance is G(0) = 2e2/h regard-
less of barrier strength. For finite Z, we obtain a peak in the
conductance spectrum at zero energy, with the width of this
peak determined by Z.

APPENDIX C: INTEGRATING OUT SUPERCONDUCTOR

In this appendix, we review the method of integrating out
the superconducting degrees of freedom to obtain an effective
theory describing a tunnel-coupled nanowire [1,41,42,48]. We
begin with the Hamiltonian described by Eq. (33), where the
nanowire Hamiltonian can be expressed in momentum space
as

HNW + HB = −1

2

∑
σ,σ ′

∫
dkx

2π

[
ψσ (kx)HT

σσ ′(kx)ψ†
σ (kx)

− ψ†
σ (−kx)Hσσ ′(−kx)ψσ ′(−kx)

]
, (C1)

where Ĥ(kx) = k2
x/2m − μ − αkxσ̂z − J σ̂x . Defining a spinor

of second-quantized operators in the Heisenberg representa-
tion, η(k,ω) = [η†

↑(k,ω),η†
↓(k,ω),η↑(−k,−ω),η↓(−k,−ω)]T ,

where ω is a Matsubara frequency, we can express the action

of the superconductor in matrix form as

SS = 1

2

∫
dω

2π

∫
d3k

(2π )3
η†(k,ω)SS(ky,ω)η(k,ω). (C2)

In Eq. (C2), SS(ky,ω) = −iω + ξkS τ̂z − �τ̂yσ̂y . If we
define an additional spinor ν(kx,ω) = −(t/2)[ψ†

↑(kx,ω),

ψ
†
↓(kx,ω),ψ↑(−kx,−ω),ψ↓(−kx,−ω)]T , we can express the

tunneling action as

St =
∫

dω

2π

∫
d3k

(2π )3
[ν†(kx,ω)η(k,ω) + H.c.]. (C3)

The coherent state path integral for the partition function of
the system is then given by

Z =
∫

D[ψ̄,ψ]
∫

D[η̄,η]e−S[ψ̄,ψ,η̄,η], (C4)

where ψ̄,ψ and η̄,η are the Grassman variables correspond-
ing to the nanowire and superconductor fermion operators,
respectively. Because the action in Eq. (C4) is quadratic, we
can integrate out the η fermions exactly. Upon doing so, we
obtain an effective action describing the nanowire given by
Seff[ψ̄,ψ] = SNW [ψ̄,ψ] + SB[ψ̄,ψ] + δS[ψ̄,ψ], where

δS[ψ̄,ψ] = t2
∑

σ

∫
dω

2π

∫
d3k

(2π )3

{
iω + ξkS

ω2 + ξ 2
kS + �2

× ψ̄σ (kx,ω)ψσ (kx,ω) − �

ω2 + ξ 2
kS + �2

× [ψ↓(kx,ω)ψ↑(−kx,−ω) + H.c.]

}
. (C5)

Now all that remains is to carry out the integration over k‖ =
(ky,kz). For example, we can evaluate the integral

∫
d2k‖
(2π )2

t2

ω2 + 1
4m2

S

[
k2
x + k2

‖ − k2
FS

]2 + �2
= γ√

�2 + ω2
,

(C6)

where we define an energy scale associated with the tun-
neling strength γ = πν2Dt2, and ν2D = mS/2π is the two-
dimensional density of states. Performing the integration over
k‖ in Eq. (C5), we obtain the effective action describing the
nanowire,

Seff[ψ̄,ψ] =
∑
σ,σ ′

∫
dω

2π

∫
dkx

2π
{ψ̄σ (kx,ω)[iω/�(ω)

− Hσσ ′(kx)]ψσ ′(kx,ω) − �[1/�(ω) − 1]

× [ψ↓(kx,ω)ψ↑(−kx,−ω) + H.c.]}, (C7)

where �(ω) = [1 + γ /
√

�2 + ω2]−1. Comparing with the
action of a conventional BCS superconductor, we simply
need to make the replacements ω → ω/�(ω) and � →
�[1/�(ω) − 1] to describe the superconductivity that is
proximity induced in the nanowire.
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