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Dirac fermions have been actively investigated in recent years, both theoretically and experimentally. Some
materials hosting Dirac fermions are natural platforms for interlayer coherence effects such as Coulomb drag
and exciton condensation. Here we determine the role played by the anomalous Hall effect in Coulomb drag in
doped massive Dirac fermion systems. We focus on topological insulator films with out-of plane magnetizations
in both the active and passive layers. The transverse response of the active layer is dominated by a topological
term arising from the Berry curvature. We show that the topological mechanism does not contribute to Coulomb
drag, yet the longitudinal drag force in the passive layer gives rise to a transverse drag current. This anomalous
Hall drag current is independent of the active-layer magnetization, a fact that can be verified experimentally. It
depends nonmonotonically on the passive-layer magnetization, exhibiting a peak that becomes more pronounced
at low densities. These findings are expected to stimulate new experiments and quantitative studies of anomalous
Hall drag.

DOI: 10.1103/PhysRevB.95.205435

I. INTRODUCTION

The past decade has witnessed an energetic exploration
of Dirac fermions in materials ranging from graphene [1]
to topological insulators [2], transition metal dichalcogenides
[3], and Weyl and Dirac semimetals [4–6]. Dirac fermions in
two dimensions are described by the Hamiltonian HD = A σ ·
(k × ẑ) + Mσz, with σ = (σx,σy,σz) the usual Pauli matrices,
k = (kx,ky) the 2D wave vector, A stems from the Fermi
velocity, and M a generic mass term. In the limit M → 0 the
quasiparticle dispersion is linear, a feature that has aroused in-
tense interest experimentally [7–21] and theoretically [22–34].
Recent studies have illuminated the considerable potential of
Dirac fermions for spintronics [35] and topological quantum
computing [36].

Certain materials hosting Dirac fermions, such as 3D
topological insulator (TI) slabs, are inherently two-layer
systems naturally exhibiting interlayer coherence effects such
as Coulomb drag [37,38], in which the charge current in one
layer drags a charge current in the adjacent layer through
the interlayer electron-electron interactions. Drag geometries
are intensively studied experimentally and theoretically in
semiconductor and Dirac fermion systems as part of the
search for exciton condensation [39–69]. The most promising
Dirac fermion materials have been magnetic TI slabs, in
which a dissipationless quantized anomalous Hall effect has
been discovered [70–73], which has already been harnessed
successfully [74], stimulating an intense search for device
applications. The time-reversal symmetry breaking required
in Hall effects [3,28,75–78] gives Dirac fermions a finite mass
and results in a nontrivial Berry curvature [3,79,80]. Coulomb
drag of massive Dirac fermions is thus directly relevant
to ongoing experiments and raises important questions: If
topological terms are present in the drag current they could
be exploited in longitudinal transport, potentially enabling a
topological transistor.

In this paper we present a complete theory of Coulomb
drag of massive Dirac fermions, focusing on the role of
the anomalous Hall contributions to the drag current. As a
model example we will consider the surface states of 3D

topological insulators in which an out of plane magnetization
exists (but no magnetic field). The central finding of our work
is that the (topological) anomalous Hall current in the active
layer does not generate a drag current at all in the passive
layer. In addition, the anomalous Hall drag current is quite
generally independent of the active-layer magnetization Ma,
and only depends on Mp, the magnetization of the passive
layer. The dependence on Mp is nonmonotonic, with a peak
at an intermediate value of Mp, which becomes pronounced at
low densities.

The physical understanding of these findings is as follows.
We recall that in a Coulomb drag setup an external electric
field drives the electrons in the active layer longitudinally,
and these in turn exert a longitudinal drag force on the
passive-layer electrons. The drag force acts as an effective
longitudinal driving term for the passive-layer electrons, which
is responsible for the customary longitudinal drag current. The
electric field also generates an anomalous Hall current in the
active layer. This response is dominated by topological terms
of the order of the conductivity quantum, which represents
a re-arrangement of charge carriers among spin-momentum
locked energy states. In other words, the anomalous Hall effect
in the active layer arises as a result of the topological monopole
structure around the origin in reciprocal space associated with
the Rashba spin-orbit interaction. This by itself does not lead
to a drag effect, since Coulomb drag occurs as a result of
the interaction between the nonequilibrium charge densities in
different layers, whereas the anomalous Hall current flowing
in the active layer is not associated with a change in the charge
density: It does not arise from a shift in the Fermi surface but
from the Berry phase acquired by the conduction electrons.
The surviving anomalous Hall component of the drag current,
which at low temperatures can be sizable compared to the
longitudinal component, represents the transverse response of
the passive layer to the effective longitudinal driving force, and
consequently depends on the passive-layer magnetization Mp.

Although derived here using a minimal model for Dirac
fermions, the results we report apply generally to materials
with Rashba spin-orbit interactions. They stand in sharp
contrast to conventional Coulomb drag in ordinary Hall
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systems [48,60,62,66,81–84]. There the Hall current in the
active layer, caused by the Lorentz force rather than topology,
makes a significant contribution to the longitudinal and Hall
drag response, which depends on the applied magnetic field.
This work is intended to stimulate further experiments and
quantitative studies on state-of-the-art samples, in which the
above results can be verified.

The outline of this paper is as follows. The Hamiltonian
of the system is introduced in Sec. II, while in Sec. III
a description of the general formalism is given, including
the full interlayer electron-electron scattering term, which
is the term ultimately responsible for Coulomb drag, including
the interlayer dynamical screened Coulomb interaction. In
Sec. IV, we derive the kinetic equation of magnetic topological
insulators for spin density matrices of top and bottom surfaces
with the full scattering term in the presence of an arbitrary
elastic scattering potential to linear order in the impurity
density. In Sec. V, we calculate the different contributions to
the drag current separately, while Sec. VI discusses the broader
implications of our results and possibilities for experimental
observation. Our findings are summarized in Sec. VII.

II. HAMILTONIAN

We consider a model system comprised of a TI film with
both the top (active) and bottom (passive) surfaces magnetized
either through doping with magnetic impurities or proximity
coupling to ferromagnets. The magnetizations of the two
surfaces are allowed to differ. The chemical potential lies in the
surface conduction band of each layer. We require εFτl/h̄ � 1
in each layer l ∈ {a ≡ active,p ≡ passive}, with εF the Fermi
energy located in the surface conduction bands and τl the
momentum scattering time. Without loss of generality we
assume (i) the carrier number density and hence the Fermi
energy is the same in each layer and (ii) sidewall states do
not participate in transport, an assumption that recent work
has shown to be justified at large doping [85]. The two-layer
effective band Hamiltonian

H0k = τz ⊗ hk + diag{Ma,−Ma,Mp,−Mp}, (1)

where the (Rashba) Hamiltonian of a single layer hk =
A σ · (k × ẑ) ≡ −Akσ · θ̂ with θ̂ the tangential unit vector
corresponding to k. The Pauli matrix τz represents the layer
degree of freedom. The eigenvalues of Eq. (1) are εl± =
±
√

A2k2 + M2
l ≡ h̄�

(l)
k , the band index sk = ± with + the

conduction band and − the valence band. We choose the
unit vectors �̂k = −ak θ̂ + bk ẑ, k̂eff = k̂ and ẑeff = ak ẑ + bk θ̂ ,
with ak = 2Ak/h̄�k , bk = 2Ml/h̄�k so that a2

k + b2
k = 1 (we

suppress the layer indices in ak,bk for simplicity). Although
magnetic impurities also cause spin-dependent scattering, our
recent work showed that the anomalous Hall effect in TIs is
dominated by the band structure spin-orbit coupling, hence we
do not include explicitly spin-dependent scattering due to any
potential magnetic impurities [28].

The single-particle Hamiltonian Ĥ 1e = Ĥ0 + ĤE + Û ,
where Ĥ0 is the band Hamiltonian defined in Eq. (1), ĤE =
e(Ê ⊗ 1) · r̂ is the electrostatic potential due to the driving
electric field with r̂ the position operator and Û the disorder
potential, which is assumed to be a scalar in spin space. Adding
the two-particle interaction term we write the total Hamiltonian

as Ĥ = Ĥ 1e + V̂ ee with the single-particle term expressed
generically as Ĥ 1e = ∑

αβ Hαβc†αcβ and the Coulomb inter-

action term V̂ ee = 1
2

∑
αβγ δ V ee

αβγ δc
†
αc

†
βcγ cδ . The indices α ≡

kskl represent wave vector, band, and layer indices, respec-
tively. The matrix element V ee

αβγ δ in a generic basis {φα(r)}
is given by V ee

αβγ δ = ∫
d r
∫

d r ′ φ∗
α(r)φ∗

β(r ′)V ee
r−r ′φδ(r)φγ (r ′),

where V ee
r−r ′ is the Coulomb interaction in real space.

Electrons in magnetic TIs experience a combination of a
momentum-dependent Rashba-type effective magnetic field
and a magnetization perpendicular to the surface. When an
electric field is applied, during electron-electron scattering
processes, due to the Coulomb interactions and spin structure
of the Hamiltonian, the spins of electrons in one layer are
rotated while they scatter off electrons in the other layer.

III. GENERAL FORMALISM

The effects discussed in this work are driven by the electrons
in the surface conduction band(s) of a topological insulator.
Our aim is to elucidate the physical origins and roles of
the different contributions to the Hall component of the drag
current in the passive layer in a magnetic topological insulator,
which exhibits the anomalous Hall effect. Given the interplay
of several mechanisms the situation is relatively complex.

In a nonmagnetic system the physics of Coulomb drag is
transparent. A longitudinal current in the active layer drags
with it a longitudinal current in the passive layer. In the
active layer the picture is simple—the applied electric field
accelerates electrons, while collisions involving impurities
and phonons keep the Fermi surface near equilibrium. In
a magnetic system on the other hand the current in the
active layer will have a longitudinal and a Hall component,
the latter being a result of the anomalous Hall effect. The
principal mechanisms behind the anomalous Hall effect are
[75]: (i) a topological mechanism related to spin precession
under the combined action of spin-orbit coupling and the
external electric field, which is strongly renormalized by scalar
scattering (ii) three spin-dependent scattering mechanisms,
which were shown to be of secondary importance in TIs. Scalar
disorder renormalizations affecting (i) are fully taken into
account in our density matrix theory, and in this work we do not
take into account the spin dependent scattering mechanisms,
whose contributions are far smaller. The mechanism leading to
the anomalous Hall effect in this work is therefore topological,
and is very different in nature to the mechanism leading
to the longitudinal current. In topological insulators this
mechanism can make a sizable contribution, with anomalous
Hall conductivities of the order of the conductivity quantum.

Likewise, the drag current in a magnetic system will have
a longitudinal component and a Hall component, which can
be measured separately. If we regard the current in the active
layer as giving rise to an effective drag force, it is natural to ask
which components of this drag force make the most sizable
contribution to the drag current. Indeed, if we focus on the
Hall component of the drag current we identify two potential
contributions having physically distinct origins. Firstly, the
longitudinal current in the active layer can give rise to a
transverse drag force in the passive layer, resulting in a
Hall current. Secondly, the Hall current in the active layer,
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stemming from a topological mechanism, can itself directly
drag a Hall current in the passive layer, in what may be termed
direct Hall drag. Since these contributions appear as a result
of different physical processes we calculate them separately in
this work.

It is well known that the undoped limit of a magnetic
topological insulator is a special case [28]. When the chemical
potential lies in the middle of the gap opened by the
magnetization between the surface conduction and valence
bands the anomalous Hall conductivity is quantized: In three
dimensions a single TI surface contributes exactly e2/(2h) to
the Hall conductivity, referred to as the quantized anomalous
Hall effect (QAHE). In a doped system the QAHE effectively
yields an offset to the measured anomalous Hall conductivity.
In the work presented here the QAHE emerges naturally as the
special case in which the carrier density in the conduction band
is taken to zero. We discuss this special case at the end of our
exposition, yet we wish to stress that it does not constitute the
focus of our work. However, the results we find concerning
the QAHE contribution to drag based on our 2D model are
also supported by an alternative picture of the QAHE based
on edge states, which we discuss briefly below. Again, we
emphasize that any reference to edge states is only physically
meaningful at zero doping and only applies to the special case
of the QAHE.

A. Many-body density matrix

The two-layer system is described by an effective two-
dimensional model. The many-body density matrix F̂ obeys
the quantum Liouville equation [86]

dF̂

dt
+ i

h̄
[Ĥ ,F̂ ] = 0. (2)

The one-particle reduced density matrix is the trace
tr(c†ηcξ F̂ ) ≡ 〈c†ηcξ 〉. Its k-diagonal part can be written as a
4 × 4 matrix in the joint spin/layer pseudo-spin subspace,
and we refer to this matrix as fk. To second order in the
electron-electron interaction, fk satisfies [87]

dfk

dt
+ i

h̄
[H 1e,fk] + Ĵee(fk) = 0. (3)

The term Ĵee(fk) in Eq. (3) represents intralayer and interlayer
electron-electron scattering. Since the intralayer electron-
electron scattering does not contribute to the drag current,
we concentrate on the interlayer term,

J i(fk)sks
′
k
= π

h̄L4

∑
k1 k′k′

1

∣∣v(pa)
|k−k1|

∣∣2δk+k′,k1+k′
1

×
{

4∑
i=1

P
(i)
sksk1 s ′

k
A(i)

sk′ sk′
1

× δ
[
ε

(p)
k1,sk1

− ε
(p)
k,s ′

k
+ ε

(a)
k′

1,sk′
1

− ε
(a)
k′,sk′

]

+
8∑

i=5

P
(i)
sksk1 s ′

k
A(i)

sk′ sk′
1

× δ
[
ε

(p)
k1,sk1

− ε
(p)
k,sk

+ ε
(a)
k′

1,sk′
1

− ε
(a)
k′,sk′

]}
, (4)

FIG. 1. Sketch of the interlayer electron-electron scattering pro-
cesses that contribute to Coulomb drag. CB and VB represent the
conduction and valence bands, respectively. Processes I–IV represent
intraband scatterings, while interband scatterings are represented by
V–VI.

where L2 is the area of the 2D system and the quantities A(i)
sk′ sk′

1

and P
(i)
sksk1 s ′

k
, given explicitly in the Table I of Supplement, are

functions of the occupations of the active and passive layers,
respectively. The interlayer momentum transfer q = k − k1 =
k′

1 − k′, and v
(pa)
|k−k1| = v

(pa)
q is the interlayer Coulomb interac-

tion. The interlayer electron-electron scattering processes that
contribute to Coulomb drag are shown in Fig. 1, with the
dominant process being I.

B. Strength of the interlayer interaction and applicability
of our theory

Two parameters quantify the strength of interactions in
topological insulator films and the limits of validity of the RPA.
Firstly, we define an effective background dielectric constant
εr . The physics of films is determined by their thickness d

and the Fermi wave vector kF [85]. We take a Bi2Se3 film as
an example, with εr,Bi2Se3 ≈ 100, grown on a semiconductor
substrate with εr,s ≈ 11. For kFd � 1, the film is thick, and the
two surfaces are independent [88]. For the top surface, where
one side is exposed to air, εr,top = (εr,Bi2Se3 + 1)/2 ≈ 50. For
the bottom surface εr,btm = (εr,Bi2Se3 + εr,s)/2 ≈ 55. Both are
independent of d. For kFd � 1, the film is ultrathin and can be
approximated as a pure 2D system, with εr = (1 + εr,s)/2 ≈ 6,
also independent of d. However, since the TI bulk cannot be
eliminated, εr ≈ 6 is an ideal lower bound. In films studied
here, thick enough that there is no interlayer tunneling,
implying d > 5 nm at the very least, εr has contributions
from both the TI bulk and the semiconductor substrate, and
for Bi2Se3 can range between 6 and 55. Two experiments
have extracted εr ≈ 30 for relatively thick films of Bi2Se3

(10 nm < d < 20 nm) [89,90]. Hence, εr is treated as a
phenomenological parameter to be measured separately for
each film. In our numerical calculations we use εr = 20,
which yields a Wigner-Seitz radius rs � 1, making our RPA
approach applicable to the system under study.

To obtain the dynamical screening function renormalizing
the Coulomb interaction, we employ the standard procedure
of solving the Dyson equation for the two-layer system in
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the RPA. In this approach, v
(pa)
|k−k1| in Eq. (B2) becomes

the dynamically screened interlayer Coulomb interaction

V (q,ω) = vqe−qd

ε(q,ω) . The dielectric function of the coupled layer
system is [48,50,51,54–57,63,84,91]

ε(q,ω) = [1 − vq�a(q,ω)][1 − vq�p(q,ω)]

− [vqe−qd ]2�a(q,ω)�p(q,ω), (5)

in which the polarization function takes the form

�l(q,ω) = − 1

L2

∑
kss ′

(
f

(l)
0k,s − f

(l)
0k′,s ′

)
ε

(l)
k,s − ε

(l)
k′,s ′ + h̄ω + i0+ F ss ′

kk′ , (6)

with f
(l)
0k,s ≡ f

(l)
0 (εks) the equilibrium Fermi distribution func-

tion and F ss ′
kk′ = 〈k,s,l|k′,s ′,l′〉〈k′,s ′,l′|k,s,l〉 is the wave-

function overlap.

IV. KINETIC EQUATION FOR 3D MAGNETIC TIS

In this section we present the effective kinetic equations
derived for each layer from the quantum Liouville equation.
The single-particle density matrix is diagonal in the layer index
fk = diag (f (a)

k ,f
(p)
k ). The scattering term J i(fk)sks

′
k

represents
interlayer coherence: In the active layer we solve for the
nonequilibrium correction to f

(a)
k [28], feed it into J i(fk)sks

′
k
,

and the result is an effective driving term for the passive
layer. This then enables us to solve for the nonequilibrium
to correction f

(p)
k in response to this effective driving term.

The kinetic equation of the two-layer system

df
(a)
k

dt
+ i

h̄

[
H

(a)
0k ,f

(a)
k

]+ Ĵ0
(
f

(a)
k

) = eE
h̄

· ∂f
(a)
0k

∂k
, (7a)

df
(p)
k

dt
+ i

h̄

[
H

(p)
0k ,f

(p)
k

]+ Ĵ0
(
f

(p)
k

) = J i(fk)sks
′
k
, (7b)

with H
(l)
0k = h

(l)
k + Mlσz the band Hamiltonian and f

(l)
0k

the equilibrium density matrix of each magnetic layer.
The electron-impurity scattering integral is Ĵ0(f (l)

k ) =
〈 ∫∞

0
dt ′
h̄2 [Û ,e−iĤ t ′/h̄[Û ,f̂ ]eiĤ t ′/h̄]〉

kk
, where 〈〉 denotes the

average over impurity configurations. The above encapsulates
the philosophy or our approach: To begin with, we consider an
external electric field applied to the active layer, we solve for
the nonequilibrium density matrix in the active layer without
any reference to electron-electron scattering, and we feed the
solution for the active-layer density matrix into the interlayer
electron-electron scattering integral. The result of this is an
electric-field dependent term that acts as a new driving term
(i.e. the drag force) for the passive layer. We then solve for
the nonequilibrium density matrix in the passive layer with
this driving term. The solution thus obtained represents the
nonequilibrium density matrix in the passive layer, which may
be used to calculate expectation values. Specifically, its trace
with the current operator yields the drag current.

M

M

+

+

FIG. 2. Contributions to the drag current in magnetic TIs. The
electric field ‖ x̂ gives rise to a longitudinal ( j x) and an anomalous
Hall ( jAHE) current in the active layer. In the passive layer there are
four contributions to the drag currents: j ll is the longitudinal current
dragged by j x ; j lh is the transverse current dragged by jAHE; j hl is the
anomalous Hall current generated by j ll; while j hh is the anomalous
Hall current generated by j lh, and it flows longitudinally. Ma and Mp

are the magnetizations of the active and passive layers, respectively.
d is the layer separation.

V. DRAG RESISTIVITY OF 3D MAGNETIC TIS

A. Contributions to the drag current

As a model example we will consider the surface states
of 3D topological insulators in which an out of plane
magnetization exists (but no magnetic field), hence the physics
discussed will be that of 2D massive Dirac fermions. The drag
current in the passive layer will have two components, namely
a longitudinal component and a Hall component, which can
be measured separately. Our interest lies primarily in the Hall
component and in elucidating the dominant contributions to it.
It is expected that the Hall drag current has contributions from
(i) the longitudinal current in the active layer via a transverse
drag force, (ii) the Hall current in the active layer, which may
be termed direct Hall drag (Fig. 2). The aim of this work is to
determine the relative magnitude of these distinct contributions
and to identify the dominant contribution to the anomalous
Hall drag response. Aside from technical considerations, the
primary reason for adopting such a conceptual decomposition
of the drag response is the fact that the different contributions
to the Hall drag current have different physical origins.
Contribution (i) represents straightforward longitudinal charge
transport in the presence of impurities and other scattering
mechanisms. Contribution (ii) is topological: the anomalous
Hall effect in Dirac fermion systems is predominantly driven
by a topological term originating in the Berry curvature
associated with the band structure. The Hall drag current
stemming from the transverse drag force of (i) in effect comes
from the standard longitudinal drag current: if this turns out to
dominate the Hall drag response it implies that there is no Hall
drag per se in anomalous Hall systems, rather the measured
Hall drag current is simply the anomalous Hall response to
the longitudinal drag force. It would imply that the topological
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terms leading to the anomalous Hall effect in the active layer
do not yield a drag current in the passive layer.

We consider separately the four contributions to the drag
current, corresponding to the picture presented in Fig. 2 and in
the introduction. The electric field ‖ x̂ gives rise to a longitu-
dinal ( jx) and an anomalous Hall ( jAHE) current in the active
layer. In the passive layer the four contributions to the drag
current are: j ll is the longitudinal current dragged by jx ; j lh is
the transverse current dragged by jAHE; jhl is the anomalous
Hall current generated by j ll; while jhh is the anomalous
Hall current generated by j lh, and it flows longitudinally.
Referring to the layer index (l), we write f

(l)
k = n

(l)
k 1 + S

(l)
k ,

with S
(l)
k a 2 × 2 Hermitian matrix which can be decomposed

in terms of the Pauli spin matrices. We project the vector
σ of Pauli spin matrices as σk,‖ = σ · �̂k, σk,k = σ · k̂ and
σk,zeff = σ · ẑeff. Note that σk,‖ commutes with H

(l)
0k , while σk,k

and σk,zeff do not, hence we use ⊥ to refer to vectors in the plane
spanned by k̂ and ẑeff. We project S(l)

k onto three directions with
S

(l)
k‖ = 1

2 sk‖σk‖, S(l)
k,k = 1

2 sk,kσk,k and S
(l)
k,zeff

= 1
2 sk,zeffσk,zeff . The

kinetic equation for the passive layer is decomposed as

dS
(p)
k,‖

dt
+ P‖Ĵ0

(
S

(p)
k

) = J i(fk)ll,lh (8a)

dS
(p)
k,⊥

dt
+ i

h̄

[
H

(p)
0k ,S

(p)
k,⊥
]+ P⊥Ĵ0

(
S

(p)
k

) = J i(fk)hl,hh (8b)

where J i(fk)ll,lh,J
i(fk)hl,hh can be found in Appendix B.

The explicit form of the impurity scattering term
P‖Ĵ0(S(p)

k ),P⊥Ĵ (S(p)
k ) together with the solutions for the terms

S
(a)
k,‖,S

(a)
k,⊥ can be found in Ref. [28]. The drag current can be

expressed as j = tr( ĵS(p)
k ), where ĵ is the current operator.

B. Toy model explanation of the vanishing of the topological
contribution to drag

We shall show below (Sec. V C) that the anomalous Hall
current in the active layer does not generate a drag current at
all in the passive layer. Before presenting the full calculation
we would like to demonstrate, using a toy model, that this
vanishing can be understood based on fundamental physical
considerations, and for this purpose we wish to focus on the
active layer and on the origins of the anomalous Hall effect.

We have divided the density matrix of the active layer as
f

(a)
k = n

(a)
k 1 + S

(a)
k,‖ + S

(a)
k,⊥. The first two terms, n(a)

k 1 and S
(a)
k,‖,

commute with the band Hamiltonian, and represent the fraction
of carriers that are in eigenstates. The term n

(a)
k 1 represents

the charge density while S
(a)
k,‖ is the spin density. When an

electric field is applied the Fermi surface is shifted and the
charge and spin densities acquire nonequilibrium corrections,
which are contained in n

(a)
k 1 and S

(a)
k,‖. If the driving term

due to the electric field is denoted by Dk, we may make the
same decomposition and write Dk = Dk,n1 + Dk,‖ + Dk,⊥.
Very crudely, we may define a single scattering time τ , in
which case it is qualitatively true that

n
(a)
k ≈ Dk,nτ

S
(a)
k,‖ ≈ Dk,‖τ.

(9)

The τ dependence of these terms makes it immediately obvious
that they are associated with the Drude conductivity. These
corrections due to the fraction of carriers in eigenstates are
the main terms responsible for the longitudinal conductivity
(in topological insulators both the charge and spin densities
must be considered when calculating the current, due to the
spin-charge coupling contained in the spin-orbit interaction).
When these are fed into Eq. (4) they lead to the standard
longitudinal Coulomb drag current.

The term S
(a)
k,⊥ is associated with interband coherence,

or, in the notation used here, with spin/pseudospin preces-
sion/rotations. In the same toy-model language used above
S

(a)
k,⊥ may be written approximately as

S
(a)
k,⊥ = 1

2
σ ·
(

�̂k × Dk,⊥
�k

)
, (10)

where we have used the notation Dk,⊥ = (1/2)σ · Dk,⊥ in
keeping with the notation introduced above. It is this part of
the density matrix that contains the topological Berry curvature
terms appearing in transport.

The anomalous Hall effect is contained in S
(a)
k,⊥. The

presence of the cross product in Eq. (10) makes manifest
the fact that this term in the density matrix stems from
spin/pseudospin rotations, or alternatively coherence between
eigenstates. This term does not represent a change in the
charge/spin densities. Moreover, since �k is odd in k this term
has a different angular structure from n

(a)
k 1 and S

(a)
k,‖. We shall

see below that this angular structure causes the contribution of
this term to Coulomb drag to vanish identically.

C. Drag resistivity

1. j ll

The longitudinal drag conductivity σxx
D was studied in detail

in many publications [37,48,50,51,54–57,63,84,91,92]. We are
able to reproduce the general result

σxx
D = e2β

16π

∑
q

∫
dω

∣∣v(pa)
q

∣∣2Imχa(q,ω)Imχp(q,ω)

sinh2 βh̄ω

2

. (11)

where Imχl(q,ω) is the imaginary part of nonlinear susceptibil-
ity and β = 1

kBT
. In the regime Ma,p � εF, which is applicable

to all samples studied experimentally. It has been shown that
the drag problem reduces to the calculation of the nonlinear
susceptibility of the system [48,51,56,63–65] which we detail
in Appendix A.

2. jhl

One of the transverse drag jhl can be obtained by solving
Eq. (8b), where the vertex correction from P⊥Ĵ (S(p)

k ) is
neglected.

jhl = e2βπ

4h̄L2

∑
k,q

∫
dω

|v(pa)
q |2

sinh2 βh̄ω

2

δ
[
ε

(p)
k1,+ − ε

(p)
k,+ + h̄ω

]

× (f (p)
0k,+ − f

(p)
0k1,+

)
Ea · Imχ++

a (q,ω)

× Aakbk

�k

(θ̂1 − θ̂ ). (12)

205435-5



HONG LIU, WEIZHE EDWARD LIU, AND DIMITRIE CULCER PHYSICAL REVIEW B 95, 205435 (2017)

Equation (12) is used to calculate the anomalous Hall
resistivity. It can be written as a function of the Berry curvature
of the passive layer, the occupation numbers (f (p)

0k,+ − f
(p)
0k1,+),

and an effective driving term due to the electric field and
interlayer electron-electron scattering. In order to calculate the

anomalous Hall drag coefficient, the 4 × 4 conductance
matrix has to be inverted. Keeping the leading-order terms
in the interlayer interaction and the first-order terms in the

magnetization, we have ρ
yx

D ≈ σ
yx
pa

σxx
aa σxx

pp
. σxx

aa and σxx
pp are the

longitudinal conductivities of the active and passive layers,
respectively.

3. j lh

Next we calculate j lh in the steady state. The contribution j lh,bare stems from the band Hamiltonian

j lh,bare = − e2π

16h̄L2

∫ +∞

−∞
dω
∑
k′q

∣∣v(pa)
q

∣∣2
4 sinh2 βh̄ω

2

Eaa
2
k′bk′

�k′k′ · (θ̂
′ − θ̂

′
1)Imχ++

p (q,ω)

×{(1 − f
(a)
0k′,+

)
(1 − e−βh̄ω)δ

[
ε

(a)
k′

1,+ − ε
(a)
k′,+ + h̄ω

]+ (
1 − f

(a)
0k′,+

)
(1 − eβh̄ω)δ

[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

]}
(13)

while j lh,vtx stems from the vertex correction to the anomalous Hall current in the active layer

j lh,vtx = −e2βπ

h̄8L2

∫ +∞

−∞
dω
∑
k′q

∣∣v(pa)
q

∣∣2
4 sinh2 βh̄ω

2

ak′bk′τ (a)

�k′τc

Ea · (θ̂
′ − θ̂

′
1)Imχ++

p (q,ω)

× {[2(f (a)
0k′,+

)2 − (
f

(a)
0k′,+

)3 − f
(a)
0k′,+f

(a)
0k′

1,+
]
(1 − eβh̄ω)vk′δ

[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

]
+ [2(f (a)

0k′,+
)2 − (

f
(a)
0k′,+

)3 − f
(a)
0k′,+f

(a)
0k′

1,+
]
(1 − e−βh̄ω)vk′δ

[
ε

(a)
k′

1,+ − ε
(a)
k′,+ + h̄ω

]}
. (14)

We have found that the two terms in {· · · } cancel out after performing the variable change ω to −ω, which means that
j lh = j lh,bare + j lh,vtx = 0, as expected based on the discussion in Sec. V B.

4. jhh

Finally we calculate jhh in Fig. 2:

jhh,I = e2π

h̄L4

∫
dω
∑
kk′q

∣∣v(pa)
q

∣∣2 AEak′

2�k′k′
f (γ )

h̄�k

(
f

(p)
k,+ − f

(p)
k1,+

)
δ
[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

]
δ
[
ε

(p)
k1,+ − ε

(p)
k,+ + h̄ω

]

×
⎧⎨
⎩sin θ ′ 1 − f

(a)
0k′

1,+
1 − eβh̄ω

−
1 − f

(a)
0k′,+

1 − e−βh̄ω
sin θ ′

1

⎫⎬
⎭θ̂ . (15)

where the term ∝ b2
k has been omitted. Here f (γ ) = − ak′ ak

4 sin(θ1 − θ ) sin(θ ′ − θ ′
1) and f

(a)
0k,+ ≡ f

(a)
0εk,+. Integrating over the

angles of the wave vectors k′,k yields jhh = 0.

VI. DISCUSSION

A. Contributions to the drag resistivity

We have directly calculated the anomalous Hall drag
resistivity ρ

yx

D according to the procedure outlined above. We
have found that j lh and jhh (Fig. 2) vanish identically, implying
that the anomalous Hall current in the (doped) active layer does
not generate a corresponding drag current in the passive layer.

We analyze the parameter dependence of ρ
yx

D in Figs. 3
and 4. The relationship between ρ

yx

D and the magnetization of
the passive layer is illustrated in Fig. 3. There is an upward
trend at small magnetizations followed by a relatively slow
decrease at larger values of Mp. The trend can be understood as
follows. For Mp � AkF one may expand Eq. (12) in Mp, which

reveals that the current increases nearly linearly with Mp. In
the opposite limit in which Mp � AkF [93], the anomalous
Hall current vanishes, since the effect of spin-orbit coupling
(chirality), which scales with kF, becomes negligible. In fact
at large Mp one may expand the band energies in Ak, with the
leading k-dependent term scaling as k2, which suggests the
system in this limit behaves as a regular, nonmagnetic 2DEG.
This explains the slow downward trend with increasing Mp

and hence the presence of the peak as a function of Mp. At
larger electron densities the peak occurs at stronger values
of the magnetization, since higher electron densities imply
higher values of AkF, increasing the effect of chirality at the
expense of the magnetization. TI magnetizations have been
measured by superconducting quantum interference device
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FIG. 3. Magnetization dependence of ρ
yx

D with T = 5 K, d =
10 nm, dielectric constant εr = 20, A = 4.1 eV Å, and transport time
τl ≈ 0.1 ps.

magnetometers [12,94]. Because the momentum scattering
time is in principle known from the longitudinal conductivity
of each layer [17,95], the trend exhibited by ρ

yx

D as a function
of the magnetization Mp can be verified experimentally.

We examine the dependence of the anomalous Hall drag
resistivity on additional experimentally measurable param-
eters. In Fig. 4(a) the electron density dependence of ρ

yx

D
for interlayer separations d = 20,40 nm is shown. Compared
with the longitudinal drag resistivity, the anomalous Hall drag
resistivity has a weaker dependence on electron density. As
compared with the longitudinal drag resistivity, the group
velocity appearing in the susceptibility of the passive layer
is replaced by the Berry curvature, leading to a weaker
density dependence, yet no topological contribution. Next,
Fig. 4(b) illustrates the temperature dependence of ρ

yx

D for
separations d = 10,20,40 nm. We find that, much like ρxx

D ,
ρ

yx

D also increases nearly quadratically with temperature.
The T 2 dependence stems from the allowed phase space for
electron-electron scattering at low temperature and is expected
for any interaction strength between the top and bottom layers
of TIs, provided the carriers can be described using a Fermi
liquid picture. Moreover, due to the absence of backscattering
in TIs there is no correction logarithmic in temperature.
Fig. 4(c) presents the layer separation dependence of ρ

yx

D for
n = 1 × 1012 cm−2, 2 × 1012 cm−2, and 3 × 1012 cm−2.

Experimentally, for TI films in the large-surface limit,
nontopological contributions from the bulk and the side surface
are negligible [96], and we expect the effects described in this
work to be observable. Aside from commonly used materials
such as Bi2Se3 and Bi2Te3, a small-gap three-dimensional TI
has also been identified in strained HgTe. The TI surface states
in this material are, however, spatially extended and could be
peaked quite far from the wide quantum well edges, reducing
the effective 2D layer separation [85].

Our results are also applicable to Rashba 2DEGs, though
measuring a strong anomalous Hall effect [97] can be
challenging. A sizable fraction of the conductivity quantum
is obtained if the two Rashba subbands experience a large
magnetization splitting and εF lies in the bottom subband, but
that is challenging experimentally. When εF � Ml the effect
vanishes altogether.

(a) d=20nm
d=40nm

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

n (1012cm−2)

Dy
x

(1
0− 6

/e
2 )

(b)d=10nm
d=20nm
d=40nm

2 4 6 8 10
0

5

10

15

20

T (K )

Dy
x

(1
0− 6

/e
2 )

(c) n=1×1012cm−2

n=2×1012cm−2

n=3×1012cm−2
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2
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/e
2 )

FIG. 4. (a) Electron density dependence at T = 5 K, (b) Tem-
perature dependence with n = 1012 cm−2, (c) Layer separation
dependence at T = 5 K. Mp = 10 meV, dielectric constant εr = 20,
A = 4.1 eV Å, and transport time τl ≈ 0.1 ps.

B. Beyond topological insulators

Massive Dirac fermions are also found in graphene with
a staggered sublattice potential and MoS2 thin films where
inversion symmetry is broken. The band Hamiltonian for a
single layer is given by H

(l)
0k = at(τkxσx + kyσy) + �

2 σz with
τ = ±1 the valley index, where a is the lattice constant, t

is the effective hopping integral, and � is the energy gap.
These Dresselhaus-like Hamiltonians can be directly mapped
onto the Rashba Hamiltonian considered in this work [98].
The longitudinal drag current is identical for both TIs and
other massive Dirac fermion systems, because the physical
mechanism behind the longitudinal drag phenomenon is a
result of rectification by the passive layer of the fluctuating
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electric field generated by the active layer. However, when
inversion symmetry is broken in a 2D hexagonal lattice, a
pair of valleys which are time reversal of each other are
distinguishable by their opposite values of magnetic moment
and Berry curvature. Therefore, there will be no transverse
drag current in graphene or MoS2 with broken inversion
symmetry because the Berry curvatures have opposite signs
in the opposite valleys. In a Dirac semimetal, each Dirac
point is fourfold degenerate and can be viewed as consisting
of two Weyl nodes with opposite chiralities. Consequently,
transverse drag currents also vanish in Dirac semimetals. At
small magnetizations the longitudinal drag currents in these
materials will be independent of the magnetizations of either
layer.

C. Alternative picture of the undoped system: Absence of
Coulomb drag between helical edge states

The effective two-dimensional model we have used
throughout this work predicts that in the special case of the
quantum anomalous Hall effect, when the system is undoped,
the surface conduction band is empty, and the chemical
potential lies in the magnetization gap, the drag current is
identically zero. In the previous section we have discussed
above the physical interpretation of this result that emerges
from our effective two-dimensional picture. It is known,
however, that the quantum anomalous Hall effect is associated
with a set of chiral edge modes which are well defined at zero
doping (and only then). In this subsection we demonstrate that
an effective one-dimensional model for the edge modes at zero
doping yields the same result as the two-dimensional model,
and gives additional physical insight.

To this end we consider the broader case of Coulomb drag
between two identical quantum spin-Hall systems, each with
one Kramers pair on its edge. A current I1 is driven along
the upper edge of the lower quantum spin-Hall system and
through electron-electron interactions a voltage V2 is induced
in the lower edge of the upper quantum spin-Hall system. Each
quantum spin-Hall edge state can be described by Hamiltonian
Hk = Akxσz, and the edge dispersion is ε±

k = ±Akx (Fig. 5).
Hence the impurity scattering term becomes

P‖Ĵ
(
f

(l)
k‖
) = ni

πh̄A

∫
dk′

x |U kk′ |2(f (l)
k‖ − f

(l)
k′‖
)
δ(kx − k′

x)σz,

(16)

where k = kx êx for the 1D case and P‖Ĵ (f (l)
k‖ ) = 0. In the

meantime, the direct interlayer electron-electron scattering
term of Eq. (B2) becomes

J i(fk)sk = −2π

h̄

∑
kk′

∣∣v(pa)
|k−k1|

∣∣2F (p)
sksk1

F (a)
sk′ sk′

1

× δ
[
ε

(p)
k1,sk1

− ε
(p)
k,sk

+ ε
(a)
k′

1,sk′
1

− ε
(a)
k′,sk′

]
× {f (p)

k,sk

[
1 − f

(p)
k1,sk1

]
f

(a)
k′,sk′

[
1 − f

(a)
k′

1,sk′
1

]
− [1 − f

(p)
k,sk

]
f

(p)
k1,sk1

[
1 − f

(a)
k′,sk′

]
f

(a)
k′

1,sk′
1

}
. (17)

If the distribution function is the equilibrium one, J i(fk)sk =
0. In the QSH 1D case, the wave function overlap F (l)

sksk1
=

FIG. 5. A pair of helical edge states travel along the edge of a 2D
topological insulator with the gapless Dirac dispersion.

1 with sk = sk1 and F (l)
sksk1

= 0 with sk �= sk1 . We found

J i(fk)sk = 0. Because the spectrum is linear there is no
contribution to the drag from forward scattering, and backscat-
tering is forbidden by time-reversal symmetry [42]. Hence the
Coulomb drag between two identical chiral quantum spin-Hall
systems is identically zero. These results are in qualitative
agreement with the work of Zyuzin and Fiete [42].

The argument presented here that chiral edge states do
not give rise to drag is general and applies just as well
to the Hall conductivity as to the longitudinal conductivity.
The key physics is the absence of backscattering. In chiral
quantum spin-Hall systems the drag current is zero because
backscattering is forbidden by the linear Dirac-like dispersion.
In this sense quantum anomalous-Hall systems can be regarded
as a special case of quantum spin-Hall systems: They have only
one state on each edge, rather than a Kramers pair. So even
if backscattering were allowed by the quasiparticle dispersion
there would be no states to backscatter into. Hence the drag
current in quantum anomalous-Hall systems is identically
zero. Yet the edge states are poorly defined at high doping,
εFτl/h̄ � 1, which is the focus of this work. In addition, the
Dirac fermions studied here live in TIs, which have only one
shared edge between the top and bottom surfaces, making it
tricky to describe thicker samples using an edge state model. In
fact, at zero doping, the TI drag experiment is not well defined,
since in that parameter regime leakage into the sidewall states
is unavoidable.

VII. CONCLUSIONS

We have studied Coulomb drag of massive Dirac fermions,
demonstrating that the drag due to the topological terms on
the active surface vanishes. This is explained by the fact
that the anomalous Hall current due to the topological terms
in the active layer arises from the Berry phase acquired through
the rearrangement of carriers among spin-momentum locked
states: It is not associated with a change in the charge density
(a shift in the Fermi surface) and thus cannot lead to Coulomb
drag. Consequently the only contribution to anomalous Hall
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TABLE I. A(i) and P (i)

P
(1)
sksk1

s′
k

= −〈sk

∣∣sk1

〉[
1 − f

(p)
0k1,sk1

]〈
sk1

∣∣s ′
k

〉
f

(p)
0k,s′

k

P
(2)
sksk1

s′
k

= 〈
sk

∣∣sk1

〉
f

(p)
0k1,sk1

〈
sk1

∣∣s ′
k

〉[
1 − f

(p)
0k,s′

k

]
P

(3)
sksk1

s′
k

= P
(8)
sksk1

s′
k

= −〈sk

∣∣sk1

〉
f

(p)
0k1,sk1

〈
sk1

∣∣s ′
k

〉
P

(4)
sksk1

s′
k

= 〈
sk

∣∣sk1

〉 〈
sk1

∣∣s ′
k

〉
f

(p)
0k,s′

k

P
(5)
sksk1

s′
k

= [
1 − f

(p)
0k,sk

]〈
sk

∣∣sk1

〉
f

(p)
0k1,sk1

〈
sk1

∣∣s ′
k

〉
P

(6)
sksk1

s′
k

= −f
(p)

0k,sk

〈
sk

∣∣sk1

〉[
1 − f

(p)
0k1,sk1

]〈
sk1

∣∣s ′
k

〉
P

(7)
sksk1

s′
k

= f
(p)

0k,sk

〈
sk

∣∣sk1

〉 〈
sk1

∣∣s ′
k

〉
A(1)

sk′ sk′
1

= ∑
ςk′ A(1)

sk′ sk′
1
ςk′ , A(1)

sk′ sk′
1
ςk′ = 〈

sk′
∣∣sk′

1

〉 〈
sk′

1

∣∣ςk′
〉
f

(a)
k′,ςk′ sk′

A(2)
sk′ sk′

1

= ∑
ςk′

1

A(2)
sk′ sk′

1
ςk′

1

, A(2)
sk′ sk′

1
ςk′

1

= 〈
sk′
∣∣sk′

1

〉
f

(a)
k′

1,sk′
1
ςk′

1

〈
ςk′

1

∣∣sk′
〉

A(3)
sk′ sk′

1
ςk′

1
ςk′ = A(4)

sk′ sk′
1
ςk′

1
ςk′ = 〈

sk′
∣∣sk′

1

〉
f

(a)
k′

1,sk′
1
ςk′

1

〈
ςk′

1

∣∣ςk′
〉
f

(a)
k′,ςk′ sk′

A(5)
sk′ sk′

1

= ∑
ςk′

1

A(5)
sk′ sk′

1
ςk′

1

, A(5)
sk′ sk′

1
ςk′

1

= 〈
sk′
∣∣ςk′

1

〉
f

(a)
k′

1,ςk′
1
sk′

1

〈
sk′

1

∣∣sk′
〉

A(6)
sk′ sk′

1

= ∑
ςk′ A(6)

sk′ sk′
1
ςk′ , A(6)

sk′ sk′
1
ςk′ = 〈

ςk′
∣∣sk′

1

〉〈
sk′

1

∣∣sk′
〉
f

(a)
k′,sk′ ςk′

A(7)
sk′ sk′

1
ςk′

1
ςk′ = A(8)

sk′ sk′
1
ςk′

1
ςk′ = 〈

sk′
1

∣∣sk′
〉
f

(a)
k′,sk′ ςk′

〈
ςk′
∣∣ςk′

1

〉
f

(a)
k′

1,ςk′
1
sk′

1

drag comes from the anomalous Hall current generated by the
transverse drag force experienced by the passive layer. The
transverse drag current has a nonmonotonic dependence on

the magnetization of the passive layer, exhibiting a peak that
becomes pronounced at lower densities.
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APPENDIX A: NONLINEAR SUSCEPTIBILITY
AND POLARIZATION

In special cases when the intralayer electron-electron
correlations are absent, the nonlinear susceptibility is reduced
to the product of the diffusion constant and the imaginary
part of the polarization operator [48,50,51,53,55,56,63–65].
The small interlayer momentum transfer and excitation energy,
i.e., q < 2kF, h̄ω < Aq is the dominant region of polarization
contributing to drag problem. So the polarization becomes

�l(q,ω) = − kFl

2πA
+ i

16πA

q√
1 − (

h̄ω
Aq

)2

×
[
G>

(
2kFl

− h̄ω
A

q

)
− G>

(
2kFl

+ h̄ω
A

q

)]
, (A1)

where

G>

(
2kFl

± h̄ω
A

q

)
=
⎡
⎣− cosh−1

(
2kFl

± h̄ω
A

q

)
+ 2kFl

± h̄ω
A

q

√(
2kFl

± h̄ω
A

q

)2

− 1

⎤
⎦. (A2)

For the case that the scattering time is independent on momentum, the nonlinear susceptibility is Imχl(q,ω) = ωτFl

πA

√
1 − ( q

2kFl

)2q̂

with τFl
the transport time at Fermi level [48,51,55].

APPENDIX B: ELECTRON-ELECTRON SCATTERING

With definition {{Â}} = Â − trÂ, the electron-electron operator Ĵee(ρ̂|t) is written as [86]

Ĵee(ρ̂|t) = 1

h̄2L4

∑
qq1

vqvq1

∫ ∞

0
dt1eλt1

[
e−iq·x Ŝ(t,t1)

(
1 − ρ̂t1

)
eiq1·x ρ̂t1 Ŝ

+(t,t1)
{{

eiq·x Ŝ(t,t1)e−iq1·x ρ̂t1 Ŝ
+(t,t1)

}}
− Ŝ(t,t1)ρ̂t1 eiq1·x(1 − ρ̂t1

)
Ŝ+(t,t1)

{{
eiq·x Ŝ(t,t1)ρ̂t1 e−iq1·x Ŝ+(t,t1)

}}
+ Ŝ(t,t1)

[
ρ̂t1 ,e

iq1·x]Ŝ+(t,t1)
{{

eiq·x Ŝ(t,t1)ρ̂t1 e−iq1·x ρ̂t1 Ŝ
+(t,t1)

}}]
, (B1)

where Ŝ(t,t1) is the time evolution operator which satisfies Ŝ(t,t1) = Ŝ+(t1,t) and H
(l)
0k |k,sk,l〉 = ε

(l)
ksk

|k,sk,l〉. With

〈kskl|Ĵee(ρ̂|t)|ks ′
kl

′〉, the terms containing the trace contribute to direct Coulomb interaction and the remaining terms contribute
to exchange interaction. Accounting for both diagonal and off-diagonal parts of the density matrix, we arrange the interlayer
electron-electron scattering matrix as

J i(fk)sks
′
k
= π

h̄L4

∑
k1 k′k′

1

∣∣v(pa)
|k−k1|

∣∣2δk+k′,k1+k′
1

{
δ
[
ε

(p)
k1,sk1

− ε
(p)
k,s ′

k
+ ε

(a)
k′

1,sk′
1

− ε
(a)
k′,sk′

]

×
(

4∑
i=1

P
(i)
sksk1 s ′

k
A(i)

sk′ sk′
1

)
+ δ

[
ε

(p)
k1,sk1

− ε
(p)
k,sk

+ ε
(a)
k′

1,sk′
1

− ε
(a)
k′,sk′

]( 8∑
i=5

P
(i)
sksk1 s ′

k
A(i)

sk′ sk′
1

)}
, (B2)
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where k1 − k = k′ − k′
1 = q and J i(fk)−+ = [J i(fk)+−]∗. P (i) and A(i) are defined in Table I with

Ek′k =
(〈k′, + ,l|k, + ,l〉 〈k′, + ,l|k, − ,l〉

〈k′, − ,l|k, + ,l〉 〈k′, − ,l|k, − ,l〉
)

=
(

1 − 1+bk

2 [1 − ei(θ ′−θ)] ak
1−ei(θ ′−θ )

2

ak
1−ei(θ ′−θ )

2 1 − 1−bk

2 [1 − ei(θ ′−θ)]

)
. (B3)

The interlayer electron-electron scattering processes allowed in Eq. (B2) are listed in the Fig. 1. The remaining 10 processes are
forbidden by the law of energy conservation. Firstly, we calculate the contribution to drag currents from process I. Equation (B2)
can be written as:

J i(fk)sks
′
k
= J i(fk)++ + J i(fk)−−

2
1 + J i(fk)++ − J i(fk)−−

2
σz + J i(fk)−+ + J i(fk)+−

2
σx + J i(fk)−+ − J i(fk)+−

2i
σy,

(B4)

with 1 is 2 × 2 unit matrix and σx,y,z are Pauli matrix. We should transform Eq. (B4) from eigenstates representation (ER) to that
of σz (ordinary representation, OR) with

T =

⎛
⎜⎝−ieiθk

√
1+bk

2
ak√

2(1+bk )

ieiθk

√
1−bk

2
ak√

2(1−bk )

⎞
⎟⎠, (B5)

and for any 2 × 2 matrix M, MOR = T† · MER · T. We have σz → σ · �̂k,σx → −σ · ẑeff,σy → σ · k̂eff. In σz representation,
the electron-electron scattering term is divided into

− J i(fk)++ − J i(fk)−−
2

σ · �̂k = J i(fk)ll,lh, σ · ẑeff
J i(fk)−+ + J i(fk)+−

2
− σ · k̂eff

J i(fk)−+ − J i(fk)+−
2i

= J i(fk)hl,hh.

(B6)

We write out J i(fk)ll,J
i(fk)lh,J

i(fk)hl,J
i(fk)hh after separately feeding the diagonal and off-diagonal density matrices elements

of the active layer into Eq. (B2)

J i(fk)ll = eπ

L4kBT h̄

∫
dω
∑
k′q

∣∣v(pa)
q

∣∣2
4 sinh2 βh̄ω

2

F++
kk1

F++
k′k′

1
δ
[
ε

(p)
k1,+ − ε

(p)
k,+ + h̄ω

]
δ
[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

]

×[(f (p)
0k1,+ − f

(p)
0k,+

)(
f

(a)
0k′

1,+ − f
(a)
0k′,+

)]
Ea · A

[
τa(k′

1)ak′
1
k̂′

1 − τa(k′)ak′ k̂′]σ · �̂k. (B7a)

J i(fk)lh = π

2L4

∫
dω
∑
k′q

∣∣v(pa)
q

∣∣2F++
k,k1

eEak′

2h̄�k′k′ ak′bk′(sin θ ′ − sin θ ′
1)δ
[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

]

×{(f (a)
0k′,+ − f

(a)
0k′,−

)[(
1 − f

(p)
0k1,+

)
f

(p)
0k,+ − (

f
(p)
0k,+ − f

(p)
0k1,+

)
f

(a)
0k′

1,+
]

+ [(1 − f
(p)
0k,+

)
f

(p)
0k1,+ + (

f
(p)
0k,+ − f

(p)
0k1,+

)
f

(a)
0k′,+

](
f

(a)
0k′

1,+ − f
(a)
0k′

1,−
)}

δ
[
ε

(p)
k1,+ − ε

(p)
k,+ + h̄ω

]
σ · �̂k, (B7b)

with f
(a)
0k′,− = f

(a)
0k′

1,− = 1.

J i(fk)hl = eπ

4kBT L4

∑
k′q

∫
dω

∣∣v(pa)
q

∣∣2
sinh2 βh̄ω

2

F++
k′k′

1
δ
[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

](
f

(a)
0k′,+ − f

(a)
0k′

1,+
)
Ea · [τa(k′)vk′ − τa(k′

1)vk′
1
]

×δ
[
ε

(p)
k1,+ − ε

(p)
k,+ + h̄ω

](
f

(p)
0k,+ − f

(p)
0k1,+

){− akbk

2
[1 − cos(θ − θ1)]σ · ẑeff + i

ak

2
sin(θ1 − θ )σ · k̂eff

}
. (B7c)

J i(fk)hh = π

4L4

∫
dω
∑
k′q

∣∣v(pa)
q

∣∣2δ[ε(p)
k1,+ − ε

(p)
k,+ + h̄ω

]
δ
[
ε

(a)
k′

1,+ − ε
(a)
k′,+ − h̄ω

]
f (γ )

× eEak′

2h̄�′k′
{[(

1 − f
(p)
0k,+

)
f

(p)
0k1,+ + (

f
(p)
0k,+ − f

(p)
0k1,+

)
f

(a)
0k′,+

]
sin θ ′

1

(
f

(a)
0k′

1,+ − f
(a)
0k′

1,−
)

− [(1 − f
(p)
0k1,+

)
f

(p)
0k,+ − (

f
(p)
0k,+ − f

(p)
0k1,+

)
f

(a)
0k′

1,+
]

sin θ ′(f (a)
0k′,+ − f

(a)
0k′,−

)}
σ · ẑeff, (B7d)

where f (γ ) = − ak′ ak

4 sin(θ1 − θ ) sin(θ ′ − θ ′
1).
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