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Quantized charge pump of massive Dirac electrons
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We study a new scheme to realize a quantized two-parameter charge pump based on massive Dirac electrons.
It is shown that the two time-dependent and out-of-phase staggered potentials introduced in graphene can pump
out an integer number of electrons in a pumping cycle as long as the Fermi energy resides in the effective energy
gap opened by pumping potentials. The dependence of the pumped charge per mode on the pumping phase or
the dynamic phase exhibits a binary alternation from +e to −e. This quantization has a topological origin and
can be accounted for by adiabatic evolution of the topologically protected interfacial state forming between the
two pumping sources.
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Quantum parametric pump [1–3] has received much at-
tention in solid-state systems, mainly because of its potential
application for realizing novel current standards [4–7], but
also for characterizing many-body systems [8,9]. Usually,
the quantum parametric pump is referred to as two or more
time-dependent potentials out of phase triggering a dc current,
and the pumped current in the adiabatic limit proved to be
proportional to the geometric area circled by time-dependent
parameters [3].

Finding a quantized charge pump in which an integer
number of charges are pumped out (Q = Ne) in a pump cycle
is one of the central goals in this research area, because it is
expected to revolutionize the electrical metrology [4–7]. In
both theoretic and experimental aspects, the Coulomb block-
age effect [10–14] in quantum dot systems was demonstrated
useful for realizing the pumping quantization, and multiple
dots in serial connection or parallel connection [12,13] could
further refine this quantization.

For the noninteracting electron system, the most celebrated
quantized pump is the Thouless topological pump [15] (TTP):
a one-dimensional (1D) moving potential can pump out
integral charges in a cycle when the Fermi energy lies in
the energy gap opened by the pumping potential. This 1D
periodic system is topological and the pumped charge is equal
to the topological invariant of the system. Very recently, two
groups have independently observed the TTP in 1D optical
superlattice systems [16,17]. The surface acoustic waves
[18–22] were also demonstrated experimentally to generate
a quantized charge pump; however, the underlying physics is
closely related to the TTP mechanism.

For the traditional two-parameter charge pump, there was
no such scheme as solid as the TTP to realize the pumping
quantization that is robust against disorder and parametric
sensitiveness, although many works [23–27] were dedicated to
this field and some preconditions [28–30] for such quantization
were found. In this work, we propose a quantized two-
parameter charge pump based on massive Dirac electrons,
which has a topological origin but is different from the
TTP mechanism formally. By introducing two out-of-phase
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staggered potentials in the 2D monolayer graphene, we
demonstrate that a quantized charge is generated in a pump
cycle due to the adiabatic evolution of the topological
interface state (TIS) [31,32] bridging between the two pumping
sources.

We start from a typical two-parameter pump model
schematically shown in Fig. 1, where the pumping potentials
�1 and �2 are put onto a monolayer graphene, and the
device is connected through the left or right lead with the
outside world. Here, �1,2 is a time-dependent staggered lattice
potential endowing the Dirac electrons with a nonzero mass
term. Similar pumping devices based on graphene have been
extensively studied [33] but within nonstaggered potentials,
so graphene did not show any topological phase transition due
to the applied pumping potentials and pumped currents were
nonquantized. The lattice-version Hamiltonian of the above
device is given by

H = H0 + V (t), (1)

H0 = −tn
∑
〈ij 〉

C
†
i Cj , (2)

V (t) =
∑

i

μi�i(t)C
†
i Ci, (3)

where H0 describes pristine graphene and tn is the hopping
integral between nearest-neighbor carbon sites 〈ij 〉. V (t)
is the time-dependent term composed of two staggered
potentials denoted by �i(t), and μi = +(−)1 for the ith
site representing the carbon A(B) atom. �1 = �0 cos(ωt)
and �2 = �0 cos(ωt + ϕ) are homogeneous in the finite-
length Lp region, where ω is the pumping frequency, �0

is the pumping strength, and ϕ is the pumping phase
shift. The normal-graphene length between �1 and �2 is
assumed L0.

As is known, the staggered potential �1,2 breaking the
inversion symmetry of graphene [34] can open an energy
gap of Dirac electrons and the system becomes a quantum
valley Hall insulator. The opposite signs of �1 and �2 will
lead to a topologically protected TIS appearing between them
sustaining a pure valley current [31,32] as illustrated in Fig. 1,
although there is no boundary state for a single quantum valley
Hall insulator [32,34].
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FIG. 1. Setup of a two-parameter pump device. The two pumping
potentials �1 and �2 marked in rectangles are introduced into pristine
graphene with length Lp , the distance between �1 and �2 is L0, and
the left and right leads connect to two unbiased electrodes. The wave
function �T IS represents the possible in-gap topological interface
state peaking in the L0 region and attenuating in the Lp region, and
sustains a valley current flowing along the transverse (y) direction.

A numerical method is first adopted to calculate the pumped
current based on the BPT formula [23],

Iα = ie

2πT

∫ T

0
dt

(
∂St

∂t
S∗

t

)
αα

, (4)

where Stαβ is the instantaneous scattering matrix with α(β)
being the left (right) lead index and T = 2π/ω is the pump
cycle. Also, the zero temperature of environment (0 K) and
adiabatic limit (ω → 0) are assumed in the above equation.
For convenience, we use the Fisher-Lee relation [35] Stαβ =
−δαβ + i�

1/2
α Gr

t �
1/2
β and the Dyson equation Gr

t = Gr
0 +

Gr
t V (t)Gr

0 to rewrite the BPT formula [23] as

Iα = e

2πT

∮
dt Tr

[
�Gr

t V̇ Ga
t

]
αα

, (5)

where �α(β) is the linewidth matrix of the α(β) lead and it
is determined by time-independent H0. G

r(a)
t = [E±i0+ −

H (t)]−1 is the instantaneous retarded Green’s function of the
two-terminal device, V̇ = dV (t)/dt is the time derivative of
pump potentials, and the trace is over the transverse modes of
the lead α.

It is assumed that our model has the translational symmetry
along the y direction and the hopping integral tn = 1 is set
as the energy unit in numerics. In Fig. 2(a), we present the
pumped current IL flowing into the left lead as a function of the
Fermi energy E. The overall current profile displays a particle-
hole symmetry and fulfills the antisymmetric relationship
IL(E) = −IL(−E). For a larger pumping strength �0 or
longer length L0, the pumped current shows a quantized
platform (IL = ±e/T ) when the Fermi energy meets E <

Eef = �0/
√

2, which is termed as the effective energy gap.
For a smaller �0 and L0, the pumped current [the dotted line
in Fig. 2(a)] is not quantized, although it is very sizable. The
reason is the finite-size effect leading to a finite gap of the
TIS [31]; therefore, either increasing the pumping strength �0

or enlarging the size of pumping source Lp will significantly
depress the finite gap of the TIS, so that the quantized IL can
preserve even for a negligibly small energy E.

In Fig. 2(b), we plot the ky dependence of the pumped
current IL(ky). It is seen that the larger ky is, the more quantized
IL(ky) is. Here, the momentum ky is counted from the Dirac

FIG. 2. Pumped current IL as functions of (a) the Fermi energy E

with ky = 0 and (b) the transverse momentum ky/kF . a is the lattice
constant and tn is the hopping energy set as a reference of energy.
Parameters are ϕ = π/2 and L0 = 0.

point (K or K ′), and kF is the Fermi momentum. These results
coincide with curves shown in Fig. 2(a). When the transverse
momentum ky is larger, the propagating energy E will be
smaller and fulfill the condition E < Eef more easily, so the
quantization of IL is more prone to appear, too. Even for
E ∼ �0, IL is not quantized at ky = 0 in Fig. 2(a), but it is
quantized at ky → kF as the solid curve shown in Fig. 2(b).
Therefore, the summation of IL(ky) over ky in the studied 2D
device does not destroy the pumping quantization if E < Eef

is valid.
In Fig. 3(a), we plot IL versus ϕ within different Fermi

energies E. It is clearly shown that IL varies abruptly from
positive quantized value to minus one, and it is not quantized
only around ϕ = nπ (n is an integer), because the effective
energy gap Eef becomes too small at ϕ → nπ . Essentially, the
pumped current in this two-parameter pump comes from the
quantum interference effect, so the dynamic phase of electrons
will inevitably affect the pumping results. In Fig. 3(b), IL

is plotted with the normal-graphene length L0. Similarly, IL

exhibits abrupt current reversal between the two quantized
values, e/T and −e/T . When the Fermi energy (or wave
vector) is doubled, the alternating periodicity in L0 decreases
nearly by half. This confirms the effect of the dynamic phase
of electrons in modulating IL.

As we discussed earlier, the introduction of �1 and �2 in
graphene will make the pumping source region transform into a
quantum valley Hall insulator [32]; the topologically protected
TIS appears between these two domains if the signs of �1 and
�2 are opposite or vanish if they possess the same sign. The
TIS appearance or disappearance in the effective energy gap
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FIG. 3. Pumped current IL as a function of (a) the pumping phase
ϕ and (b) the length L0. Parameters are �0 = 0.01tn, ky = 0, L0 = 0,
ϕ = π/2, and Lp = 400a.

seemingly makes the system experience a topological phase
transition, so that a quantized pump is expected.

In Fig. 4(a), we present the instantaneous energy bands of
an open device around the band center E = 0, where the two
semi-infinite leads are omitted directly by leaving two hard

FIG. 4. Adiabatic evolution of the energy band around E = 0
with time ωt for (a) an open device and (b) a closed system. Two
colored curves at the band center are TISs. Parameters are taken as
ϕ = π/2, Lp = 200a, L0 = 0, and �0 = 0.02tn.

boundaries. One can see that a single curve either for E > 0
or E < 0 transverses the energy gap with time; this is actually
the TIS evolution. Here, the TIS resides spatially between
�1 and �2 (as illustrated in Fig. 1) but not at the two hard
boundaries. When the left and right leads are connected to
each other, the device forms a self-closed system, that is, there
are two interfaces between �1 and �2. As a result, there are
two TISs appearing in the energy gap (two crossings) as shown
in Fig. 4(b), and each of them have the opposite chiralities.

One can assume that, in the closed system, an electron
(e.g., E = 0+) is residing in the TIS of the left lead
(actually, shared with the right lead) at a beginning time
t0, and then at t = t0 + T/2, it appears in the middle TIS
localizing in the L0 region since �1(t0 + T/2) = −�1(t0)
and �2(t0 + T/2) = −�2(t0), and the two TISs’ chiralities
are reversed. At t = t0 + T , this electron will come back to
the TIS of the right lead. In a pump cycle T , this electron
completes circling the closed device. Graf et al. [36] proved
that the closed pumping system for the TTP is equal to the
two-terminal device composed of the TTP’s potential, when
the device is not too short. In view of this, the TIS evolution
in Fig. 4(b) can represent the quantized pumping process in
an open device connected with two semi-infinite leads.

We proceed to employ a continuum model to analyze
the obtained pumping quantization. It was generally argued
[24–27] that when the instantaneous scattering matrix St has
the formation of St = U (t)S̃0 with U (t) being a phase factor
and S̃0 being independent of time, the pumped charge is
quantized and equal to the winding number of U (t) (up to
a sign),

w = 1

2πi

∮
U ∗dU. (6)

For simplicity, we just consider a 1D continuum model
describing the two-parameter pumping device in Fig. 1 as
(h̄vF = 1)

H = σxkx + �1(t)σz1 + �2(t)σz2, (7)

where σx,z is the lattice spin operator, 1 = (x)(Lp − x),
and 2 = (x − L0 − Lp)(2Lp + L0 − x) with (x)
being a Heaviside step function. Since IL is focused
on, we only need work out the first row of the
scattering matrix St , the reflection coefficient r from
the left-lead injection, and the transmission coefficient
t′ from the right-lead injection. They are given by
r = r1 + (t2

1 r2e
2iϕ0 )/(1 − r1r2e

2iϕ0 ), t′ = t1t2e
iϕ0/(1 −

r1r2e
2iϕ0 ), where r1 = (e−iθ1 − eiθ1 )/(eiθ1+iφ1 − e−iθ1−iφ1 ),

r2 = e−2ik0Lp (e−iθ2 − eiθ2 )/(eiθ1(2)+iφ1(2) − e−iθ1(2)−iφ1(2) ), and
t1(2) = e−ik0Lp (eiφ1(2) − e−iφ1(2) )/(eiθ1(2)+iφ1(2) − e−iθ1(2)−iφ1(2) )
are the reflection and transmission coefficients of
the single junction consisting in a single pumping
source, �1 or �2, respectively. Here, eiφ1(2) =
(
√

E + �1(2) − √
E − �1(2))/(

√
E + �1(2) + √

E − �1(2)).

k1 =
√

E2 − �2
1, k2 =

√
E2 − �2

2, and k0 = E are the
wave vectors in the �1, �2, and the normal graphene
regions, respectively; while θ1,2 = k1,2Lp and ϕ0 = k0L0 are
correspondingly the dynamic phases of electrons.

It is seen that when either the wave vector k1 or k2 is
imaginary (E2 < �2

1 or E2 < �2
2), the transmission t′ of
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FIG. 5. Winding number (w) of the reflection coefficient versus
the pumping phase ϕ or the dynamic phase ϕ0. Parameters are E =
0.1�0, �0 = 0.01tn, and ϕ = π/2 for the solid curve and ϕ0 = 0 for
the dash-dotted line.

the pumping device will decay to zero as Lp is relatively
large. This means the reflection coefficient |r| = 1, and thus
it becomes a phase factor [r = U (t)] in Eq. (6). Hence the
pumped current IL should be quantized, and this leads to a
preposition of t′ ∼ 0 for all time t as

E < Eef = �0

√
1 − cos ϕ

2

(
− π

2
< ϕ � π

2

)
. (8)

Here, the maximal effective energy gap Eef is �0/
√

2 but
not �0 consistent with numerical results in Fig. 2(a). Figure 5
shows the winding number w of the phase U (t) (=r at E <

Eef ) as functions of the pumping phase ϕ and the dynamic
phase ϕ0. The curve profiles are nearly the same as the current-
phase relationship of IL shown in Fig. 3, so one can infer that
the bulk states should almost not contribute to the quantized
IL, because t′ ∼ 0 is a requirement of results shown in Fig. 5.
Furthermore, the quantization of numerical IL can only come
from the TIS evolution in the energy gap.

It was argued [28–30] that when there was a resonant
line mostly comprised in the parameter contour circled by
pumping potentials �1 and �2, and the device conductance
keeps vanishing, the pumping would be quantized. For our
model, this requirement of the quantization is always satisfied.
The transmission t′ tends to zero for all time t on one hand,
when Eq. (8) is fulfilled. On the other hand, there is always a
resonant energy level appearing in the range of the smaller one
of |�1| and |�2| and spatially residing between them, because

|�1| and |�2| represent the instantaneous energy gaps of Dirac
electrons. This resonant state is the same as the in-gap Andreev
bound state appearing in a Josephson junction.

Since the TIS can be regarded as the bulk-boundary
correspondence of a quantum valley Hall insulator [32], it
is quite stable against moderate disorders, and this has been
demonstrated in Ref. [31]. Accordingly, the quantized pump
in our model is also expected to be robust against disorders,
as long as the Fermi energy resides in the bulk gap opened
by �1(2) and disorders do not close this gap. This robust
quantization due to topology is the same as that of the TTP,
but the distinction is also obvious: our model is applicable to
the 2D or 3D two-parameter charge pump, as long as the
pumping potential makes the pumping-source region enter
into a topological state like the charge density wave-induced
insulator. Besides, the pumped current can be abruptly reversed
by shifting the Fermi energy across the band center E = 0,
or changing the pumping phase ϕ or the dynamic phase ϕ0.
Other time-dependent mass terms of Dirac electrons replacing
�1,2 are expected to exert the same effect from Eq. (7).
Therefore, it is convenient to control the pumping results.
For instance, the quantized spin (valley) pump is possible by
replacing one of �1,2 ∼ �0σz with the spin (valley) dependent
mass term �0σzsz (�0σzηz), where sz (ηz) is the spin (valley)
operator. Alternatively, one can polarize the spin or valley
degree of electrons in the normal graphene region between �1

and �2 to modulate the pumping outputs by controlling the
corresponding dynamic phase ϕ0.

Although the staggered potential was realized in experiment
by growing graphene on the h-BN substrate [37], the bilayer
graphene and monolayer silicene with a buckled lattice
structure [38] are also ideal alternatives fit for our model.
Especially, the TIS between opposite gate-voltage domains
in the bilayer graphene was successfully observed in recent
experiments [39,40]. Additionally, a time-dependent strain in
graphene replacing the staggered potential can also work,
because in a unitary transformation, the mass term �0σz in
Eq. (7) can be transformed into a uniform strain term like
�0σx or �0σy .

To conclude, we have demonstrated that the two out-
of-phase staggered potentials in graphene can lead to a
quantized charge pump, where each pumping potential makes
the graphene insulating. The adiabatic evolution of the TIS
residing between two pumping sources is responsible for
this pumping quantization, and thus the quantized pump is
protected by the topology. The pumping output in our model
is conveniently modulated by the pumping phase, dynamic
phase of electrons, and the mass type of Dirac electrons.

The work is supported by NSFC (Grants No. 11574045 and
No. 11204187).
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