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Fractional charge oscillations in quantum dots with quantum spin Hall effect
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We show that correlated two-particle backscattering can induce fractional charge oscillations in a quantum
dot built at the edge of a two-dimensional topological insulator by means of magnetic barriers. The result nicely
complements recent works where those fractional oscillations were predicted in the strong-coupling regime.
Moreover, since by rotating the magnetization of the barriers a fractional charge can be trapped in the dot
via the Jackiw-Rebbi mechanism, the system we analyze offers the opportunity to study the interplay between
this noninteracting charge fractionalization and the fractionalization due to two-particle backscattering. We
demonstrate that the number of fractional oscillations of the charge density depends on the magnetization angle.
In fact, a rotating magnetization can add or subtract fractional charges from the dot continuously. Finally, we
address the renormalization induced by two-particle backscattering on the spin density, which is characterized
by a dominant oscillation with a length twice as large as the charge-density oscillations.
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I. INTRODUCTION

As nanotechnology and material science advance, phe-
nomena that are peculiar to high-energy physics can be
brought down to the energy scale of condensed-matter physics.
Apart from the celebrated Anderson-Higgs mechanism in
superconductors [1], a paradigmatic example is graphene.
Its low-energy properties are well described by Dirac-like
Hamiltonians [2]: Klein tunneling has been predicted theoreti-
cally [3] and observed experimentally [4], and Zitterbewegung
is believed to matter for the motion of its electrons [5].
More recently, it has been shown that the chiral anomaly
[6–8] is crucial in the understanding of the electromagnetic
response of Weyl semimetals [9–20] and the behavior of two-
dimensional topological insulators in the presence of magnetic
barriers [21]. Another connection between high-energy and
condensed-matter physics is charge fractionalization due to
the Jackiw-Rebbi mechanism [22], which has been shown to
play a role in polyacetylene [23]. Fractional charges with
charge e/2 also have been proposed recently to appear in
carbon nanotubes under the influence of nonuniform strain and
magnetic fields [24]. More general fractional charges, corre-
sponding to complex solitons [25], are hosted by magnetically
defined quantum dots defined at the edges of two-dimensional
topological insulators [21,26–28], even in the presence of weak
interactions [27,28].

A different type of charge fractionalization is known to take
place in strongly interacting condensed-matter systems. Apart
from the well-established fractional quantum Hall effect in
two spatial dimensions [29], in one dimension, the interplay
between strong spin-orbit coupling and electron-electron inter-
actions is predicted to lead to charge fractionalization [30–34]
and, in the presence of superconductors, to parafermions
[35–38]. In the absence of superconductors, a powerful tool
to investigate the emergence of fractionalization phenomena
is represented by the study of the density oscillations: The
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fractional charge oscillations that emerge can compete with
Wigner oscillations and, eventually, be dominant when Wigner
oscillations have a less favorable scaling exponent or when
they are absent [30,31]. Here, by fractional charge oscillations
we mean oscillations of the electron charge with a number of
peaks exceeding the number of electrons so that, qualitatively
speaking, each peak only accounts for a fraction of an electron.
From a technical point of view, fractional charge oscillations
are due to sine-Gordon-type terms in Luttinger liquid Hamilto-
nians [39,40], and the mathematical treatments, which usually
are performed, rely on strong-coupling limits. This issue
represents a weakness in comparison to the Luttinger liquid
theory of Wigner oscillations. In fact, the onset of Wigner
oscillations in one-dimensional quantum dots can be captured
very well by a Luttinger liquid theory enriched by a first-order
perturbation theory in umklapp scattering. The results obtained
in this context are in very good agreement with numerical
results obtained on the one-dimensional Hubbard model
by means of density-matrix renormalization-group (RG)
analysis [41].

The aim of this paper is twofold: On one hand we establish
the presence of fractional charge oscillations in a quantum spin
Hall quantum dot in the presence of two-particle backscatter-
ing without relying on strong-coupling approximations but by
means of a simple perturbative approach. For completeness,
we also show that the spin density of the system only acquires
small corrections of wave-vectors 2kF and 6kF , kF being the
Fermi momentum, which are strongly suppressed by their
scaling exponents. These corrections do not significantly alter
the 2kF spin oscillation characterizing the system in the
absence of two-particle backscattering. On the other hand,
the system we inspect is characterized by fractional charges
induced via the Jackiw-Rebbi mechanism by the magnetic
barriers defining the quantum dot. It, hence, represents an
ideal playground for studying the interplay between the two
different kinds of charge fractionalization. In this context we
show how the relative magnetization of the barriers affects the
charge and spin-density profiles. We further discuss how the
dot can be filled or emptied with fractional charges of any
portion by a rotation of the magnetic barrier.
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The outline of this paper is as follows: In Sec. II we start
by presenting the model for the unconfined quantum spin
Hall system. Particular attention is devoted to the two-particle
backscattering term, which is demonstrated to be important
even away from half-filling. The effects of confinement by
magnetic barriers is analyzed in Sec. III. Then, in Sec. IV we
address the effect of two-particle backscattering on the charge
density. We show that fractional oscillations emerge and that
their wavelengths depend on the fractional charge trapped in
the dot. In Sec. V we address the spin-density oscillations,
which also depend, in an interesting way, on the Jackiw-Rebbi
charge. The conclusions are drawn in Sec. VI.

II. MODEL AND TWO-PARTICLE BACKSCATTERING

The main ingredient of our model is a one-dimensional
edge of a two-dimensional topological insulator. We fix our
reference frame so that spin-up/spin-down electrons move
right/left. We adopt, for now, periodic boundary conditions
on a length L. The Hamiltonian H0 reads [42,43]

H0 =
∫ L

0
dx �†(x)(−ivF σ3∂x)�(x), (1)

where �(x) = (ψ+,ψ−)T is the Fermi spinor with ± as the
spin projection, vF is the Fermi velocity, and σ3 is the third
Pauli matrix in the usual representation. When contact density-
density interactions are added, the Hamiltonian becomes a
helical Luttinger liquid with Hamiltonian,

H = 1

2π

∫ L

0
dx uK(∂xθ )2 + u

K
(∂xφ)2 + πu

LK
(N2

+ + N2
−),

(2)

where u is the velocity of the bosonic excitations, K is the
Luttinger parameter (K < 1 for repulsive interactions, and
K = 1 in the absence of interactions), θ and φ are the Luttinger
bosonic fields, and N± are operators counting spin-up/spin-
down electrons, respectively. In terms of the bosonic fields,
the Fermi fields read

ψ±(x) = U±√
2πα

e±i[(2πN±x)/L]e−i[±φ(x)−θ(x)], (3)

where α is the Luttinger liquid cutoff and U± are Klein factors.
When axial spin symmetry is broken, a new interaction

term, which becomes relevant in the RG sense for K < 1/2,
can emerge [42], namely, two-particle backscattering H2p.
Explicitly, in the fermionic language, one has

H2p = g2p

∫ L

0
dx ψ

†
+(∂xψ

†
+)(∂xψ−)ψ− + H.c., (4)

where g2p is the coupling constant. The process amounts to
flipping two spins and hence to backscatter two electrons. It
represents the only time-reversal invariant nonchiral interac-
tion term that can be added to Eq. (2) [42]. In order to better
understand the physical process involved, it is useful to expand
the Fermi operators on the eigenstates of H0 with wave-vector
k = 2nπ/L, n being an integer. Explicitly, we use

ψ±(x) =
∑

k

eikx

√
L

ck,±, (5)

FIG. 1. Schematic of the dispersion relation of a helical one-
dimensional system where the chemical potential μ is indicated. The
virtual transitions associated with (a) magnetic fields, (b) two-particle
backscattering at q = 0, and (c) two-particle backscattering for q �= 0
are shown.

with ck,s as fermionic annihilation operators. We then obtain

H2p = g2p

L
∑

k1,k2,q

k2(k2 + q)c†k1,+c
†
k2,+ck2+q,−ck1−q,− + H.c.

(6)

It is important to note that H2p commutes with the total
momentum since it respects translational invariance, whereas
it does not commute with the noninteracting Hamiltonian,
just as the usual Coulomb interactions. There is, however,
an important difference with respect to the usual interactions:
When density-density interactions are considered, the terms
associated with q = 0 and q = 2kF (with kF as the Fermi
momentum) mix noninteracting levels, which are very close in
energy, independently of the chemical potential. On the other
hand, when the chemical potential μ is not at the Dirac point,
all the virtual transitions that two-particle backscattering can
induce couple states which, with respect to the noninteracting
Hamiltonian, are at least 4μ apart in energy [see Figs. 1(b) and
1(c)]. The importance of two-particle backscattering is hence
expected to be reduced but not immediately negligible as the
chemical potential is tuned away from the Dirac point. An
intuitive way to convince ourselves that H2p should be taken
into account, even when the system is away from half-filling, is
to consider the effects of a very similar, although much simpler,
operator: a uniform ferromagnetic coupling in the x direction.
Specifically, consider the contribution to the Hamiltonian,

HB = B

∫ L

0
dx ψ

†
+(x)ψ−(x) + H.c. = B

∑
k

c
†
k,+ck,− + H.c.

(7)

Exactly as H2p, HB conserves the total momentum and, when
the chemical potential is tuned away from the Dirac point, the
energy threshold for virtual states is nonzero (it is 2μ instead
of 4μ since only a single electron is now involved). Still, it is
very simple to diagonalize the Hamiltonian H0 + HB and to
convince ourselves that all eigenstates and all eigenvectors are
modified by HB , although, of course, as the chemical potential
is tuned away from the Dirac point, the effects of the magnetic
coupling decrease. A scheme of the virtual transitions induced
by the ferromagnetic coupling is shown in Fig. 1(a).

Moreover, it is worth pointing out that two-particle
backscattering in helical systems is essentially a spin-spin
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FIG. 2. Schematic of the quantum dot. Two magnetic barriers,
whose in-plane magnetization differs by an angle θ , confine the helical
liquid on the segment [0,L].

interaction since one has

H2p ∝ g2p

∫ L

0
dx sx(x)2 + 2ψ

†
+(x)ψ+(x)ψ†

−(x)ψ−(x), (8)

where sx(x) = ψ
†
+(x)ψ−(x) + H.c. so that, if the system

is characterized by a nontrivial spin texture, two-particle
backscattering is expected to induce interesting modifications
thereof.

III. THE HELICAL QUANTUM DOT

The model we now inspect is an interacting quantum dot
built at the edge of a two-dimensional topological insulator.
Namely, a small part of length L � L of the system inspected
in the previous section hosts a quantum dot. The confinement
mass is provided by two magnetic barriers, whose magnetiza-
tion is assumed to lie on the plane of the quantum spin Hall
bar. The angular difference between the magnetization of the
two barriers is assumed to be θ . For a scheme, see Fig. 2.
As previously discussed in the literature [26], a fractional
background charge of θ/2π is trapped in the dot via the
Jackiw-Rebbi mechanism. It is worth mentioning that the
fractional charge is not pinned at the boundaries of the dot,
but it is homogeneously distributed as the whole quantum dot
represents the mass kink of the Dirac equation describing the
helical edge. Moreover, the two components of the spinor in
the dot region are not independent. They satisfy the boundary
conditions ψ−(x) = −iψ+(−x) [27] with

ψ+(x) := U√
2πα

ei(πx/L)[N−(1/2)+(θ/2π)]eiφ(x). (9)

Note that now a single Klein factor U and a single number
operator N are sufficient. Since we will only inspect situations
with a fixed number of electrons in the quantum dot, the
operator N and its average on any state considered will be
indicated with the same symbol. The interacting Hamiltonian
H of the quantum dot reads

H = H0 + H2p, (10)

where

H0 = πvF

KL

∑
n>0

na†
nan + πvF

2K2L

(
N + θ

2π

)2

,

with bosonic annihilation operators an. Moreover,

H2p = − g2p

2(πα)2

∫ L

0
H2p,

H2p = cos

[
4πx

L

(
N − 1

2
+ θ

2π

)
− 4ϕ(x) − 4f (x)

]
,

(11)

with ϕ(x) = [φ(−x) − φ(x)], f (x) = [φ(x),φ(−x)]/(4i),
and

φ(x) =
∑
n>0

e−(αnπ/2L)

√
n

[
1√
K

cos
(nπx

L

)

+ i
√

K sin
(nπx

L

)]
an + H.c. (12)

As a complete basis of states we will use the eigenstates
|n〉 = |N,{nj }j>0〉 of H0. These states are characterized by the
number N of electrons in the dot and the occupation numbers
of the bosonic modes. Explicitly 〈N,{nj }j>0|N |N,{nj }j>0〉 =
N and 〈N,{nj }j>0|a†

kak|N,{nj }j>0〉 = nk . The state with N

electrons in the dot and no bosonic excitations, explicitly given
by |N,{n}j>0〉 = |N,{0}j>0〉, is indicated with the symbol |N〉.
The quantum dot described so far has interesting properties
even in the absence of H2p, notably, a fractional charge θ/2π

is trapped into it. Moreover, the spin helix characterizing the
usual unconfined helical Luttinger liquid is here pinned by the
magnetic impurities. This pinning gives rise to nontrivial spin
oscillations, whose typical wave-vector ks = (2πx/L)[N −
1/2 + θ/(2π )] depends on the fractional charge trapped in
the system. However, the zero-temperature average charge
density is flat due to the absence of Friedel oscillations in the
original helical Luttinger liquid. It is worth mentioning that, in
contrast to spin-orbit-coupled one-dimensional quantum dots
[44], there are no bumps of the electron density localized at
the barriers. In the next sections, we address how two-particle
backscattering affects the charge and spin densities of the
quantum dot.

IV. PARTICLE DENSITY

Due to spin-momentum locking, the density-density corre-
lation functions of the helical Luttinger liquid, in the absence of
two-particle backscattering, do not show signatures of Friedel
and Wigner oscillations [45,46]. The presence of impurities
does not alter this behavior [27]. The density operator ρ(x) =
ψ

†
+(x)ψ+(x) + ψ

†
+(−x)ψ+(−x) reads

ρ(x) = N

L
+ θ

2Lπ
− i

√
K

L

∑
n>0

γn(a†
n − an), (13)

with

γn = √
ne−(nαπ/2L) cos

nπx

L
. (14)

The point splitting procedure is employed in the derivation of
Eq. (13), and the twisted boundary conditions given in Eq. (9)
must be taken into account, see, e.g., Appendix G of Ref. [47].
The expectation value ρ̄0(x) of ρ(x) on the N -electron ground-
state |N〉 of H0 is given by

ρ̄0(x) = 〈N |ρ(x)|N〉 = N

L
+ θ

2Lπ
. (15)

It is here worth noting three properties of the electron
density. (i) Despite confinement and interactions, the average
electron density in the absence of two-particle backscattering
is fractional due to the Jackiw-Rebbi mechanism but flat,
meaning that there are no bound states at the barriers. The
fractional charge is homogeneously distributed inside the dot.
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(ii) The total charge in the quantum dot is fractional. The
whole quantum dot is, in fact, the mass domain generating
fractional charges in the Jackiw-Rebbi model. The fractional
charge contained in the dot is a sharp quantum number and does
not affect the integerness of the total charge in the topological
insulator as a whole [21]. (iii) No finite-size oscillations of
the electron density are present in the absence of two-particle
backscattering since the confinement does not couple to the
charge density but rather to the spin density.

When two-particle backscattering is added, the state |N〉
is not the ground state of the theory anymore. The first-order
correction δρ̄(x) = ρ̄(x) − ρ̄0(x) of the electron-density ρ̄(x)
averaged over the ground state of H = H0 + H2p reads

δρ̄(x) = 2 Re
∑

|n〉�=|N〉

〈N |ρ(x)|n〉〈n|H2p|N〉
E|N〉 − E|n〉

= d0

∫ L

0
dy

{
sin

[
4πy

(
N + θ

2π
− 1

2

)
L

− 4f (y)

]

×
[
f

(
x + y

2

)
− f

(
x − y

2

)]
D(y)4K

}
. (16)

Here, d0 = 2g2pK2/[(πα)2vF ], E|n〉 = 〈n|H0|n〉, and

D(x) = sinh
(

πα
2L

)
√

sinh2
(

πα
2L

) + sin2
(

πx
L

) (17)

is a damping factor. Note that only states |n〉 representing states
with N electrons in the dot give nonzero contributions to the
sum. The resulting density corrections for different interaction
strengths and angles are shown in Fig. 3. The more important

FIG. 3. Two-particle backscattering-induced oscillations δρ̄(x)
as a function x for N = 4, K = 0.5 (blue line), K = 0.3 (violet
line), and K = 0.2 (brown line) and (a) θ = 0, (b) θ = π/2, and (c)
θ = π . (d) The amplitude A(x) of the oscillations as a function of
the Luttinger parameter K (dots); the blue line plotted is A(x) =
D(L/2)(4K), and the pink line is K = 1/4.

feature is the emergence of oscillations with wave-vector
kC ∼ 4kF = 4Nπ/L, in accordance with the strong-coupling
limit. Since the system is a one-channel Luttinger liquid,
4kF is not the wave vector of the usual Wigner oscillations,
which would be characterized by the wave-vector 2kF [48,49].
Hence, the number of peaks associated with a 4kF oscillation
is twice as large as the number of electrons in the dot. The
presence of a dominant 4kF oscillation therefore represents
a very peculiar feature of the helical quantum dot in the
presence of two-particle backscattering. These oscillations can
be identified as a signature of the emergence of fractional
charges of charge e/2 in the dot. These e/2 fractional charges
are only due to strong interactions leading to two-particle
backscattering and are distinct from the Jackiw-Rebbi charge
induced by the magnetic barriers. There is, however, an
interplay between the interaction-induced fractional charge
oscillations and the Jackiw-Rebbi charges. In fact, half a
period (one maximum of the density) is gained when the
magnetic barrier is rotated. Although it is beyond the scope
of this paper, one can speculate that, in the strong-coupling
regime, when the barrier is rotated by ±π , a sharp wave
packet with fractional charge e/2 is introduced/expelled from
the quantum dot. This behavior is due to the interplay of the
chiral anomaly, responsible for the θ dependence of the particle
number in the dot, and strong interactions. As expected,
the oscillations become more pronounced as interactions are
increased. Surprisingly, even in the finite-size setup under
investigation, the Luther-Emery point [50] K = 1/4 plays
a crucial role: Intuitively, this point is special because it
marks the beginning of the repulsive regime for the effective
charge 1/2 fermions [51]. We have numerically obtained the
difference between the relative maximum and the relative
minimum of the electron density, which are closer to x = L/2
(the center of the dot). This difference, normalized to d0, is
referred to as A(x). The numerical points are indicated by
the dots in Fig. 3(d). The line is proportional to D(L/2)4K .
Since in the usual spinless Luttinger liquid the same quantity
scales as D(L/2)K [52], the fractional charge oscillations of
the density can be interpreted as Wigner oscillations of the
new fermions, which are noninteracting at K = 1/4. A very
drastic simplification of the formula in Eq. (16) can be obtained
in the limits α → 0 and K → 0. Although these limits are
outside of the validity of perturbation theory, they allow us
to clearly identify the 4kF nature of the oscillation: Whereas
the damping factor tends to 1 due to the scaling exponent, the
term f [(x + y)/2] − f [(x − y)/2] becomes piecewise linear,
and the integral can easily be performed analytically. The
correction to the electron density δρ̄∞ in this limit reads

δρ̄∞ = −d0

(
cos

[
4πx
L

(
N + θ

2π

)]
8
L

(
N + θ

2π

) − π sin(2θ )

8(2Nπ + θ )2

)
. (18)

This formula is plotted for clarity in Fig. 4 as a function of
x and θ . The influence of the chiral anomaly is clear: As θ

is increased, the number of particles and the number of peaks
in the density are increased as well. Moreover, the result in
Eq. (18) is in qualitative accordance with both the strong-
coupling regime and the physical intuition since the amplitude
of the correction is reduced as the chemical potential is tuned
away from the Dirac point.
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FIG. 4. Density plot of δρ̄∞ for N = 3 in units of d0 as a function
of x and of angle θ .

Let us briefly summarize the physics inspected up to this
point. A fractional charge of arbitrary value can be trapped
between two magnetic barriers implanted on a noninteracting
quantum spin Hall system. This fractional charge is not
pinned at the edges of the dot, but it is uniformly distributed
in the dot [21,26]. When spin preserving electron-electron
interactions are considered, this picture is not significantly
modified [27]. When axial spin symmetry is broken in the
bulk of the topological insulator, two-particle backscattering
can emerge. For strong enough interactions, this new term
makes the relevant quasiparticles describing the quantum
dot fractional with charge e/2 [30,33]. In the quantum dot
under inspection, fractionalization of the quasiparticles is
captured by the electron density. For parallel magnetization
of the barriers, which means no Jackiw-Rebbi fractional
charge, the density shows a number of peaks which is twice
the number of electrons trapped in the dot, or, in other
words, is equal to the number of the fractional quasiparticles
generated by two-particle backscattering. Note that in the usual
one-dimensional systems the ground-state charge oscillations
range from half (one-fourth in the case of carbon nanotubes)
of the number of electrons, called Friedel oscillations, to a
number of oscillations that equals the number of electrons,
called Wigner oscillations. We are, hence, facing a different
scenario: a Wigner oscillation of fractional quasiparticles.
Moreover the Jackiw-Rebbi fractional charges of any value
enrich the physics. By rotating the magnetization of one of
the barriers, individual fractional quasiparticles can be ma-
nipulated as can be seen from the shift of the peaks of the
electron density. As a by-product, one can note that, when
the Jackiw-Rebbi fractional charge is e/2 in the presence
of two-particle backscattering, the dot is in a state which is
well described as a Wigner oscillation of an odd number of
fractional charges with charge e/2.

The nonconservation of the charge in the dot as the
magnetization of the barriers is rotated has a deep origin. The
quantum dot investigated in this paper, but in the absence of
electron-electron interactions and two-particle backscattering,
has been shown [21] to be equivalent to a quantum ring with a
linear dispersion relation pierced by a magnetic flux. The role

of the magnetic flux is taken by angle θ . In the same way the
chiral anomaly induces persistent currents in the quantum ring,
angle θ is responsible for the nonconservation of the charge in
the dot.

The experimental detection of the charge oscillations
can be carried out by means of scanning gate microscopy
[53–55], provided that the effect is strong enough. Although an
estimation of the magnitude of the oscillations would require
the consideration of the full two-dimensional topological
insulator, which is beyond the scope of this paper, encour-
aging indications can be obtained from related systems. (i)
Strongly interacting quantum spin Hall systems with Luttinger
parameter K ∼ 0.25 have been reported [56]. (ii) Two-particle
backscattering has been shown to be able to open helical gaps
in spin-orbit-coupled quantum wires [57]. (iii) It has been
proposed in order to interpret experimental data to take into
account parafermions when topological insulators are brought
in proximity to superconductors [58]. Scenarios dominated by
two-particle backscattering are hence experimentally relevant.

V. SPIN DENSITY

In this section, we examine the effect of two-particle
backscattering on sx(x) = �†(x)σx�(x) in the quantum dot.
The effects on sy(x) = �†(x)σy�(x) are similar but shifted
by half an oscillation so that the rotating spin pattern
discussed in Ref. [28] also characterizes the two-particle
backscattering-induced corrections. The third component
sz(x) = �†(x)σz�(x) is not affected at all by two-particle
backscattering. The correction δs̄x(x) to the average of sx(x)
on the ground state of H0 is given to first order in H2p by

δs̄x(x) = 2 Re
∑

|n〉�=|N〉

〈N |sx(x)|n〉〈n|H2p|N〉
E|N〉 − E|n〉

. (19)

Unfortunately, in the present case we were not able to find
an explicit form for the corrections since the result of the
calculation contains entangled series. Using the well-known
relations between the matrix elements of the Fermi operator on
the Luttinger liquid eigenstates and the Laguerre polynomials
[59,60] we could, however, derive

δs̄x(x) = 2g2p

(2πα)2
Re

∫ L

0
dy

∑
{n}�={0}

T (x,y,N,θ,{n})
E{n}

. (20)

Several quantities are here defined: {n} �= {0} is any succession
of non-negative integers. From the physical point of view, the
sum emerges from the necessity to consider every possible
configuration of the bosonic field, that is, every possible
occupation number np of the pth bosonic mode. The energy
factor is given by E{n} = ∑∞

p=1
nppvF

KL
. Furthermore, we have

introduced

T (x,y,N,θ,{n}) =
∑

ξ1=±,ξ2=±
ξ1 exp

(
2ξ1iπx[N − 1/2 + θ/(2π )]

L
− 2f (2x)

)

×A(x,ξ1,{n}) exp

(
4ξ2iπy[N − 1/2 + θ/(2π )]

L
− 4f (2y)

)
A(y,2ξ,{n})/(4i),
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FIG. 5. Two-particle backscattering-induced oscillations δs̄x(x)
as a function x for N = 4, K = 0.5 (brown line), K = 0.3 (violet
line), and K = 0.2 (blue line) and (a) θ = 0 and (b) θ = π/2.

where

A(x,χ,{n})

=
∏
p

[−2χe−(−αpπ/2L)
√

K
p

sin
(

pπx

L

)]np

√
np!

D(x)χ
2K. (21)

The sums and the integrals can be performed numerically,
and the results are presented in Fig. 5. The dominant oscil-
lation is of the 2kF type, although a small 6kF component
also is present. Moreover, the unfavorable scaling factors
of the damping factor D(x) flatten the oscillations near
the center of the dot. Additionally, the correction to the
spin oscillations is strongly influenced by the Jackiw-Rebbi
charge, in accordance with the behavior of the average spin
density. As the background fractional charge is added to
the dot, the number of oscillations increases. When a full
rotation of the magnetization of the barrier is performed, an
additional peak is emerging in the spin-density profile. As
expected, by increasing interactions, the peak-to-valley ratio
of spin oscillations increases. However, whereas the charge
oscillations induced by two-particle backscattering add up
to a flat original density profile, the spin oscillations are
superimposed onto a commensurate oscillation pattern.

The difference between the characteristic wavelength of
the charge oscillations 4kF and the spin oscillations 2kF and
6kF is essentially due to the original spin-momentum locking
characterizing the quantum spin Hall state. In a perturbative
scheme, in fact, given that two-particle backscattering is
characterized by the wave-vector 4kF , the dominant oscillation
of the charge density is 4kF due to the absence of Friedel
oscillations in the density operator, see Eq. (13). Similarly,
no corrections with wavelength 4kF are present in the sx(x)
and sy(x) spin densities since no long-wave contribution is
present in their operator forms. Such a contribution would be
present in a usual Luttinger liquid. A further confirmation of
the different wavelengths of the corrections can be obtained by

means of the strong-coupling expansion of the Fermi operators
as discussed in Ref. [30].

VI. CONCLUSIONS

In this paper, we have presented the effects of two-particle
backscattering on the charge and spin densities of a quantum
spin Hall quantum dot. First, we have characterized the
different interaction terms. We have shown that, for sufficiently
strong interactions, two-particle backscattering must be taken
into account even when the system is tuned away from
half-filling. Then, we have demonstrated, by means of a
simple perturbation theory, that the charge density is strongly
influenced by two-particle backscattering since it induces
oscillations with a wave vector that depends on the Jackiw-
Rebbi fractional charge trapped in the dot. The peak-to-valley
ratio of the oscillations increases as the forward density-
density interaction is increased, that is, when the Luttinger
parameter decreases. These results are in striking contrast to
the case in which two-particle backscattering can be neglected:
In that case the electron density, despite confinement and
electron-electron interactions, is flat. An analogous result also
holds for the in-plane spin density, which, when two-particle
backscattering is added, acquires a 6kF component which is
absent in the dot without two-particle backscattering. More
generally, we have shown that the fractional charge oscillations
recently obtained by means of perturbation schemes in the
regime of strong two-particle backscattering are robust. They
can also be obtained within the usual perturbative approaches.
Our paper implies that a quantum spin Hall quantum dot
displays very rich physics: Interaction-induced fractionaliza-
tion and Jackiw-Rebbi fractional charges coexist and have a
nontrivial interplay. Apart from the interest in the signatures of
strong interactions in topological systems, the results inspected
in this paper are relevant for the understanding of parafermions
in topological insulators and spin-orbit-coupled quantum
wires. Strong interactions of the form of the two-particle
backscattering investigated here, in fact, play a fundamental
role in the formation of parafermions. Moreover, although
the parafermions which are relevant for quantum computation
are boundary states, their manipulation necessarily involves
their interaction with the bulk of the host material. In our
paper, we have presented a study of the spectral properties of
the nonsuperconducting part of a prototypical system for the
emergence of parafermionic excitations.
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