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Non-Gaussianity in a quasiclassical electronic circuit
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We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor.
Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the
stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum
fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the
stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from
the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable
to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.
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I. INTRODUCTION

Nonequilibrium fluctuation in mesoscopic conductors has
been intensively studied in both classical and quantum regimes
because the fluctuation has essential information on the
nonequilibrium transport [1,2]. Owing to the rapid progress
in nanotechnology, it becomes important to address the
current distribution beyond the Gaussian one. In the classical
regime, it is experimentally possible to count the number of
electrons which pass through a conductor [3,4]. The achieved
histogram characterizes the microscopic transport processes.
The current fluctuation in quantum conductors has also been
investigated in terms of the full counting statistics [5,6].
The current distribution elucidates fundamental aspects of
the nonequilibrium properties such as the fluctuation theorem
[7-9].

Non-Gaussianity of nonequilibrium fluctuation has been
discussed in various classical systems such as electronic
circuits [10,11], diffusive conductors [12], chaotic cavities
[13,14], granular particles [15-17], nanomagnets [18],
particles in dense collides [19], and particles with long-range
interactions [20]. Recently, a universal mechanism of the
non-Gaussianity in such classical systems has been clarified
by Kanazawa et al. [21]. They considered a generic situation
where a macroscopic classical particle is coupled to multiple
environments and derived a non-Gaussian Langevin equation
even in the thermodynamic limit. The existence of multiple
environments is crucial for the non-Gaussian dynamics of
macroscopic systems because it enables different origins of
fluctuation and dissipation free of the fluctuation-dissipation
theorem. Otherwise, the noise is reduced to be Gaussian in
the macroscopic limit according to the central limit theorem
[22]. They have also demonstrated that the sensitivity of
the stochastic particle under the non-Gaussian noise can be
utilized to probe the properties of the attaching athermal
environment [21].

It is an interesting next step to apply the above discussion
to quantum systems. Unfortunately, the non-Gaussianities in
the classical [21,23] and quantum [5,6] systems have been
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investigated separately so far, and the unified understanding
on the crossover regime has not yet been established. This
is not just of theoretical interest because recent technology
enables us to fabricate electronic nanostructures with high
precision. In particular, on-chip devices are promising systems
to investigate the non-Gaussian noise and its quantum effect
in a well controlled manner [24-31]. Each element of the
electronic circuit is so small that quantum effects play
important roles. Moreover, fluctuation generated in one of
the circuit elements is coherently propagated to the rest of
the circuit because the elements embedded on the same chip
are strongly coupled with each other. Thus, systematic studies
of quantum transport away from the classical regime is
necessary for such small quantum devices.

In this paper, we extend the classical non-Gaussian stochas-
tic equation to the classical-quantum crossover regime. In
order to proceed to concrete discussions, we consider a
dissipative LC circuit inductively coupled with a quantum
point contact (QPC). The LC circuit works in the wide range
of scales from the classical [22] to quantum [32] regimes.
In the classical limit, the LC circuit behaves as a stochastic
particle which is subject to both the thermal noise and the
non-Gaussian noise generated by the electronic transport
through the QPC [33]. The system can be also considered
as a mesoscopic conductor with a simple and realistic detector
circuit to probe the current distribution [6,33—38]. Away from
the classical limit, the quantum fluctuation which originates
from the quantum nature of the dissipative LC circuit becomes
relevant to the circuit dynamics. Hence, the problem should be
interpreted as that of a quantum Brownian motion driven by
the non-Gaussian noise. The quantum fluctuation is described
by non-Markovian contribution of the Gaussian noise kernel
and is controlled by the quantum-mechanical time scale and
a phenomenologically introduced cutoff frequency. We use a
stochastic method to describe the weak quantum fluctuation
and evaluate the quantum correction of the stationary proba-
bility density function (PDF) in the quasiclassical regime.

This paper is organized as follows. In Sec. II, we give a
microscopic description of the dissipative LC circuit coupled
to the QPC and simplify the model by assuming the separation
of the time scales of the subsystems. In Sec. III, the dynamics
of the coupled system is formulated based on a stochastic
method. In Sec. IV, the quantum correction of the stationary
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FIG. 1. Schematic of a dissipative LC circuit inductively coupled
to a QPC and its interpretation as a stochastic particle attached to the
thermal and athermal environments.

PDF is determined by solving the Master equation. In Sec. V,
the effect of the quantum correction and the non-Gaussian
noise is numerically evaluated. We will summarize the results
in Sec. VI. In Appendix A, we give microscopic expressions of
the transition rates for electrons tunneling through the QPC. In
Appendix B, we present the partition function of the stochastic
model activated by the non-Gaussian noise. In Appendix C, we
derive the Master equation corresponding to the non-Gaussian
Langevin equation.

II. MODEL
A. Dissipative LC circuit coupled to a QPC

In this section, we introduce a microscopic model of a
dissipative LC circuit coupled with a QPC (Fig. 1). The
flux @, which is given by the time integral of the voltage
V across the inductor as ®(¢) = f’ dr'V(t'), plays a central
role to describe the LC circuit. A superconducting quantum
interference device, which is a typical on-chip device used
in various experiments [31,39-45], behaves as an LC circuit
when the Josephson coupling energy dominates the charging
energy [32]. In the superconducting device, the flux @ is
directly related to the phase difference, which can be observed
in terms of the voltage across the junction. In order to describe
the LC circuit attached to a thermal environment, let us
consider the Caldeira-Leggett model [46]

Sicl®] = % / dzd7 ®(2)G ™ (z2,2)®(2). (1)
C

The argument z is a combination of the real-time ¢ and the
Keldysh index [47,48] p = F. The forward and backward
branches of the Keldysh contour C are denoted by C~ and
C™, respectively. The symbol |, ¢ denotes the integration over
the Keldysh contour. It is convenient to use the action in the
rotated Keldysh basis

Spc[@%, ®9] = / dtdt’[cbq(t)(gl)f(t,t’)cbcl(t’)

1
+5<I>q(t>(g—‘)‘<(r,ﬂ)d>‘*(r/)}, 2)

with the classical and quantum components of the bosonic
field, ' = (&~ + ®*)/2 and &9 = d~ — ™, respectively.
We have introduced the retarded Green’s function

G (@) = C(w* — Q) +iJ(w), A3)
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with the capacitance C, the inductance L, the resonant
frequency 2 = 1/+/LC, and the spectral function

ow
1+ (w/wp)*

Here, we assume the Ohmic damping with the conductance o
and the Drude cutoff frequency wp. The Keldysh component
of the Green’s function in Eq. (2) is characterized as

(G~ () = 2i J(w)coth(Bhiw/2) &)

J(w) = “

when the thermal environment is in equilibrium at inverse tem-
perature 8. The quantum nature of the dissipative LC circuit is
solely incorporated in the fluctuation as a consequence of the
linearity of the system [32].

The action of the QPC is composed of two parts [48]
as SopclC,c; @] = So[c,c] + Srlc,c; @]. The first term Sy
describes noninteracting electrons in the leads;

siecl = 3 Y [ dedzan@gy @ en). ©)
C

i=L,R k

where we have introduced the Grassmann field ¢;x (cix)
for the creation (annihilation) of an electron with the wave
vector k in the lead i = L,R. We do not consider the spin
degrees of freedom for simplicity. The Green’s function in
Eq. (6) is defined as g;;'(z.2)) = 8(z — 2)lifi — €ix] with
the dispersion relation €;; for i = L, R. The bias voltage V is
applied to the leads, which are assumed to be in equilibrium
at inverse temperature Sopc. The second term St describes
the electron hopping which is accompanied with an electronic
excitation in the inductively coupled LC circuit [32];

1 ie
Stle.c; 1=+ ) / dz[tLge **Pep(Deri(2) + He.].
C
kK

(N

Here, H.c. denotes the Hermitian conjugate of the first term.
The hopping amplitude between the left and the right leads is
denoted by 7, g. The coupling constant between the QPC and
the LC circuit is given by «.

As the QPC action Sgpc[¢,c; @] = Solc,c] + Stlc,c; @] is
quadratic in terms of the conduction electrons, we can exactly
perform the Gaussian integration over the fermionic degrees
of freedom [49]. The action becomes

Sopc[®]
—ih / dzln[1 - 134G VI®IGRVI[@])z.2),  (8)
c
where we have introduced the vertex operator
V[®] =exp <7<I>> ©)]
The integration on the Keldysh contour is abbreviated as
(AB)(z.2)) = [ dz"A(z,2")B(Z",2)). The retarded and the
Keldysh components of the Green’s function G;(z,7') =
% >k 8ik(z,Z)) are, respectively, given by

Gi(w) = —imp;, (10)

GX(w) = 2mip; 2 fi(w) — 1), (11)
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where f;(w) = 1/(exp [Bgpc(w — w;)] + 1) is the Fermi-Dirac
distribution of the lead i = L, R with the chemical potentials
ur = eV and ug = 0. The energy dependence of the density
of states p; (i = L, R) is neglected in Eqgs. (10) and (11) for
simplicity.

B. Quasistationary approximation

In this paper, we assume that a typical time scale of the QPC
is much shorter than that of the LC circuit. The correlation
time of the current fluctuation in the QPC is governed by the
bias voltage V and the inverse temperature Sqpc, while the
dynamics of the LC circuit is characterized by the resonant
frequency €2 and the relaxation time C/o . If the dynamics of
the subsystems is well separated, we are allowed to consider
an intermediate time scale At satisfying

h Cc 1
in{ —,h At in{—,— ). 12
min (eV’ ,BQPC) < < mm(a’Q) (12)

Within the quasistationary approximation [14,30,33,50], we
can regard the vertex operator V[®] in the QPC action (8) as
a constant because the dynamics in the LC circuit is almost
frozen during At. At the same time, At is so long for the
QPC dynamics that the current fluctuation in the QPC is
characterized by the stationary distribution. This argument
can be further substantiated by the path-integral representation
[33,50] with the discrete time stride At. Thus, we find that the
QPC action has the same structure as the cumulant generating
functional in the full counting statistics [5] as

Sopc[P1]
. dw
_ zh/dt/ £ [+ Tu[ fu@)1 = ful)
x (%P0 — 1) + fr@)(1 — fr@)(e” 70 —1)]]

oo
==i 3 [arwerreo ), (13)

n=—0o0

with the transmission coefficient 77z = 4n2t£ rPLPR- The last
line of Eq. (13) defines the transition rate W, as a coefficient
of (¢ "®® _ 1) (see Appendix A for the explicit expressions
of the lowest-order terms).

With the action of the LC circuit (2) and the QPC (13), we
obtain the partition function

Z= /D¢°1Dq>q exp [%(SLC[CDCI,@"] + SQpc[qﬂ])}.
(14)

The important point is that the QPC action no longer depends
on @ as a consequence of the time-scale separation. This
indicates that the instantaneous current through the QPC
perturbs the flux in the LC circuit, while the current distribution
is not influenced by the state of the LC circuit.

III. STOCHASTIC FORMULATION

In this section, we develop a stochastic method for the
QPC-LC coupled system by relating the partition function (14)
with characteristic functionals of stochastic processes within
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a quasiclassical approximation. It is found that the electron
transport in the QPC perturbs the LC circuit with a compound
Poisson noise, which is a typical non-Gaussian noise. The
thermal and quantum fluctuations of the dissipative circuit
can be incorporated in the noise kernel. Asymptotic-scaling
analysis of the non-Gaussian stochastic equation is performed
as a quantum extension of Ref. [21]. We reduce the non-
Markovian dynamics of the quantum LC circuit to multivariate
Markovian processes by decomposing the quantum fluctuation
into exponentially-correlated auxiliary variables.

A. Characteristic functionals

The statistical property of the non-Gaussian noise produced
by the QPC is completely described by a characteristic
functional. In order to recover the thermal fluctuation in the
classical limit [48], we scale the fields as ®9(z) = (h/ey)pi(s)
and ®°(¢t) = (¢/CQ)¢(s) with the dimensionless time
s = Qt and the dimensionless friction coefficient y = o/CQ.
The contribution from the QPC in the partition function is
given by

xngle?] = exp [)»p/dS[/ dyw(y) (e — I)H, as)

where we have introduced the rate parameter Ap = Zn w,, and
the jump size distribution

1 & no
w(y) = o~ > wna(y - 7), (16)

n=—0oQ

with the dimensionless transition rate w, = W, /AiQ2 (n € 7).
The functional xng is identical to the characteristic functional
of compound Poisson processes [51]. The physical processes
behind the generation of the non-Gaussian noise are explained
as follows. The transport processes in the QPC are composed
of the independent microscopic events where several electrons
are transferred in a short time interval. The probability for
n electrons transferred from the left reservoir to the right
one is proportional to the transition rate w,. According to
Ampere’s law, the instantaneous current though the QPC
produces a magnetic flux whose amplitudes are proportional
to the current value. Due to the granularity of electrons, the
possible amplitudes of the non-Gaussian noise induced in
the LC circuit are integer multiples of the unit amplitude
a/y. The statistical properties of the non-Gaussian noise are
characterized as the weighted summation of these microscopic
events.

The Gaussian fluctuation which originates from the linear
coupling between the circuit and the thermal environment is
described by the quadratic term [48] in ¢9 in the LC action
(2). This contribution is identical to the Gaussian characteristic
functional

xclel = exp [— / dsds'¢(s)v(s — S/)wq(s/)} a7

with the noise kernel [32]

2 o)
v(s) = he / Z—jJ(w)coth(MTw)e—”w/ﬂ. (18)

2,2
2e%0% J_o
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In the case of the Ohmic spectral function with the Drude
regularization (4), the noise kernel becomes

T| o > 1
v(s) = — | —e e 4 —_
)/|:2 kgl:(k/twc)z_l

k
% <wce|swc _ _eks/r)}, (19)
T

where T = C/e?B, w. = wp/Q, and v = BAQ/2m are the
dimensionless temperature, the cutoff frequency, and the
quantum-mechanical scale, respectively. In the following
discussions, the cutoff frequency wp is assumed to be much
larger than the resonant frequency €2, i.e., w. > 1. In this
regime, the first term on the right-hand side (RHS) of
Eq. (19) is reduced to the thermal noise (7'/y)5(s). The second
term on the RHS of Eq. (19) describes the non-Markovian
quantum fluctuation. In the classical limit (r = 0), the second
term vanishes and the noise kernel is solely determined by
the thermal noise. As will be shown later, the existence of the
cutoff and the exponentially decaying form of the second term
is important to discuss the quantum correction.

In the subsequent discussions, we focus on the overdamped
case (y > 1). The partition function (14) is written in terms of
the two characteristic functionals Egs. (15) and (17) as

Z= f Do Do x6l9 1 xncle?]

. q 0 1 cl
X exp |:l fdsgo (S)<_£ - ;)QO (S)i|. (20)

In the derivation of the equation of motion of the LC circuit, we
have considered that the friction kernel becomes memoryless
under assumption of the large cutoff frequency w, > 1.

B. Asymptotic scaling in the classical limit

In the classical limit, the partition function (20) leads to the
over-damped Langevin equation with the zero-mean thermal
noise 7y (Appendix B) and the compound Poisson noise [51];

a(pcl(s) __] cl T . — 5
=Y (s)+\/;no(s)+lZy,8(s si), (21)

{no(s)mo(s")) = 28(s — 5"). (22)

The statistical properties of the non-Gaussian noise are
characterized by the non-Gaussian characteristic functional
xNG (15). A set of the arrival times {s;} obeys the Poisson
process with arate parameter Ap. Each amplitude of the noise y;
is independent and identically distributed random variable with
the jump size distribution w(y). In our model, each amplitude
takes na/y with probability w, /Ap.

The previous work [21] pointed out that the non-
Gaussianity survives even in the thermodynamic limit under
the following three assumptions: (i) the amplitude of the
non-Gaussian noise is small; (ii) the friction coefficient y is
independent of the non-Gaussian-noise amplitude; (iii) the
thermal noise is smaller than or of the same order as the
non-Gaussian noise. In our case, the condition (i) is satisfied
if there exists an integer n. € N such that (a) Wnj=n /Ap K 1
and (b) n.a/y < 1. The condition (a) holds at weak-tunneling
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regime (T g < 1) because the transport processes where many
electrons are transmitted instantaneously are rare events. The
condition (b) requires the characteristic amplitude € = «o/y
of the non-Gaussian noise to be small for dominant transport
processes. The conditions (ii) and (iii) are straightforwardly
translated in our system. The condition (ii) is satisfied
because the friction coefficient y is irrelevant to the athermal
environment. Besides, the condition (iii) holds when the scaled
temperature 7 = T /€ is independent of €.

Following the previous work, we use the rescaled variables
¢ =¢/e and ) = y/e to obtain the asymptotic Langevin

equation
0 1 T
$(s) =00+ /;no(S)+np(S), (23)

as

with the thermal noise 7 and the non-Gaussian noise

p(s) =Y V(s — 50), (24)

characterized by the rate parameter Ap and the rescaled jump
size distribution

o]

1
WQ) = ew(y) = . > w,sQY —n). (25)

n=—00

The existence of the non-Gaussian Langevin equation (23)
and its stationary solution have already been established by
the previous work [21]. In the path-integral formalism, the
stochastic differential equation (23) corresponds to the non-
Gaussian action

0 1 T 2
S = /ds |:—¢q(S)|:£ + ;i|¢(s) + l;(‘l&q(s))

—ip / dYWQ) (VP — 1)}, (26)

with ¢4 = ¢9/e.

C. Quantum fluctuation

The quantum nature of the dissipative LC circuit becomes
relevant at low temperatures where the correlation time Sh
of the thermal environment is comparable to the inverse of
the resonant frequency 1/€. In the following, we consider
the regime where the quantum-mechanical correlation time
Bh/2m is much larger than the QPC time scales /i/eV
and /iBopc so that the quasistationary approximation (12) is
applicable [52]. It is still not necessary to consider the memory
effect of the friction kernel as long as the cutoff frequency is
sufficiently large (w. > 1).

The quantum effect is incorporated via the second term on
the RHS of Eq. (19), whose kth term is

Z—l wee VI — Ee_kls‘/r . 27
y (k/tw)?* — 1 T

By applying the Hubbard-Stratonovich transformation, we can
decompose the quantum correction into mutually independent
auxiliary variables n; and 5, which have exponentially
decaying correlations. In other words, if we assume that
the auxiliary variables 7} == obey the Ornstein-Uhlenbeck
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processes
o (s) _ —m(s) +Ek (S) 28)

s 174
(698l () = 26(5 = )8kt By (29)

with r,:r = l/w., T, = t/k, and the Kronecker delta §;;, their
solutions have the same statistical properties as the original
fluctuation as

()t ) = —exp( Is =51/ )8ueSue. (30)

Tk

Hence, it is possible to consider that the flux ¢ is driven by
the auxiliary variables n;. It is interesting that the persistent
noise (30) plays an important role in active matter [53] as well.

J
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The overdamped Langevin equation with the quantum correc-
tion is written as

3 1 |7
¢5(s) =— —¢(s) + [ —nols) + np(s)
Ky y 14
+ Z

with 7y = T /((k/tw:)* — 1). We note that the 5, term is
purely imaginary because the second term of Eq. (27) is
negative. To summarize, the quantum dynamics of the QPC-
LC coupled system is mapped to the linearly-coupled Langevin
equations with the auxiliary variables.

[nk () +ing (9], 3D

IV. STATIONARY PDF

In this section, we analyze the stochastic equations Egs. (22), (24), (30), and (31) by switching to the Master equation approach
(Appendix C). We denote the probability density function (PDF) of the quasiclassical LC circuit [54] by P(¢,5,s) with the flux
¢, a set of the auxiliary variables 7, and the rescaled time s. The corresponding Master equation is

P 10 T 8°P(é.1.5) e
S = PG+ VTHP / YW (V% — 1)P..5)
%0 W, 9 [M 19 ])
+ + i | T+ g | |P@as). (32)
ZZ<V k8¢ ong " " < onp !

The first line on the RHS of Eq. (32) is identical to the Master equation in the classical regime. The second line describes the
coupling between the flux ¢ and the auxiliary variables 1 and the diffusion of the auxiliary variables.

In the quasiclassical regime where the time constants and the coupling constants are sufficiently small, i.e., 7;° < 1 and
T < 1 for an arbitrary natural number k € A/ and = =+, the Master equation (32) is reduced to a single-variate Fokker-Planck
equation [48]. The former condition is compatible with 1 <« @, and T < 1. The latter one further requires the cutoff frequency
to filter the quantum-mechanical energy scale (tw, < 1) so that the quantum effect remains weak (7; < 1).

Within this parameter regime, we obtain a perturbative solution around the classical limit as

P(p,n,s) ~exp |:

k=1 p==%

IpIRELE

MP@,S) +y > n,’fN,ﬁ‘(cﬁ,S)}. (33)

k=1 p==%

The coupled Master equations for P(¢,s) and N (¢,s) are given by

s 09 3¢2

2
P.5) _ [%(1 +¢i> 10 +Ap/dyW(;V)( i — 1)}7’@ s)+ Z >

Wi IN{ ($.5) S)

(34)
k=1 p==% /iL 4 8¢

MBN,ﬁ‘(d),s)_[l( i) T 92 / ys _L} . 1Ti dP(9,5)
e T+ogs )+ 9 T dYWQ) (e —1) 7 N{(¢.5) + VR Fa (35)

respectively. The equation for the steady-state PDF Pss(¢) is given up to the first order in 7/* as

a2 _yd
0= <1+¢ ¢) Wﬂkp/dyww)(e yw—l)—[l—

-1
T 92
’;”‘ 8¢2] Zﬂ[l—;—k}w Pss@).  (36)

k k

with 7, = 1/w. — t/k. With the Fourier transform of the steady-state PDF Pss(A) and the cumulant generating function

Fss(1) = InPsg (1), the stationary solution of Eq. (36) can be written as
Fes(A) = In K1) + FL). (37
Here, the second term represents the solution in the classical limit [21] as
N 752 Boe —1
A== 4y [ ayw) [ a2, (38)
0
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The first term on the RHS of Eq. (37) contains the quantum-
correction kernel

3 I

with the parameters

Te 12
0= (7[1/f(1 + 1) — I/f(l)]) , (40)

k l[l<1——’”“}° )—1]. (1)
21262 tan (7 Twe) y
Here, we have introduced the digamma function ¥ (x) =
%ln ['(x) with the gamma function I'(x) = fooo dir*le T,
The factor of K(1) is determined by the normalization of the
PDF, i.e., Pss(0) = 1. The quantum-correction kernel (39) is
identical to the characteristic functional of the difference of
the two independent random variables obeying the identical
Gamma distribution with the scale parameter 6 and the shape
parameter k. The parameters 6 and k are associated with the
amplitude and the arrival rate of the quantum fluctuation,
respectively. The quantum correction does not modulate the
mean but the fluctuation of the flux ¢. The quantum correction
vanishes in the classical limit, i.e., In IC(A) =0fort =0.
The kernel K(*) can be Fourier transformed for k > 0 as

L (g7
K(¢) = ( ) Kioi2(191/6).  (42)

VLo \ 26

with the modified Bessel function of the second kind K, (z).
The stationary PDF with the quantum correction KC(¢) is
related with the classical solution as

Pes(¢) = / d¢'K(§ — ¢YPL(). 43)

Thus, the kernel K(¢p) characterizes the quantum correction.
This is one of the main results of this paper.

As was discussed in the previous work [21], the stationary
PDF of the classical particle can be utilized to probe the
non-Gaussianity of the athermal environment. This also holds
for the quasiclassical electronic circuit. In our model, detailed
information of the current fluctuation through the QPC is
coded in the statistics of the non-Gaussian noise via WW())).
The inverse formula to determine W()) from Pss(¢p) can be
derived with the aid of Egs. (37), (38), and (39) as

1 dr
WQ) = — [ —=e
) yAp 27're
(7T + 2Ko? )\2+/\dﬁ (1)
X _— _— .
vae 1+ 6222 >SS

(44)

The previous result [21] is recovered in the classical limit
because the parameter 6 in Eq. (44) vanishes for t = 0. The
quantum correction is expected to become significant when
the temperature of the LC circuit is comparable to the variance
of the quantum correction (7" ~ 2k6?).
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FIG. 2. The stationary PDF without the non-Gaussian noise for
various values of T with y = 2.0, 7 = 0.01, and w. = 10. Inset: the
T dependence of the variance normalized with its classical value for
various values of w, with y =2.0 and 7 = 0.01.

V. QUANTUM CORRECTION AND NON-GAUSSIAN NOISE

We discuss the effect of the quantum correction (42) in
the stationary PDF. The stationary PDF Pss(¢) for the LC
circuit without the non-Gaussian noise (77 = 0) is shown
in Fig. 2. In the absence of the non-Gaussian noise, the LC
circuit is driven by the thermal and quantum fluctuations. We
examine the effect of the quantum fluctuation for various
values of the quantum-mechanical scales T = 0, 0.01, 0.02,
0.03, 0.04, and 0.05. The amplitude of the thermal noise and
the cutoff frequency are 7 = 0.01 and w, = 10, respectively.
As is shown in Fig. 2, the principal effect of the quantum
fluctuation is to broaden the stationary PDF. The behavior can
be qualitatively understood as the increase of the temperature
of order 2kA2. We note that this interpretation is not perfect
because of the A dependence of the quantum correction. The
variance of the PDF og = ((¢ — (¢))*) normalized with its
classical value 7 is plotted in the inset for various values of
wc. The cutoff modulates the quantum correction by filtering
the quantum fluctuation. The t dependence of the variance
indicates that the stationary PDF is rapidly broadened for large
cutoff frequencies. In particular, the variance runs into half
of the classical one when the quantum-mechanical scale is
about twice the size of the cutoff frequency (1/7 ~ 2w,). This
implies that the quantum effect cannot be filtered by the cutoff,
and the effective temperature becomes about 1.5 times as large
as the real temperature.

The non-Gaussian noise produced by the electronic trans-
port through the QPC significantly modifies the stationary
PDF. For simplicity, the transmission coefficient is considered
to be so small (T; g < 1) that the dominant contribution comes
from the lowest-order terms (n = =£1). In the weak-tunneling
regime, the non-Gaussian noise obeys a bidirectional Poisson
process [7]. The rate parameter Ap is reduced to Ap = wy; +
w_1, and the normalized amplitudes of the non-Gaussian noise
take £ 1 with probability w./Ap. The transition rates w4 can
be directly determined by the current and noise measurement
(see Appendix A for the relations).
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FIG. 3. The stationary PDF for the LC circuit coupled to the QPC
at large bias voltages. The solid (dashed) lines correspond to Tz =
4 x 107 (T g = 1.6 x 107), and the other parameters are given by
y =20, 7 =0.02, . = 10, 21iQBgpc = 10°, and eV /27 iQ =
10°. Inset: the dependence of the skewness (dashed lines) and the
kurtosis (solid lines) on Ap for corresponding values of 7.

With the aid of Egs. (A1) and (A2), the transition probability
and the rate parameter at zero temperature are computed as

B _ eV, (45)
Ap
TpgelV]
_ LRV 46
T 0n K (46)

respectively. The sign of the non-Gaussian noise solely
depends on that of the bias voltage because electrons flow
unidirectionally due to the Fermi statistics. In the presence of
the bias voltage V, an attempt rate of an electron-emission
event is estimated as e|V|/27 /<2 in the unit time. The rate
parameter is given by the product of the attempt rate and
the transmission coefficient 7y g. The stationary PDF for the
LC circuit coupled to the QPC in the shot noise regime
Q2rhQBorc = 10? and eV/2nhQ2 = 10%) is shown in Fig. 3
for various values of t. The rate parameter for 7, g = 4 x 10-°
(Trr = 1.6 x 1077) is computed as Ap ~ 0.004 (Ap ~ 0.016),
which is slightly smaller than the variance of the thermal noise
(7 = 0.02). The non-Gaussian noise induces the shift and
asymmetry of the PDF; it has a long tail for the positive region
of ¢. The characteristic step around ¢ ~ 1 originates from
the unidirectional single-electron-transfer process which is
dominant in the weak-tunneling regime at high-bias voltages.
We note that the precise location of the step is not universal
because it depends on the coupling constant & and the friction
coefficient y via the normalization of the flux. However, the
presence of the characteristic step clearly shows that the flux
of the LC circuit can detect the microscopic electron-transfer
events in the QPC. The quantum correction smoothens the
non-Gaussian structures of the PDF. The behavior is also
confirmed by the skewness ((¢ — (¢))3)/a£ and the kurtosis

((¢p — (¢))4)/o$ — 3), which are plotted in the inset as the
dashed and solid lines, respectively. Nevertheless, the t
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FIG. 4. The stationary PDF for the LC circuit coupled to
the equilibrium QPC at finite temperatures. The solid (dashed)
lines correspond to Ty g =4 x 107 (T = 1.6 x 107°). Inset: the
dependence of the kurtosis on Ap for corresponding values of t.
Parameters: y =2.0, 7 = 0.02, o, = 10, 2niQBgpc = 1073, and
eV/2rhQ = 0.

dependence is weak around ¢ ~~ 1, where the non-Gaussian-
noise is dominant over the quantum fluctuation.

The QPC at finite temperatures can produce the non-
Gaussian noise even without the bias voltage because of its
nonlinear coupling to the LC circuit. The transition probability
and the rate parameter are computed as

W41 1
= =, 47
. > 47
T
o= —— 48)
JTBQ,BQPC

respectively. The non-Gaussian noise with positive and nega-
tive amplitudes is generated with the same probability because
the current through the equilibrium QPC is bidirectional and
unbiased. The rate parameter is proportional to the product
of the temperature and the transmission coefficient. The
stationary PDF for 27 iQBgpc = 1077 is shown in Fig. 4 as
the solid lines (T g = 4 x 107°) and the dashed lines (7, =
1.6 x 107°). The rate parameter is estimated as Ap ~ 0.008
and Ap =~ 0.032 for each case. In contrast to the high-bias case
shown in Fig. 3, the stationary PDF exhibits the characteristic
structures in both the positive and negative sides around
¢ ~ £1. This is because the stationary PDF reflects the
forward and backward electron-transfer processes which are
allowed in the unbiased QPC. The non-Gaussian structures
are smoothened by the quantum fluctuation as is the case in
Fig. 3. The reduction of the non-Gaussianity by the quantum
fluctuation is also confirmed in the kurtosis plotted in the inset.

The stationary PDF approaches Gaussian as the rate
parameter Ap is larger: If the arrival interval of the intermittent
noise is much shorter than the decay time, it is piled up to be
Gaussian. The stationary PDF for the relatively large values of
the transmission coefficient is shown in Fig. 5. The solid lines
are the stationary PDF in the presence of the non-Gaussian
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FIG. 5. The transition of the stationary PDF from the non-
Gaussian distribution to the Gaussian one for large values of Tjg.
The solid and dashed lines correspond to v =0.05 and 7 =0,
respectively. The other parameters are the same as in Fig. 4.

noise and the quantum fluctuation (v = 0.05), while the
dotted lines correspond to the classical limit (z = 0). The rate
parameters are approximately evaluated as Ap >~ 0.008, 0.05,
0.2, 0.8, and 1.8. The characteristic steps around ¢ ~ +1 are
smoothened as Ap increases. Moreover, the quantum correction
becomes less relevant when the non-Gaussian noise plays a
dominant role in determining the PDF. These behaviors are
consistent with the reduction and the t independence of the
non-Gaussianities, i.e., the skewness and the kurtosis, shown
in the insets of Figs. (3) and (4) for 7 < Ap.

Finally, we consider the inverse problem to estimate the
transition rates wy from the stationary PDF Psg(¢) by using
the inverse formula (44). The stationary PDF for the LC circuit
coupled to the QPC at finite temperature (27 /i2Bgpc = 0.001)
and at finite bias voltages is plotted in Fig. 6. The solid
and dashed lines correspond to eV /27 i = 100 and 1000,
respectively. The bias voltage introduces asymmetry of the
PDF by modulating the transition rates w. . Nevertheless, the
transition rates must be rigidly related with each other as

In <E> — ¢VBopc, 49)

w1

because of the fluctuation theorem (Appendix A). The loga-
rithm of the ratio estimated with the inverse formula (44) is
plotted in the inset of Fig. 6 as solid lines. They are on top of
each other and perfectly agree with the theoretical prediction
(49). In general, the transition rates which are estimated
without the quantum-correction term in Eq. (44) are no longer
correct. In order to see how important the quantum-correction
term is in the estimation procedure, we have estimated the
ratio by deliberately neglecting the quantum-correction term.
The estimated ratio is plotted as dashed lines in the same inset
for various values of t. While the curve for the classical limit
(t = 0) is consistent with the fluctuation theorem, the ratio
gradually deviates from the correct value for larger r. This
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FIG. 6. The stationary PDF for the LC circuit coupled to the
QPC at finite temperature and at bias voltages. The solid (dashed)
lines correspond to eV /2x/i2 = 100 (1000). Inset: the logarithm
of the ratio w,;/w_; estimated by the inverse formula (44).
We have obtained the solid curves by properly incorporating the
quantum-correction term, which is neglected in the dashed lines.
Parameters: y = 2.0, 7 = 0.02, w. = 10, T p = 4.0 x 10-%, and
ZﬂﬁQﬂQpC = 0.001.

result indicates that the quantum correction is important to
correctly estimating the transition rate by the inverse formula.

VI. SUMMARY AND DISCUSSION

In this paper, we have studied a dissipative LC circuit
inductively coupled to a quantum point contact (QPC). Under
the assumption that the QPC dynamics is much faster than
the dynamics of the dissipative circuit, the system can be
considered as a quantum Brownian particle driven by the non-
Gaussian noise: The quantum nature of the dissipative circuit
becomes relevant at low temperature, while instantaneous
current through the QPC generates non-Gaussian fluctuation in
the circuit. The quantum fluctuation of the LC circuit at inverse
temperature § is controlled by the quantum-mechanical scale
T = BhA2/2m and the Drude cutoff frequency w, = wp/Q2
with the resonant frequency 2. We have evaluated the quantum
correction of the steady-state probability density function
(PDF) in the quasiclassical regime, where the quantum
fluctuation remains week as t < 1/w, <« 1. The quantum
fluctuation is found to smoothen the non-Gaussian structure of
the stationary PDF by effectively increasing the temperature.
Nevertheless, the inverse formula, which is useful to infer the
non-Gaussian noise from the stationary PDF, can be extended
to the classical-quantum crossover regime. The numerical
results indicate that the quantum correction is essential to
correctly estimate the statistical property of the non-Gaussian
noise with the inverse formula.

The present system is closely related to the detection
of the full counting statistics in quantum conductors [5,6].
The inverse formula obtained in this paper is useful to
determine the current distribution from the stationary PDF
of the detector circuit in the classical-quantum crossover
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regime. It is promising to use the formula for coherent
quantum conductors such as Aharonov-Bohm rings [8] and
superconductors [55]. We note that our formula is crucially
based on the assumption that the characteristic time scales
of the subsystems are well separated from each other. It is
necessary to go beyond the quasistationary approximation to
detect the current fluctuation in the dynamical regime [56,57].
In addition, excitations in the electromagnetic environment
significantly modify the transport through the mesoscopic
conductor in the quantum regime, which is referred to as
the dynamical Coulomb blockade phenomena [58]. It is an
important future work to fill the gap between our quasiclassical
analysis and various quantum approaches to treat such pure
quantum cases. An effective LC circuit whose resonant
frequency is of few GHz is experimentally realized with a
superconducting device [59]. The quantum correction studied
in this paper comes into play at sub-Kelvin temperatures.
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APPENDIX A: TRANSITION RATES

The lowest-order terms of the transition rate (13) are
given by

d
Wit = hTyx / 20~ fr@) @)

_ TLR eV

= 2 T v
dw
Wy = Rl / 22 frt)(1 = fuw)
JT
_ TLR eV (AZ)

2m e¢VBac — 17

The rate W, (W_;) is proportional to the probability for an
electron to be transmitted from the left (right) lead to the right
(left) one.

The transition rate W, is directly related to the current
fluctuations in the QPC. According to the full counting
statistics, the higher order cumulants of the current fluctuation
are generated by introducing the counting field [5] x in the
hopping amplitude. If we expand the QPC action in terms of
the transmission amplitude and the counting field as

iSqpc(X) = [Wi (€% — 1)+ Wi (e — 1]
=Wy — W_Dlex)+ (W + Wfl)(iex)z
+ 0G0, (A3)
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the current and current noise in the QPC are related to the
transition rates W, as

e

I= E(W‘H - W), (A4
o2

S = E(W-H + W_p), (AS)

respectively.

The forward and backward processes represented by the
transition rates Wy, are mutually related via the fluctuation
theorem [7]. With the aid of the QPC action (13) and the
identity f1(w)(1 — fr(w)) = efeceV fr(w)(1 — fr(w)), it is
straightforward to prove the symmetry of the non-Gaussian
characteristic functional

(A6)

ihv
anG[ @] = XNG[—q)q + %}.

This relation imposes the detailed balance of the transition
rates
Wy = W_yeteriore, (A7)

forn € Z.

APPENDIX B: RELATION WITH THE
LANGEVIN EQUATION

The Gaussian noise 7 can be introduced with the Hubbard-
Stratonovich transformation
1 .
exp[—givpl] = / Dng exp [—chvl nG + upqne],
(BD)

where the statistical property of the auxiliary field ng is
determined by the noise kernel v as

(nc(s)ng(s") = 2v(s —s").

If we apply the Hubbard-Stratonovich transformation in the
classical limit, the partition function becomes

(B2)

zZ= / Do DpIDng xnc e exp [ / dS(—%né(s)

8 cl cl
qu(s)[_«;_s(s) _¢ y(s) + no(s)m,

(B3)
with the thermal noise 7.

APPENDIX C: DERIVATION OF THE MASTER
EQUATION

We derive the Master equation from the action (26)
in the classical limit. The starting point is the discretized
action

1 7
§= Z |:_¢;1|:¢/ —¢j-1+ ;5,¢j_li| _’_i;at((p;{)z

J

—i8,p f dYWY)(eV — 1)]. (C1)
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The time stride is denoted by §,, and the bosonic fields are

abbreviated as qb(q) ¢@(js;). The PDF at the jth step is
defined in the functlonal representation as

P, =1\, f Dy D e 51991 (C2)

The PDF P; is related with P;_; up to the first order in
8, as

P~ /D&])Dq‘)q[l - %¢q(¢ —&¢)

+ 8,0 / AYW) (e — 1)}

0 i/2
xexp[ (59 ¢)(l/2 78)<¢q>]7>,_1, (C3)

with ¢ = ¢;, 8¢ =¢; — 1, and ¢? = ¢]. The PDF at
(j — Dth step P;_; can be further expanded as

Pj1 = Pl —dp,t; — &1,

N i (=8¢)" 9"P; (0P
- n!  9¢" -

(C4)

t

The functional integration in Eq. (C3) can be performed
term by term by using the Wick’s theorem with the Gaussian

weight
0 i /2
exp [—(ad) ¢9) (l, ” ’:_,/ 8[> @‘2)} (C35)
14

If we denote the expectation value of the quantity O by (O),
the two-point correlation functions are given by

2T
(8pdgp) = 781, (Co)
(8gp9?) = (p8¢) = —i, (o))
(¢999) = 0. (C8)
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The first line in Eq. (C3) leads to the Fokker-Planck terms [48]
with the aid of the relations

P oP;
(Pj1) ~ (5¢3¢) PYE -4 atj
p o, T8P 9P
~P;+ 0 8 a7 (C9)
and
IP;
(¢UP — 8P)P;_1) = —(p%5¢)p—= o0 — (¢15)P;
~ IM (C10)
¢

The non-Gaussian term in Eq. (C3) can be evaluated as

(ly)k( 1)l kNl
Ly — (1) (¢) >
5

00wk k.
P

~ (3, (e,y% — 1)’Pj,
Tkl agk

(C11)

up to the leading order in §,. We note that the cross correlation
is O(1) while the auto-correlations are zero or higher order
terms in §; [see Egs. (C6), (C7), and (C8)]. This requires
the classical components to be contracted with the quantum
components of the same number (k = I). The number of the
combination of contracting ¢9 with ¢ is !, which is canceled
with the denominator in the first line.

Collecting the Fokker-Planck terms and the non-Gaussian
term in the limit §, — 0, we can derive the Master equation

dP(¢) _ 13(¢pP(¢)) Zazp(@
oy 09 y 0¢?

o / AW F — 1)P@).

(C12)

It is straightforward to generalize these discussions to the
multivariate case.
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