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The in-plane thermal conductivity of silicon phononic membranes is investigated by micro time domain ther-
moreflectance and Monte Carlo simulations. Strong reduction of thermal conductivity is observed mainly due to
phonon boundary scattering for both aligned and staggered lattices of holes. The measured and calculated thermal
conductivities of the porous membranes with cylindrical holes are found to be in good quantitative agreement
(at 4 K and 300 K). A significant difference between thermal conductivities of aligned and staggered lattice of
identical porosities is observed. This difference is shown to arise from ballistic phonons that acquired directionality
by propagating between the holes. The directionality effect strengthens when the temperature is decreased or when
the diameter of the holes becomes close to the period. Finally, we propose a model, which quantifies and explains
the difference between thermal conductivities of aligned and staggered lattices based on geometric considerations.
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I. INTRODUCTION

Physics of nanoscale heat conduction has attracted high
attention due to its importance for various applications in
the fields of microelectronics, optoelectronics, and energy
harvesting, but also for its intriguing divergence from classical
physics of heat conduction [1]. This is particularly true for
dielectrics and semiconductors where heat is mostly carried
by phonons (quanta of normal modes resulting from lattice
vibrations). Unlike in bulk, heat conduction in nanostructures
cannot always be described by Fourier’s law, as these phonons
are scattered by the boundaries of the structure, which can
significantly reduce thermal conductivity. As a consequence,
thermal transport at length scales comparable to the phonon
mean free paths (MFPs) or to the phonon wavelengths is now
a topic of great interest.

In the past few years, reduced thermal conductivity has been
demonstrated in various semiconductor nanostructures, like
thin nanofilms [2,3], nanowires [4,5], nanoporous materials
[6,7], and, more recently, thin membranes with periodic arrays
of holes [8–11] known as phononic membranes. The latter
nanostructures are very promising for controlling heat trans-
port without affecting the electron transport properties much,
thus favoring potential applications in thermoelectricity [10].
In phononic membranes, the thermal conductivity reduction
is mostly caused by the phonon scattering on hole boundaries
[8,12,13] and thus correlates with the surface-to-volume ratio
of the structure [8,14,15]. Recent experiments [8,10] have also
indicated that thermal conductivity of complex nanostructures,
such as phononic membranes might be controlled solely by
the smallest dimensions of the structure, as the narrowest
regions naturally limit the phonon total MFP [13,16]. However,
despite these advances, characteristic lengths at which these
nanoscale phenomena take place remain unclear, and complete
understanding of heat conduction in phononic membranes re-
quires a systematic experimental and theoretical investigation
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of phonon transport in structures of different sizes and for
different lattices of holes (aligned, staggered, hexagonal, etc.).

In this paper, we investigate the in-plane thermal con-
ductivity in silicon phononic membranes of different peri-
ods and lattices using micro–time domain thermoreflectance
(µ-TDTR) measurements and Monte Carlo (MC) simulations.
We find good quantitative agreement between experiments and
simulations showing that thermal conductivity of phononic
membranes can be explained by limitations of total MFPs
caused by phonon scattering on the hole boundaries. Moreover,
our low-temperature simulations indicate the presence of
ballistic phonon transport, which shows heat directionality
between the holes of phononic membranes.

The paper is organized as follows: the successive steps
about elaboration of phononic membranes and how their
thermal properties are measured using µ-TDTR are briefly
detailed in Sec. II; then, the Monte Carlo method used to
solve the Boltzmann Transport Equation is described in
Sec. III. Particular attention is paid to the description of
characteristic phonon MFPs due to three-phonon processes
and boundary scattering. Experimental and simulation results
are given in section IV; thermal conductivity for both aligned
and staggered phononic membrane lattices is investigated,
and its variation as a function of phonon MFPs is discussed,
including accumulated thermal conductivity considerations.
Section V is focused on the impact of hole lattice in phononic
membranes at low and room temperature. Ballistic/diffusive
transport is studied, and a model based on a “direct passage”
theory is suggested to understand the impact of lattice,
periodicity/size of holes, on thermal conductivity lowering. A
brief conclusion summarizes the main outputs of this paper,
and appendixes support our arguments.

II. SAMPLE PREPARATION AND THERMAL
CONDUCTIVITY MEASUREMENTS

A. Sample fabrication

The phononic membrane samples were fabricated on a
silicon-on-insulator wafer with 1-μm-thick buried SiO2 layer
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FIG. 1. (a) Schematic of a typical sample and SEM images of phononic membranes with (b) aligned and (c) staggered lattices of holes. Scale
bars are 500 nm. (d) High-resolution SEM image of a hole surface showing that surface roughness does not exceed 2 nm. Scale bar = 10 nm.
(e) Cross-sectional SEM image showing vertical hole profiles. (f) Simplified schematic of µ-TDTR experimental setup.

and a 145-nm-thick top monocrystalline (100) silicon layer.
First, we deposited 125-nm-thick aluminum pads on the
top of the silicon layer using electron beam physical vapor
deposition. Next, the phononic membranes were formed in the
silicon layer using electron beam lithography followed by dry
reactive ion etching. Finally, the structures were suspended
using hydrofluoric vapor that removed the buried SiO2 layer.
Thus, each sample consisted of a 5-μm-wide, 25-μm-long,
and 145-nm-thick suspended silicon bridge, 4 × 4 μm [2]
aluminum pad in the center of the bridge, and phononic
membrane regions on both sides of the bridge, as shown in
Fig. 1(a).

To investigate how hole alignment affects heat conduction
in phononic membranes, we compared samples with aligned
[Fig. 1(b)] and staggered [Fig. 1(c)] arrays of holes. The
staggered lattice is formed by shifting every second row of
the aligned square lattice by half a period and should not
be confused with a hexagonal lattice, as both aligned and
staggered lattices have the same porosity, density of holes,
and surface-to-volume ratio. To study the heat conduction at
different characteristic lengths, we fabricated samples with
three different periods (a = 200, 350, and 500 nm) and several
different porosities for each period. Two identical sets of
samples were fabricated.

To evaluate the quality of samples, we performed atomic
force microscopy (AFM) on the top surface of the wafer and
high-resolution scanning electron microscopy (SEM) on the
hole boundaries. The AFM analysis showed an atomically
smooth top surface with surface roughness well below 0.5 nm.
Although surface roughness of holes cannot be precisely
measured by the SEM, we estimated that the roughness is less
than 2 nm, as shown in Fig. 1(d). Figure 1(e) shows vertical
hole profiles. Since all samples of the same set were fabricated
simultaneously on the same wafer, we do not expect variations
of surface roughness from one sample to another.

B. μ-TDTR experimental technique

To study heat conduction in our samples we used the
µ-TDTR technique. Figure 1(f) shows a simplified schematic
of the setup. Pulsed pump laser (λ = 642 nm) and continuous
wave probe laser (λ = 785 nm) were focused by an optical
objective (×40) on samples placed in a He-flow cryostat under
high vacuum (< 10−4 Pa). At each temperature, we used the
minimum possible power of the lasers, so that the laser beams

do not increase the temperature of samples by more than
few kelvins. Every 100 μs, the pump laser heated the metal
pad with a 1-μs-long pulse, while the probe laser measured
subsequent changes in the reflectance �R/R, related to a
change in temperature, of the metal pad. A typical TDTR
signal consisted of a quick rise caused by the pump pulse and
exponential decay due to heat dissipation from the metal pad.

To extract the thermal conductivity of phononic membranes
at room temperature, we modeled the experiment with the same
sample geometry, including holes but without roughness, using
the finite element method (FEM) implemented by Comsol
Multiphysics 4.1. In the FEM model, we used thermal conduc-
tivity of the phononic membrane regions as a free parameter;
thus, once the simulated signal matched the experimental
TDTR signal, we obtained the thermal conductivity of the
phononic membrane.

To minimize the measurement inaccuracy, each sample
was measured twice on different days. Thus, for each type
of phononic membrane we obtained four values of thermal
conductivity (i.e., two values on two identical sets of sam-
ples). The presented values of thermal conductivity at room
temperature are the average of these four measurements with
error bars showing the standard deviation. More details on
our experimental technique and modeling can be found in
Ref. [16].

Additionally, to gain some insight into the low temperature
physics of phononic membranes, we measured one set of
samples at 4 K. Since at 4 K we will consider only relative
values of thermal conductivity, we used simplified FEM
simulations in which we simulated a membrane without holes
to extract the effective thermal conductivity (κeff) of each
sample. The effective thermal conductivity is related to the
regular thermal conductivity as κ = κeff/F , where F is the
volume correction factor, which is canceled when the ratio
of thermal conductivities of aligned and staggered samples
is considered. This simplified approach is much less time
consuming and generates a smaller additional inaccuracy
caused by the FEM modeling.

III. MODELING PHONON TRANSPORT IN PHONONIC
MEMBRANES

A. Monte Carlo solution of BTE in phononic membranes

The Boltzmann Transport Equation (BTE) for phonons
is solved with a MC technique in the relaxation time
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FIG. 2. Schematic representation of the aligned and staggered
phononic membranes for MC simulations, where a is the period and
d is the diameter of the holes.

approximation [Eq. (1)]. The phonon’s distribution function
f at a given temperature is derived from the tracking of
pseudoparticles that carry a given energy h̄ω and move with
a group velocity given by vg = ∇K ω. These properties may
change during the simulated time if the pseudoparticles interact
via phonon-phonon processes, scattering on impurities and
scattering on the geometrical boundaries of the nanostructure.
Such an approach, formerly developed for bulk and thin films
[17], was improved using a reduced variance technique [18]
and successfully adapted to porous media [19].

∂f

∂t
+ ∇K ω · ∇rf = f 0 − f

τ (ω,p,T )
(1)

In Eq. (1), τ is the relaxation time, while f 0 is the Bose-
Einstein distribution at thermal equilibrium. The main features
of the MC method applied to the BTE are extensively detailed
in previous studies [17–19]. We just recall here the successive
steps to model heat transport by phonons in a nanostructure
like a phononic membrane:

(1) Design of the geometry of the phononic membrane
where characteristic lengths and boundary conditions are
defined. Here cylindrical holes are set with axis along the x

direction (see Fig. 2). They can be in an aligned or a staggered
configuration.

(2) Discretization of the system, which is divided into
20 cells of one period length along the z direction. Periodic
conditions are set along the y direction. For the top and bottom
surfaces of the membrane (along the x direction), boundary
conditions are set as diffuse at 300 K and specular at 4 K
considering the phonon wavelengths at these temperatures.
Reflections at the holes are always set as specular (see
Appendix A for a justification of specular reflections at the
holes at room temperature). The first and the last cells are
blackbodies, playing the roles of hot and cold reservoirs, where
the temperature is kept constant in order to create a thermal
gradient within the structure.

(3) Sampling of phonon population in each cell (i.e.,
frequency, polarization, and group velocity, using an energy
cumulative distribution function [19]). For each phonon,
random space position and propagation direction are assigned
during this stage. Phonon spectral properties of Si (Bose-
Einstein distribution, dispersion curves, and density of states)

are derived from bulk crystalline characteristics using data
provided by Pop et al. [20].

(4) Advective transport of phonons with respect to their
initial positions, propagation directions, and simulation time
step (δt). Reflections at geometrical boundaries are calculated
during this step.

(5) Internal phonon scattering, which occurs after the drift
phase in order to restore thermal equilibrium. The scattering
probability is calculated taking into account the phonon
relaxation time τ (ω,p,T ) as Pscat = 1 − exp(−δt/τ ), and
random numbers are drawn to decide if umklapp, normal, or
impurity scattering occurs [17]. According to the considered
phenomenon, frequency, polarization, group velocity, and/or
propagation directions are resampled. In this paper semiem-
pirical lifetimes proposed by Holland are used [21]. Constants
used in the latter phonon lifetime expressions are adjusted to
take into account realistic dispersion properties and to recover
bulk thermal conductivity of silicon at both low and room
temperatures. Those parameters are given in the appendix of a
previous paper [19].

(6) Thermalization of the first and last cells according
to the prescribed temperature gradient. Calculation of the
phonon heat flux Jz is achieved considering the energy
transported by all the sampled phonons in the z direction:
Jz = 1/V × ∑

h̄ωvg,z, where V is the volume of a simulation
cell.

During a MC simulation, the last three steps are repeated
until steady state (constant heat flux) is reached. Simulation
time step is typically set to 1 ps. For the considered phononic
membranes with lengths ranging from 3.2 to 10 μm, total
duration of 200 to 800 ns were respectively considered
to ensure that steady state is reached. Besides, to lower
uncertainties when calculating the thermal conductivity due
to heat flux fluctuations, simulations are parallelized on 16
cores. Finally, temperatures and fluxes are averaged over
the steady-state regime, and the thermal conductivity (κ) is
extracted according to the Fourier’s law Jz = −κ ∇T .

B. Models and postprocessing

During MC simulations, the temperature and heat flux
profiles along the temperature gradient are recorded in order
to compute the thermal conductivity. Additionally, simulations
can provide information on the thermal conductivity depen-
dence on the MFP (intrinsic and geometrical) and the phonons
propagation directions in phononic membranes with different
lattices.

1. Thermal conductivity as a function of carrier mean free path

Since the phonon dispersion and lifetimes inputs of the MC
procedure are frequency dependent, the thermal conductivity
accumulation as a function of frequency or three-phonon MFP
can be extracted from the sampling of the heat flux on spectral
intervals. For this calculation, the average spectral intrinsic
MFP 	(ω) is considered in the frame of three-phonon normal
and umklapp processes using Holland’s relaxation times [22];
it reads

1

	(ω,T )
= 1

3

(
2

	TA(ω,T )
+ 1

	LA(ω,T )

)
(2)

205438-3



MAXIME VERDIER et al. PHYSICAL REVIEW B 95, 205438 (2017)

where 	p(ω,T ) = vg(ω,p) × τ (ω,p,T ), with p correspond-
ing to the transverse acoustic (TA) and longitudinal acoustic
(LA) polarizations. Using this spectral three-phonon MFP,
modes that mainly contribute to heat conduction can be
distinguished. A reference analysis is done for bulk silicon
and then compared with thin-film and phononic membranes
in order to see how material downsizing affects the thermal
properties.

In nanostructures, multiple scattering events on the geo-
metrical boundaries lower the thermal conductivity compared
with bulk. This additional scattering phenomenon can be
characterized by a boundary scattering MFP 	scat bound. As
detailed in Ref. [23], a ray tracing technique can be easily
implemented in the MC simulation tool used to solve the BTE.
Within a single time step, a large number of phonons Nph are
randomly drawn within the nanostructure and allowed to drift
with respect to their group velocities. Some of them will collide
at the boundaries (walls or holes), and the number of scattering
events with the boundaries Nscat bound are counted during the
time step. The Nscat bound/Nph ratio is proportional to the
scattering probability according to an exponential probability
law Pscat = 1 − exp(−δt/τscat bound). As long as δt is short
enough to ensure that there is at most one collision per launched
phonon, thus avoiding multiple scattering, 	scat bound MFP can
be expressed as:

	scat bound(d,a,h) = vgδt

ln
( Nph

Nph−Nscat bound

) (3)

Even though the phonon population depends on frequency
and polarization, the boundary scattering MFP is a purely
geometric quantity which only varies with the thickness of
the membrane h, the hole diameter d, and the period of the

lattice a. In case of diffusive heat conduction, the boundary
scattering MFP is equal to four times volume-to-surface ratio,
as explained by Blanco and Fournier [24]. In the present case,
for the phononic membranes, it reads

	scat bound th(d,a,h) = 4V

S
= 4(ha2 − πhd2/4)

πhd + 2(a2 − πd2/4)
(4)

This theoretical formulation was retrieved from simulations
using Eq. (3), as shown in Appendix B. The boundary
scattering MFP can then be related to thermal conductivity to
identify the characteristic lengths that impact heat conduction
in the phononic membrane.

2. Geometric consideration of phonon transport in phononic
membranes

Lastly, MC simulations output directional information
(positions, velocities, and angles) about the phonons within
the structure at each time step. Thus, ballisticity as well as
directionality of heat propagation can be investigated. Here,
we will present the phonon angular distribution at the end of
the system for both aligned and staggered configurations to
study the preferential passages.

For this purpose, velocities of phonons entering the cold
reservoir are regularly recorded during the simulation, once the
steady state is reached. Then the angle between their velocity
vector and the z axis (see Fig. 2 for axes) is computed for each
phonon, and the distribution function of this “exit angle” θ is
deduced.

FIG. 3. Thermal conductivity of aligned and staggered phononic membranes, μ-TDTR measurements, and MC simulations; T = 300 K,
h = 145 nm; from top to bottom, a = 200, 350, and 500 nm. Lines serve as a guide for the eyes.
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IV. THERMAL CONDUCTIVITY MEASUREMENTS AND
SIMULATION RESULTS

A. Thermal conductivity at room temperature

First, thermal conductivities extracted from μ-TDTR exper-
iments and derived from MC simulations of several phononic
membranes with the same thickness of 145 nm are compared
as a function of the d/a ratio. Figure 3 shows aligned (left)
and staggered (right) membranes with periods of 200, 350,
and 500 nm. The unpatterned membrane (h = 145 nm) has
in-plane thermal conductivity of 75 W m−1 K−1 according to
experiments [8] and 68.4 W m−1 K−1 according to simulations.
There is a reduction by a factor of two compared with bulk
silicon (150 W m−1 K−1). For small periods and large d/a

ratios, the additional lowering of thermal conduction due
to the holes can reach 70% compared with the unpatterned
membrane. In both aligned and staggered cases, excellent
agreement between experiments and MC simulations is ob-
served for the periods of 350 and 200 nm. For the period

FIG. 4. Thermal conductivity of aligned and staggered
phononic membranes as a function of boundary scattering MFP
	scat bound th(d,a,h) = 4V/S; μ-TDTR measurements and MC simu-
lations; T = 300 K and h = 145 nm.

of 500 nm, although simulations underestimate the thermal
conductivity, the disagreement does not exceed 10–20%.

For the same d/a, thermal conductivity is higher for longer
periods a in both aligned and staggered configurations. This
can be understood in terms of neck size: when a is large, the
passage for phonons between two holes is wider. We observe
a linear decrease of thermal conductivity with increasing
d/a ratio independent of the position of the holes (aligned
or staggered). The thermal conductivity is approximately
reduced twice as d/a increases from 0.3 to 0.9. For the same
geometrical parameters, the staggered lattice always displays a
marginally lower thermal conductivity than the aligned lattice
despite the same S/V ratio, as previously observed [25].

Thermal conductivity of phononic membranes can also
be considered in the frame of boundary scattering MFP
[Eq. (4)]. Figure 4 shows that for both lattices, experimental
and theoretical data at room temperature show a clear linear
trend as a function of volume-to-surface ratio, regardless of the
period or the hole diameters. Computed boundary scattering
MFPs are of the order of neck between holes and reach
twice the thickness of the unpatterned membrane, as expected
from previous studies [26]. This shows that phonon transport
in those membranes is mostly diffusive due to multiple
diffuse boundary scattering processes. Such a behavior was
expected, as MC simulations show that temperature profile,
at steady state, is linear [17]. Similar dependence of thermal
conductivity on the surface-to-volume ratio, regardless of other
parameters, has been demonstrated experimentally [8,27] and
theoretically [14,15] for various nanostructures.

B. Accumulated thermal conductivity

The accumulated thermal conductivity calculated with MC
for bulk, unpatterned, aligned, and staggered membranes as
a function of phonon intrinsic MFP [Eq. (2)] is depicted in
Fig. 5. For bulk silicon, we see that most of the heat is carried
by phonons with intrinsic MFPs ranging from tens to hundreds

FIG. 5. Accumulated thermal conductivity of bulk and thin film
and aligned and staggered phononic membranes as a function of
three-phonon MFP 	; MC simulations, T = 300 K, h = 145 nm
(for film and phononic membranes), d = 150 nm, a = 200 nm (for
aligned and staggered phononic membranes).
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of nanometers, as expected from previous studies [28]. Half of
the thermal conductivity value is accumulated by phonons
with intrinsic MFPs shorter than 500 nm. This dominant
three-phonon MFP becomes shorter in nanostructures, as the
phonons with long intrinsic MFP are regularly scattered on
membrane walls and holes. This can be understood in the
frame of the phonon residence time in the simulation domain.
In the case of multiple boundary scattering, a phonon does
not change its state but solely its propagation direction. For
phononic membranes with large d/a ratio, this means that a
phonon needs more time to travel from the hot to the cold
reservoir. Thus, it is more likely to undergo a three-phonon
scattering process. In the latter case, the state (frequency,
polarization, and group velocity) of the phonon is randomly
resampled according to the distribution function, and naturally,
the population shifts toward TA phonons of the edge of
the Brillouin zone, as expected from the phonon density
of states of silicon. For example, the contribution to the
thermal conductivity of phonons with intrinsic MFP shorter
than 200 nm is only 15% for the bulk, but becomes 35%
in phononic membranes. Thus, in phononic membranes, heat
is mostly carried by phonons with shorter intrinsic MFP
compared with bulk. However, even for a phononic membrane
with d/a = 0.75, phonons with intrinsic MFP longer than 1
μm contribute to almost 20% of the thermal conductivity.
They can travel for long distances with or without boundary
scattering before resetting their state and thus go through the
phononic membranes.

V. RELATIVE DIFFERENCE BETWEEN THERMAL
CONDUCTIVITIES OF ALIGNED AND STAGGERED

LATTICES

A. MC simulations and experiments

The relative difference �St
Al = (κAl − κSt)/κAl between

thermal conductivities of aligned (κAl) and staggered (κSt)
configurations has been calculated for all studied geometric
parameters. MC results are compared with experimental data
for T = 300 K in Fig. 6(a). The agreement between simu-
lations and experiments is again very good. This shows that
the difference between thermal conductivities of aligned and
staggered systems is well described by our MC simulations,
so modifications of the dispersion relations (phononic effects)
are not needed to explain the results, as the properties used in
the simulations are those of the bulk.

For small values of d/a, both configurations have roughly
the same thermal conductivity. When the d/a ratio becomes
larger than 0.6, the value of �St

Al increases. Experimental points
are scattered due to the additional inaccuracy generated by the
FEM analysis. However, in terms of thermal decays, which are
raw data of experiments, it is clear that the relative difference
increases with d/a. MC simulations predict a difference up
to 10% for large d/a. On the other hand, �St

Al tends toward
zero when d/a is small, which is meaningful because the
difference between aligned and staggered lattices of holes
should disappear when the diameter of the holes goes to zero.
(In both cases, the thermal conductivity tends to that of the
unpatterned membrane.)

FIG. 6. Relative difference between thermal conductivities in
aligned and staggered phononic membranes as a function of d/a

ratio at (a) 300 K and (b) 4 K. Comparison between MC simulations,
experiments, and DPM.

The lower thermal conductivity of staggered systems cannot
be explained in terms of diffusive boundary scattering events,
as the S/V ratio is the same for aligned and staggered config-
urations and has to be explained with other considerations. In
the aligned lattice, some phonons could propagate over a long
distance in a straight line, passing between two rows of holes,
whereas in the staggered lattice, such direct passage is at least
partially obstructed by one out of two columns of holes. This
hypothesis was also put forward in a previous paper [25]. If
the difference between aligned and staggered lattices is really
due to such directional effects, then �St

Al should increase when
the temperature is decreased as heat transport becomes more
ballistic at low temperatures [29] (three-phonon MFPs are
longer [30], and scattering on top and bottom surfaces of the
membrane is more specular [31]). To investigate this increase
of ballisticity, a similar study has been done at T = 4 K. At this
temperature, the carried energy is very small but is balanced
by the very long intrinsic MFPs of phonons which are scarcely
scattered by anharmonic processes [22].
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FIG. 7. Distributions of phonon exit angle θ (°) at the end of
the system for aligned and staggered phononic membranes (a =
160 nm, d = 126 nm) at (a) T = 4 K and (b) T = 300 K.

The relative difference between aligned and staggered
lattice at 4 K obtained with experiments and simulations is
depicted in Fig. 6(b). Even if the absolute values of thermal
conductivity can be biased, the agreement on �St

Al between
simulations and measurements is acceptable. As expected from
directional considerations, �St

Al reaches larger values at 4 K
than at 300 K according to both experiments and simulations.
For d/a = 0.9, MC simulations predict a relative difference
between aligned and staggered lattices of almost 40% at 4 K.
Moreover, as the uncertainty of numerical results is much
smaller at 4 K (very weak heat flux variations), we can see
that �St

Al only depends on d/a and not on the period. The plot
of MC data has a particular shape, with two local maxima at
d/a ∼ 0.4 and d/a ∼ 0.6. Nevertheless it is still globally
increasing with d/a.

To directly observe the phonons which propagate in a
straight line passage between the holes in aligned lattices,
the distribution of phonon angle (θ ) at the end of the system
for T = 4 K is shown in polar coordinates in Fig. 7(a) for
the phononic membrane with a = 160 nm and d = 126 nm.
Figure 7(a) shows that most of the phonons move along the
direction of measurement after passing through the aligned
lattice. More than 80% of these phonons are located in
front of the neck, which means that they surely propagated
ballistically between the holes. In the staggered lattice, there
is no observable peak around 0° because these phonons have
been scattered by the holes and their direction has changed.
However, despite the fluctuations, the angle distribution for
the staggered lattice shows that more phonons exit the system
with angles around −25° and 25° that correspond to the straight

FIG. 8. Direct passage between the holes for the aligned and
staggered lattices.

directions between the holes in this case (see the Direct Passage
Model section).

However, at T = 300 K the distributions for aligned
and staggered lattices were broader and roughly the same
[Fig. 7(b)]. No directionality was observed due to statisti-
cal uncertainties and scattering (anharmonic processes and
scattering by the membrane’s top and bottom surfaces, which
are not specular at room temperature). Nevertheless, phonons
with long intrinsic MFP still have a better chance to exit
the system at 90° in an aligned lattice than in a staggered
lattice.

B. Direct passage model

We have established that phonons exiting the phononic
membrane have rather specific directions following the angles
defined by the direct passages between the holes. Here, we
develop a simple model, called Direct Passage Model (DPM),
which takes into account the width of the direct passages in
the aligned and staggered lattices to explain the difference in
thermal conductivity between these two lattices.

In the DPM, we start by assuming that the thermal
conductivities of the aligned lattice and staggered lattice are
identically proportional to the width of the direct passage � :
κ ∝ �α , where α is determined by experiments or simulations
(Appendix C). In the case of the aligned (Al) lattice of
holes, the width of the direct passage is simply equal to
the neck �Al = n = a − d, as depicted in Fig. 8. For the
staggered (St) lattice, the size of the direct passage �St is
smaller than �Al for the same period and diameter and equal to
�St = 2a/

√
5 − d. Because of the symmetry, a second passage

of width �St should be considered in the staggered lattice, but
the heat flux split in two in these two passages. Thus, we
can consider only one passage of width �St for the total heat
flux.

At this stage, one can quickly see that �St = 0 yields
κSt = 0, which is obviously incorrect because in that case
the neck is nSt,0 = a(1 − 2/

√
5), which is not zero. Actually,

�St = 0 means that ballistic phonons must necessarily collide
on the holes of the staggered lattice. Because of the large
number of collisions, the phonons in this situation can be
considered diffused. By analogy with the Eucken model, we
assume a correction factor for the porosity nSt,0(φSt,0/φn,0)2,
where φSt,0 = π/5 is the porosity for �St = 0 and φn,0 = π/4
is the porosity for n = 0.

The final expressions of the thermal conductivities
for the aligned and staggered lattices in the DPM are
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given by:

κAl ∝ (�Al)
α = nα (7)

κSt ∝
[
�St + nSt,0

(
φSt,0

φn,0

)2
]α

=
[

2a√
5

− d + a

(
1 − 2√

5

)
φ2

St,0

φ2
n,0

]α

(8)

where the proportionality factor cancels when we compute the
relative difference �St

Al. Also, by factorizing with a, we see
that �St

Al becomes dependent only on the d/a ratio:

�St
Al = 1 −

[ 2√
5

− d
a

+ (1 − 2/
√

5)φ2
St,0/φ

2
n,0

1 − d/a

]α

(9)

At 300 K, the thermal conductivity follows a power
law κ ∝ n0.35, whereas at 4 K, it can be approximated by
κ ∝ n; thus, α is equal to 0.35 at 300 K and to 1 at 4 K (the
determination of α is done in Appendix C). Figure 6(a) shows
good agreement between the model, experimental data, and
MC simulation results at both 4 and 300 K.

The model predicts that the relative difference at 4 K is
larger than at 300 K, as we would expect because of the
decreased scattering rate. The DPM also successfully explains
the superposition of the points as a function of d/a, as well
as the period dependence when �St

Al is plotted as a function
of the neck (see details in Appendix D). Interestingly, the
MC simulations show two local maxima located at d/a =
0.4 and 0.6, which are not captured by the DPM. One
possible explanation is that, in this state, the DPM takes
into account only the widest direct passage, whereas several
smaller passages actually exist for d/a < 2/

√
5. However, the

integration of these other passages is nontrivial and requires
further investigations.

VI. CONCLUSION

In this paper, we investigated how the thermal conductivity
of phononic membranes is affected by geometric parameters,
such as the period, the diameter of the holes, the S/V ratio, and
the pattern of the hole lattice. Comparing thermal conduction
in aligned and staggered lattices of holes, MC simulations of
phonon transport based on bulk properties (dispersion curves,
phonon lifetimes, etc.) quantitatively reproduced experimental
results at 300 K without any adjustment parameters.

The present paper also demonstrates that the difference
between thermal conductivity of aligned and staggered lattices
arises from directional effects when considering phonon trans-
port. Indeed, hole occurrence induces strong backscattering
of phonons and thus naturally reduces thermal conductivity.
Nevertheless, at room temperature, MFP spectral analyses
reveal some evidence that even phonons with long MFPs
still contribute to thermal conductivity. To understand this
behavior, we can assume that a part of heat conduction in
phononic membranes is ballistic, as low frequency phonons
can travel long distances (greater than the period or the neck)
between holes, even if they are subject to boundary scattering.
Such directional effects could not be observed in phononic

A
l

S
t

FIG. 9. Comparison of specular and diffusive reflections of
phonons at the holes for a = 200 nm at T = 300 K. (a) Thermal
conductivity of aligned and staggered lattices. (b) Relative difference
between thermal conductivity of aligned and staggered lattices.

membranes with macroscopic characteristic lengths [32], as
three-phonon scattering processes will dominate, as in bulk
materials.

At low temperature, heat conduction is partly ballistic
(phonon intrinsic MFPs are longer), so the difference between
aligned and staggered lattices increases, which allowed us to
directly observe ballistic phonons with MC simulations. Thus,
designing the lattice of phononic membranes could help to
control the propagation direction of phonons. One can imagine
other lattices than aligned and staggered which could focus or
spread phonons in specific regions.

Finally, we developed a simple model that explains thermal
conduction in phononic membranes with both lattices for
different d/a ratios at 4 K and 300 K. This model, based only
on geometric considerations (straight passages between holes),
can predict the difference in thermal conductivity between the
two lattices, and its accuracy could be improved by taking into
account more straight passages. A further study could also
investigate the effect of the lattice on thermal conductivity for
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a wide range of temperatures in order to fully understand the
transition from ballistic to diffusive heat conduction regimes.
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APPENDIX A

At first glance, specular boundary condition at the holes
was assumed for Monte Carlo simulations at room temper-
ature in order to maximize the possible impact of the hole
pattern on ballistic transport. Then, the impact of the hole
boundary condition (specular or diffuse reflections) on thermal
conductivity in Monte Carlo simulations was investigated
for one period (a = 200 nm). It was found that, at room
temperature, the diffuse condition just slightly reduced the
thermal conductivity compared with the specular condition
[Fig. 9(a)]. When the holes became large, the difference
between thermal conductivities of membranes with specular
and diffuse reflections at the holes increased a bit, as the neck
was strongly reduced. Yet it remained less than 15%.

In fact, diffuse or specular reflections at a boundary really
changes thermal conductivity only when the boundary is
parallel to the heat flux. In this case, only diffuse condition
will lead to possible backscattering of phonons and reduction

4

4

FIG. 10. Boundary scattering MFP obtained from MC ray tracing
simulations as a function of theoretical boundary scattering MFP
[Eq. (4)], which is equal to 4V/S, for the unpatterned membrane
(h = 145 nm) and aligned and staggered phononic membranes. The
symbols for aligned systems are hidden by those for staggered systems
because both lattices have the same boundary scattering MFP.

of thermal conductivity. This is why diffuse conditions are
mandatory on membrane walls at room temperature. When
the boundary is partly perpendicular to the heat flux, though,
as for the holes in phononic membranes, the specular or diffuse
condition has less impact on global thermal transport because
even specular reflections can lead to backscattering.

Moreover, it is verified from Fig. 9(b) that the relative
difference between aligned and staggered lattices is the same
for both diffuse and specular conditions at the holes. As the
impact of the hole boundary condition on thermal transport and
directionality is found to be weak, simulations with specular
reflections were kept.

APPENDIX B

The boundary scattering MFP has been computed from
MC ray tracing simulations using Eq. (3). The computed
	scat bound for the unpatterned membrane (h = 145 nm) and
aligned and staggered phononic membranes with different
periods is plotted as a function of the theoretical boundary
scattering MFP [Eq. (4)] in Fig. 10. All the points follow the

FIG. 11. Power law approximation of thermal conductivity as a
function of the neck for aligned and staggered lattices of different
periods at (a) 300 K and (b) 4 K.
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theoretical plot 	scat bound = 4V/S. This proves the validity of
Eq. (4) for unpatterned and phononic membranes.

APPENDIX C

In order to determine the power α for the DPM, we
had to fit the thermal conductivity of phononic membranes.
Figures 11(a) and 11(b) show the fits of thermal conductivities
obtained in this paper and found in the literature [8,16]
at 300 and 4 K, respectively, as a function of the neck
(�Al). At 300 K, the same approximation with α = 0.35 is
able to describe both simulations and experimental results
(experimental data are taken from various references) for
aligned and staggered lattices. At 4 K, the thermal con-
ductivity can be well approximated by a linear fit, as long
as the neck is small compared with the period. Only MC
results are plotted in Fig. 11(b), but the experimental data
at 4 K also follow a linear trend. We deduce that α = 1
at 4 K.

APPENDIX D

At 4 K, plotting �St
Al values obtained with MC as a function

of the neck shows a period dependence (Fig. 12). For the same
neck, �St

Al is larger for large periods. Figure 12 shows that

FIG. 12. Relative difference between aligned and staggered lat-
tice thermal conductivities at 4 K as a function of the neck, comparison
between MC simulations, and the DPM.

the DPM correctly predicts that a larger period yields a larger
difference between the thermal conductivities of the aligned
and staggered lattices.
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