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Charging of highly resistive granular metal films
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We have used the scanning Kelvin probe microscopy technique to monitor the charging process of highly
resistive granular thin films. The sample is connected to two leads and is separated by an insulator layer from a
gate electrode. When a gate voltage is applied, charges enter from the leads and rearrange across the sample. We
find very slow processes with characteristic charging times exponentially distributed over a wide range of values,
resulting in a logarithmic relaxation to equilibrium. After the gate voltage has been switched off, the system again
relaxes logarithmically slowly to the new equilibrium. The results cannot be explained with diffusion models, but
most of them can be understood with a hopping percolation model, in which the localization length is shorter than
the typical site separation. The technique is very promising for the study of slow phenomena in highly resistive
systems and will be able to estimate the conductance of these systems when direct macroscopic measurement
techniques are not sensitive enough.
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I. INTRODUCTION

During the last decades, slow conductance relaxation has
been studied in many disordered insulators and, in particular, in
granular metals by means of field effect measurements. After
a quench at low temperatures, a change in the gate voltage is
accompanied by a sudden increase in the conductivity, which
subsequently slowly decreases with a roughly logarithmic
dependence on time [1–4]. Memory effects and aging are
often seen in the same type of experiments [5]. All these
glassy effects have been interpreted in different ways, but there
is a growing tendency to explain them in terms of electron
glasses, i.e., systems with states localized by the disorder and
long-range Coulomb interactions between carriers [6–8].

These glassy effects were first limited to low temperature
T , but they have recently been observed at room temperature
in discontinuous Au [9], amorphous NbSi [10], and granular
Al films [11]. In addition, high resolution techniques such
as scanning force microscopy (SFM) open the possibility
of studying these systems at room temperature allowing a
detailed real space analysis of the problem. Some of us have
applied the SFM technique to study slow relaxation in the
surface potential of conducting polymers [12]. We observed
logarithmic relaxation over four decades of time, as well as full
aging in terms of the time of application of the gate voltage.
The technique proved appropriate to monitor slow relaxation
at the nanoscale.

The use of local probe techniques, such as scanning
Kelvin probe microscopy (SKPM), presents two advantages
as compared with the conductance measurements performed
so far: (i) it allows a study of the phenomena at the nanometer
scale, which can shed some light on the mesoscopic effects
at work in the conductance relaxations, previously observed
in indium oxide [13] and granular Al films [14], but not
fully understood; (ii) samples with larger resistances can be
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measured, which is interesting because we know that in the
electron glass experiments, the larger the resistance, the larger
the conductance relaxations (in % of conductance).

In this problem the first question to answer is the mechanism
of charge injection in a strongly disordered insulator. It is an
interesting general question and has rarely been addressed. The
most thorough study on this subject was the work by Adkins’
group [15,16]. Analyzing nonlocal electrical measurements,
they found that inhomogeneities play a crucial role in the
charging process and that the scale of inhomogeneities grows
as the proportion of metal increases and grains coalesce.
They also found strong evidence for the percolative nature
of both transport and the charging process. Finally, they
monitored the total charge accumulated in the sample as
a function of time and observed that the corresponding
time dependence was clearly broader than the predictions of
diffusion models. In discontinuous metal films and in many
other strongly insulating systems, the basic assumption of the
conduction models is the exponential-like distribution of the
microscopic hopping rates [7]. Its implications in macroscopic
transport properties have been systematically confirmed. It
gives rise, for example, to the widely observed variable-range
hopping [17,18], but no direct microscopic evidence have been
produced so far.

In this paper, we study with the SFM technique the time
evolution and the spatial dependence of the surface potential
of granular Al thin films when a gate voltage is suddenly
applied and later on switched off, after a relatively long period
of time. We measure samples that are qualitatively similar to
those previously studied by some of us in the context of slow
relaxation in the conductivity, but that have been grown with
the appropriate resistance for this experiment, that is, with a
resistance high enough to ensure that the charging processes
take place in the scale from milliseconds to hours. As our
experimental results are difficult to understand with a model
of homogeneous conductivity, we have constructed a more
general network resistance-capacitance model able to handle
strong inhomogeneities [19].
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In the next section we describe the SFM technique em-
ployed and how the samples have been grown. In Sec. III
we present the experimental results, first for the charging
experiments and later for the discharging experiments. In
Sec. IV we introduce our network model and describe the
results of the numerical simulations. Finally, we extract some
conclusions.

II. EXPERIMENTAL METHOD

A. Sample preparation

The horizontal and vertical schemes of the sample are
shown in Fig. 1(a). The granular Al films used in this
study were prepared as described elsewhere by the e-beam
evaporation of pure Al under a partial pressure of oxygen [2].
The parameters here are an Al evaporation rate of 1.8 A/s
and a partial oxygen pressure around 3 × 10−5 mbar, for a
film thickness of 10 nm. Beyond an oxygen pressure of about
3.2 × 10−5 mbar, the resistance of the films cannot be mea-
sured with our experimental set-up at room temperature (their
resistance per square is larger than ≈100 G�). Previous x rays
and transmission electron microscopy (TEM) investigations
have revealed that such films are made of crystalline Al grains
of a few nanometers size, dispersed in an amorphous alumina
matrix. For the SFM Kelvin probe investigations, the granular
Al films were deposited on top of heavily doped Si wafers
(the gate) coated with a 100 nm layer of thermally grown SiO2

FIG. 1. (a) Top and side views of the scheme of the sample.
(b) Topography (�z = 35 nm) and (c) SKPM images of the granular
aluminum microchannel (z scale 400 mV).

(the gate insulator). Al contacts 30 nm thick and evaporated on
the granular Al film without opening the e-beam evaporation
chamber define channels 30–100 micrometers wide (see the
topographic picture). No leaking current to the gate was
detected (smaller than 1 pA).

B. SFM microscopy

SFM measurements were carried out using a Nanotec SFM
system with a PLL/dynamic measurement board. Once the
SFM tip was placed in the granular Al channel between the
two lateral contacts topography and surface potential images
were acquired simultaneously by means of scanning Kelvin
probe microscopy (SKPM) at room temperature and ambient
conditions using Pt-coated tips (OMCL- AC240TM-R3, nom-
inal k = 3 N/m). To assure quantitative measurements data
were acquired in frequency modulation noncontact dynamic
mode (FM-DSFM) with an oscillation amplitude of 2 nm while
surface potential images were obtained using FM-SKPM mode
with Vac = 500 mV at 7 kHz. Details of the data acquisition
set-up can be found in Ref. [20]. Freely available WSXM

software has been used for image acquisition and processing
[21]. To improve the time resolution and to minimize the
topography crosstalk artifacts [12], the charging/discharging
experiments were performed on a single scanning spatial
line, that is, the y scanning was blocked and the VSKPM was
measured along the same scanning line. This means that in the
corresponding surface potential images the horizontal axis is
the position along the line, while the vertical axis is time.

Figure 1(b) shows a topographic image of the granular
aluminum microchannel and (c) the SKPM image acquired
simultaneously. Since the maximum lateral scanning length
of our set-up is 50 × 50 microns, the panoramic granular Al
channel image has been built up from three images taken across
the channel, by slightly displacing the tip from image one
to another. The images have been acquired with symmetric
potentials on source and drain (Vsource = Vdrain = 0 V) after
the gate voltage had been kept at 0 V for three days, so that
the sample can be assumed at equilibrium. In the topography
image [Fig. 1(b)], the electric contacts can be recognized as
the higher regions (40 ± 10 nm) at the left and right borders.
The lower region corresponds to the very low conductivity
granular Al film. In the SKPM image the contrast is reversed
and those regions have different surface potential, due to their
different work function.

Before discussing the charging behavior of the films, we
note that the electric contacts as seen in the topographic and
SKPM images do not coincide. In fact, the low conductivity
channel as seen by the SKPM image [bright central region,
Fig. 1(c)] is significantly narrower than the channel as
measured from the topographic image [lower topographic
region, Fig. 1(b)]. As discussed in more detail elsewhere
[22], the resolution in the FM- SKPM mode is of the order
of 20–50 nm and thus much higher than the discrepancy
between the topographic and SKPM images (of the order
of 10 μm). Instead, we assume that this discrepancy is due
to a shadow effect of the mask used for the evaporation of
the gate and drain contacts: If the mask is not sufficiently
close to the Al grains, some Al may enter the region between
the contacts, increasing the conductivity of the Al grains
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FIG. 2. (a) Surface potential image in a region close to a contact (distance in horizontal axis and log10 t in the vertical axis). The horizontal
dashed line indicates t = 0 when the gate voltage is switched from 0 V to 3 V. The vertical dashed line marks the position of the effective
contact lead. (b) Surface potential profiles from panel (a) at different times. The profile at Vg = 0 has been included as a reference. (c) Same
data as in (b) represented versus the scaled lateral distance. Inset: Slope of VSKPM versus time on a logarithmic scale.

near the contacts. Since—within the height resolution of
the topographic images—no step is observed in the lower
region, we believe that most probably this Al diffuses into
the granular Al film. In what follows, we will assume that
the true Al-grain sample is the region as seen in the SKPM
image.

III. EXPERIMENTAL RESULTS

A. Charging experiments

To study charging processes in the highly resistive granular
Al samples, we first let the system relax to equilibrium for a
very long time (typically three days) by fixing the two leads
and the gate voltage at Vg = 0. Then, at some instant that is
taken as the time origin, t = 0, the gate voltage is switched to
Vg �= 0 and the surface potential VSKPM evolution is monitored.
Figure 2(a) shows VSKPM as a function of the lateral dimension
(horizontal axis) and the time on a logarithmic scale (vertical
axis) in a sample region close to one of the leads. Due to
scanning size limitations, only one half of the channel is shown.
However, it has been checked that a symmetric behavior
take places at the other contact. When the gate voltage Vg

is switched from 0 to 3 V, the surface potential of the granular
Al suddenly changes by the same amount, while the metal lead
potential remains unaffected. Just after the voltage switching
no current has yet been able to flow into the Al grain film. As
a first approximation, at this instant the sample can therefore
be considered as a dielectric. The SFM tip therefore “sees” the
gate voltage through the granular Al and the SiO2 insulating
layer (see Fig. 1). As time evolves, in order to reach a new
equilibrium state, charge from the source and drain contacts
enters into the granular aluminum to screen the Vg. This is seen
best in Fig. 2(b) where VSKPM lateral profiles at several times
have been represented. These results are fairly independent
of the value of the applied gate voltage. Note that while
the time intervals between successive curves grow roughly
exponentially, the change in slope between successive curves
shown is similar. Thus, we observe an extremely slow charging
behavior, which cannot be explained by a standard diffusive
model with low conductivity.

To quantify the behavior of VSKPM the central region of each
curve has been fitted to a straight line

VSKPM = a(x − x0) . (1)

All the curves can be overlapped by plotting them as a function
of the scaled variable x̃ = (x + x0)/a as shown in Figure 2(c).
We first note the relatively high quality of the overlap. In
second place, the symmetry between the two tails of the curves
is also quite remarkable; we are dealing with an odd function
with respect to the value at the center.

In the inset of Fig. 2(c), we plot the time dependence
of the fitted slopes on a semilogarithmic scale. The roughly
logarithmic dependence of the slopes with time is noticeable,
a fact difficult to understand with uniform models of the
conductivity and a clear indication of hopping processes with
exponential distributions of resistances.

B. Memory effects

In our experiments, we have also monitored how the system
relaxes back to equilibrium after the gate voltage is switched
off. The results are shown in Fig. 3(a) where VSKPM is plotted
on a color scale versus the lateral distance (horizontal axis)
and time on a logarithmic scale (vertical axis). They are also
plotted in Fig. 3(b) as a function of the lateral distance for
several values of the time, with the time intervals between
successive profiles increasing exponentially; the origin of time
is taken as the instant in which the gate voltage is switched off.

As in the excitation phase, the curves for different times
are roughly equally spaced for the exponentially spaced time
intervals chosen. To quantify this fact, we measured the slope
of the straight segment before the minimum value of VSKPM for
the different curves and the results are plotted versus time on a
logarithmic scale in panel (c) of Fig. 3. Within the experimental
error, the data follows a straight line with some bending at
long times. The continuous curve corresponds to the standard
relaxation behavior observed in systems showing logarithmic
time evolutions [2,8]

x(t) = a ln

(
1 + tw

t

)
, (2)
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FIG. 3. (a) Color map of the data in panel (a) with distance in horizontal axis and log10 t in the vertical axis. (b) Surface potential as a
function of distance at the time intervals exponentially spaced with respect to the instant when the gate voltage has been switched back to zero.
(c) Slopes of the decreasing regions of the curves in panel (b) plotted versus time. The continuous curve is a fit to Eq. (2).

where the ‘waiting’ time tw is the time interval during which
the gate has been kept at a certain voltage in the excitation
phase (here about 5 h).

IV. THEORETICAL ANALYSIS

A diffusion model (or, equivalently, a model with ho-
mogeneous conductivity) cannot explain even qualitatively
the main features of these experimental results. The value
of the diffusion constant D establishes the time scale, but
cannot get the wide distribution of relaxation times implied
by a quasilogarithmic behavior. One can solve the diffusion
problem in terms of modes characterized by a wave number
k = (πn)/L, where n are integers and L is the distance
between the leads. The characteristic time of a mode is [15]

τk = 1

k2D
, (3)

resulting in a scaling form of the type f (x/
√

t). Each mode
reduces proportionally at all positions with an exponential
time dependence. The shapes of the potential curves predicted
with this type of model are very different from those observed
experimentally in the Al-grain samples discussed above. In
particular, it is difficult to explain the almost constant value
of the potential away from the leads when its value at closer
positions has already changed noticeably.

A. Model

The logarithmic dependence of the dynamical variables
[inset in Fig. 2(c), for example] is indicative of processes with
rates depending exponentially on smoothly distributed random
variables. Based on this hint and on the highly resistive nature
of our samples we study a model suitable for hopping processes
and adequate for numerical simulations. In order to keep the
model as simple as possible we construct it in two dimensions.

We consider a network model that consists on N sites
at random on a square sample of size L × L = N and
capacitors in the links joining nearest neighbor sites. Each
site corresponds to a metallic grain (or set of metallic grains
as explained below) and each capacitor to the capacitance
between nearest neighbor grains [19]. A scheme of the network

model is shown in Fig. 4. In order to perform a simulation as
close as possible to the experimental setups and at the same
time minimize finite size effects, we have included two leads
at a potential V in opposite sides of the sample and periodic
boundary conditions in the other two sides. Sites near the leads
are connected to them by capacitors. All sites are connected
to the gate by capacitances C0ε0, which take into account the
field lines that go out of the system without ending in a nearby
grain. The capacitances Ci,j between sites take random values
extracted from the distribution

Ci,j = Crε0e
η, η ∈ [−W/2,W/2] . (4)

We have taken Cr = 1 (which sets our unit of energy) and W =
2. The choice of this particular distribution is not crucial, since
it just introduces some small randomness in the capacitances

FIG. 4. Top and side views of the scheme of the capacitors
network used to model the system. Charges can jump between nodes,
which is equivalent to having resistances between them (not shown).
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and it has the property that the average value of the interaction
between nodes is independent of W [19].

The charge Qi on each site can only take integer values and
is split between the plates of the capacitors connected to this
site. Each capacitor has opposite charges on its two plates

Qi =
∑

j

qi,j qi,j = −qj,i =
∑

j

Ci,j (Vj − Vi), (5)

where Vi is the potential at site i and the sum on j runs over
all sites, the two contacts and the gate. The charge on the leads
can take any (fractional) value. We can rewrite the previous
equation in matrix form

Qi =
∑

j

Ai,jVj (6)

where Ai,j is the capacitance matrix, defined as

Ai,j = Ci,j −
(

C0 +
∑

k

Ci,k

)
δi,j . (7)

Eq. (6) can also take care of the leads with a proper extension
of the definition of the charge vector and of the capacitance
matrix. In the leads, the potential Vlead is fixed and the charge
is VleadClead, where Clead is the sum of all the capacitances
connecting sites of the sample with the lead. It is convenient
to define the following charge vector of dimension N + 2 (see
Ref. [19] for details of the model)

Q = (Q1, · · · ,QN,CleftVleft,CrightVright) (8)

and to extend the definition of the capacitance matrix to include
the connection with the leads.

We usually have an arrangement of charges and want to
know the potential at each site. To solve this problem, we have
to invert the capacitance matrix F = A−1. This new matrix F
plays the role of an effective interaction between charges. The
total energy of the system is directely obtained from F

H = 1
2 QFQT . (9)

Given a set of charges, we calculate the energy through
Eq. (9) and, following the hopping model of conductivity in
localized systems, perform transitions of charge 1 between
sites with probability proportional to [7]

	i,j = exp

(
−2ri,j

ξ
− Ei,j

kT

)
, (10)

where ri,j is the distance between sites i and j , ξ the
localization length, Ei,j the energy difference due to the
transition, k Boltzmann constant, and T the temperature. We
consider T = 1 a temperature higher than the average charging
energy of a site but smaller than the applied voltage. Under
these conditions, we expect that the factor of distance in
Eq. (10) will be the crucial one. The energy factor would
at most renormalize the percolation effects produced by the
spatial factor, explained below.

The sites in our model can represent real metallic grains
or effective ones formed by (possibly) many grains merging
together by quantum tunneling in highly connected regions.
This will just renormalize the energy scale towards smaller
values and the time and spatial scales to larger values.

B. Numerical results

We have performed Monte Carlo simulations with our
network model changing systematically its parameters to try
to reproduce as much as possible the experimental results. The
key parameter of the model turns out to be the localization
length. When it is larger than the typical site separation, the
transition rates between sites are relatively homogeneous and
the conduction mechanism can be modeled by diffusion. In the
opposite case, hops of charges between close pairs are much
more likely than hops between distant sites, the sample is very
heterogeneous and conduction can be modeled by percolation
theory [7]. As we will see, most experimental features can be
explained with the model parameters adjusted to the regime of
percolation theory.

If the transition rate between two sites is given by Eq. (10)
and the localization length verifies ξ � 1 electron jumps
between close sites are exponentially more likely that between
distant sites. Following the standard approach to percolation in
hopping systems [7], we consider that two sites are connected
when several hops between them have been produced on
average. Then at a given time t sites with a separation smaller
than

ri,j ≈ ξ ln t (11)

are connected, while those more separated remain uncon-
nected. As explained above, we have assumed that the spatial
factor in the hopping rate, Eq. (10), is the relevant one for
our conditions. If sites are at random (or grain separations are
roughly uniformly distributed), the exponential dependence of
the hopping rate dominates the bond connectivity, and the
proportion of bonds connected at a given time will be of the
form

p(t) ≈ ξ ln
t

t0
(12)

where t0 is a constant that ensures the correct initial condition.
Charge can penetrate in the sample along the clusters formed
by connected pairs. According to percolation theory, the
typical size of these clusters R(t) grows with time as [7]

R(t) ≈ (pc − p(t))−4/3. (13)

pc is the critical percolation probability for the specific model
considered, at which there is an extended connected cluster,
and 4/3 is the universal correlation length exponent for
percolation in two dimensions.

As in Kelvin probe microscopy one adjusts the parameters
to avoid as much as possible field lines between the point
and the surface, the site potential of our model is directly
related to the experimental surface potential. The results of
a numerical simulation of the charging process are shown
in Fig. 5. The average site potential is plotted as a function
of the lateral distance to the electrode for several times and
measured from the instant in which the gate voltage is switch
on. Note that the time interval between successive curves
grow exponentially. The localization length is ξ = 0.2, so
conduction is well in the percolative regime. The overall shape
of the curves are similar to the experimental results, but more
importantly the time dependence of the slopes of the potential
is roughly logarithmic, quite similar to the experimental
behavior. In the inset of Fig. 5 we represent the slope of
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FIG. 5. Site potential of our network model as a function of
distance for several times exponentially spaced. The localization
length is ξ = 0.2. Inset: Slope of the site potential at a given distance
versus time on a logarithmic scale.

the surface potential versus time on a logarithmic scale.
According to our model, the exponentially large distribution of
characteristic times is due to the exponential dependence of the
hopping rate on distance (and to a roughly uniform distance
distribution). At low temperatures, the energy factor in the
hopping rate can contribute further to the broadening of the
times involved. As our experiments are at room temperature,
we do not expect a significant contribution from the energy
factor in the hopping rates. The gate voltage potential (10 for
the results in Fig. 5) is chosen so that the charge in each grain is
clearly higher than one. In this case the results are independent
of the gate voltage, as in the experiments.

After the last time for which we measure the charging of
the sample, we switch off the gate potential in our simulation
and monitor again the time and spatial evolution of the site
potential. The results are plotted in Fig. 6 for the same
parameters as in the charging process, Fig. 5. The main
features of the discharging curves are again reproduced by
our simulations, although there are differences in the details.
The overall logarithmic behavior is well reproduced as can be
seen in the inset of Fig. 6, where the slopes of the first part of
the curves are plotted versus time on a logarithmic scale. The
continuous line corresponds to a fit to Eq. (2).

We can have a more restrictive test of our percolation model.
If one pays attention to the experimental curves, Fig. 2, one
can observe that they seem to accelerate (in a logarithmic
scale) their approach to equilibrium at large time intervals.
This is clearly evident in panel (a) where the initially almost
straight lines become bent at the bottom of the figure. We
interpret this as a sign that, at the largest times involved in
our experiments, we are close to reaching percolation, so that
the size of the connected clusters increases faster, according
to Eq. (14), as the system approaches critical percolation
and the whole sample would be connected. To quantify this
observation we plot the lateral distance of the point at which
the voltage is equal to the mean between the lead and the
gate voltages as a function of time. In Fig. 7, we show the

FIG. 6. Numerical simulation of the site potential as a function of
distance for several times exponentially spaced after the gate voltage
has been switch back to zero. Inset: Slope of the first part of the curves
of the site potential versus time on a logarithmic scale.

results for both the experimental data (black points, left axis
in μm) and the numerical simulations (red points, right axis
in grains separation). The horizontal time axis is in seconds
for the experimental points and in Monte Carlo sweeps for the
simulation results, and it has been shifted for the simulation
results to achieve a maximum overlap between both set of
points. The line is a fit of the experimental data to the analytical
expression of the typical cluster size R in percolation theory

R(t) = a

(
ln

tc

t

)−4/3

. (14)

To derive this equation, we have taken into account the
time dependence of the connecting probability, Eq. (12),

FIG. 7. Lateral distance of the point where the surface potential
is equal to the mean value between the potential in the lead and in
the middle of the sample as a function of time for the experimental
results shown in Fig. 2 (black points, bottom and left axis) and for
the simulations (red points, top and right axis).
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tc is the critical time needed to reach percolation, and 4/3
is the correlation exponent in two-dimensional percolation.
The quality of the fit and the analogy between experimental
and numerical simulation results is a strong indication of the
percolative character of the charging process.

V. CONCLUSIONS

We have repeated the previous measurements for other sam-
ples with different resistances. If the samples are conducting
enough so that its conductivity can be measured, the processes
studied here take place at a fast scale and our set up is not
fast enough to detect intermediate processes. If the samples
are much more resistive than the ones analyzed here, we do
not see any dynamics. As resistance varies exponentially with
grain separation, we can only measure a relatively narrow
range of metallic concentrations.

In principle, this technique can be adapted to measure the
conductivity of highly resistive samples for which standard
macroscopic methods are not sensitive enough to determine it.
We now intend to apply the SKPM technique to study at the
nanometer scale the glassy effects reported in the conductance
of several disordered insulators [2–5]. Indeed in some of
them, in the appropriate resistance range, these occur up to
room temperature [9–11]. The technique can be very useful
to analyze memory effects, and combined with conductance
measurements, may shine light on the mechanisms involved.
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