
PHYSICAL REVIEW B 95, 205410 (2017)

Excitonic gap formation in pumped Dirac materials

Christopher Triola,1,2 Anna Pertsova,1,2 Robert S. Markiewicz,3 and Alexander V. Balatsky1,2,4,5

1Nordita, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden
2Center for Quantum Materials (CQM), KTH and Nordita, SE-106 91 Stockholm, Sweden

3Physics Department, Northeastern University, Boston, Massachusetts 02115, USA
4Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

5ETH Institute for Theoretical Studies, ETH Zurich, 8092 Zurich, Switzerland
(Received 15 January 2017; revised manuscript received 13 April 2017; published 5 May 2017)

Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient
excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the
Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states
of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we
discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We
demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate
of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by
both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating
the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of
material parameters for which our theory predicts large gaps and high critical temperatures and which could be
realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac
and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.
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I. INTRODUCTION

Dirac materials (DMs) represent a growing class of systems
including superfluid 3He, high-temperature d-wave supercon-
ductors, graphene, and the surface states of three-dimensional
topological insulators (3DTIs) [1–6]. The defining feature
of a DM is the existence of Dirac nodes in the low-energy
excitation spectrum leading to an energy-dependent density of
states (DOS) which vanishes exactly at the Dirac point, e.g.,
N (E) ∝ E for two-dimensional (2D) DMs such as graphene
and 3DTI surface states. The disappearance of the DOS at
the nodal point leads to a critical coupling for many-body
instabilities which can gap the spectrum [7]. Several previous
studies have investigated the phase diagram of DMs with
respect to the material-specific fine-structure constant, α, and
suggested a critical value of this constant, αc ≈ 1, above which
the material is expected to be an excitonic insulator [7–10].
However, there are no experimental indications of a gap
opening in suspended graphene [11], for which α ≈ 2.2, to
within 0.1 meV of the Dirac point.

Driven or nonequilibrium DMs offer a new platform for
the investigation of collective instabilities. Recent optical
pump-probe experiments on graphene have shown that the
distribution of photoexcited carriers is highly nonthermal and
can be effectively described by two separate Fermi-Dirac
distributions with distinct chemical potentials for electrons and
holes for around 100 fs after the excitation [12–16]. Indications
of population inversion have also been reported in 3DTIs with
lifetimes of photoexcited carriers significantly larger than in
graphene, from a few picoseconds (ps) [17] to microseconds
(μs) for some samples [18].

Motivated by these experiments, we propose a scheme for
generating transient many-body states in DMs by using exter-
nal driving. By optically pumping a DM, transient populations
of electrons and holes are generated away from the nodal

point, allowing for a tunable enhancement of the effective
coupling constant. In 2D, this tunability is unique to DMs and
is not available in metals or semiconductors which possess a
constant DOS at low energies. In such a system, electrons
and holes at the two Fermi surfaces experience a mutual
Coulomb attraction and can form electron-hole pairs, similar to
Cooper pairs in the Bardeen-Cooper-Schrieffer (BCS) theory.
At low temperatures, such electron-hole pairs condense to
form a superfluid phase known as the electron-hole BCS state,
or an excitonic insulator [19,20]. Due to the nonequilibrium
nature of electron and hole populations in pumped systems,
we refer to this collective state as a transient excitonic
condensate.

Previous work has studied excitonic condensates in narrow-
gap semiconductors [19,20], electron-hole bilayers which are
realizable in semiconductor heterostructures [21,22], graphene
bilayers in the quantum Hall regime [23], and electronic sys-
tems under periodic driving [24]. More recently, the possibility
of inducing transient many-body states in semiconductors
using optical driving has been studied theoretically [25].
Although transient excitonic condensates have not yet been
observed experimentally in optically pumped semiconductors,
the signatures of preformed electron-hole pairs were measured
in highly excited ZnO [26] which could be viewed as a
precursor for the condensate.

In this work, we propose to search for transient excitonic
condensates in optically pumped DMs. One signature of this
state is the opening of gaps in the quasiparticle spectrum
appearing at the two chemical potentials describing the
electron and hole populations. In order to estimate the size
of these excitonic gaps and critical temperatures for real
materials, we use a simple model of a 2D DM with material-
specific parameters and with nonequilibrium electron and hole
populations at different chemical potentials. Electron-electron
interactions are treated at the mean-field level and we consider
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both the case of a simplified contact interaction and the
screened Coulomb potential.

We show that the critical temperature and the size of the
excitonic gap are controlled by the interplay between the
enhanced DOS at the nonequilibrium chemical potentials and
metallic screening which becomes stronger as the chemical
potentials are increased, the value of the coupling constant,
and the Dirac cone degeneracy. Based on this, we derive a set
of criteria to identify the best material candidates for observing
the transient collective states.

Among the existing DMs, we predict the largest effect, a
gap of the order of 10 meV, in undoped suspended graphene
in which optical pumping is realized selectively on a single
valley, e.g., using circularly polarized light [27–29]. Such
gap sizes are large enough to be detected by angle-resolved
photoemission spectroscopy (ARPES). We also find that DMs
with a single nondegenerate Dirac cone and large coupling
constants such as large-gap 3DTIs with small Dirac velocities
and small dielectric constants, if realized, are the most
promising candidates for observing the transient excitonic
condensate. Our theoretical estimates indicate that gaps of
the order of 100 meV could be achieved in such materials.
For all examples considered, we find critical temperatures
that are several orders of magnitude larger than the estimated
maximum critical temperature for excitonic condensate in
double-layer graphene [30].

The rest of the paper is organized as follows. In Sec. II,
we describe the details of our theoretical model. In Sec. III,
we present the results of our calculations. In particular,
we provide approximate expressions for the critical
temperature of the transient excitonic condensate within a
particular regime and we show the phase diagram for the
excitonic condensate computed numerically. In Sec. IV, we
discuss our results and present the estimates of the excitonic
gap and critical temperature for two important cases of 2D
DMs studied in experiments, i.e., graphene and 3DTI surface
states, as well as for a hypothetical 2D DM with parameters
tuned in such a way as to reduce the screening effects. We
also propose several schemes for experimentally detecting the
transient excitonic instabilities in pumped DMs. Finally, in
Sec. V, we offer concluding remarks.

II. THEORETICAL MODEL

In pump-probe experiments on both graphene [12–14]
and 3DTIs [17,18,31,32], several common features of the
dynamics of photoexcited carriers have emerged; see Fig. 1(a).
Before the pump pulse, at t = t0, the electrons occupy the Dirac
bands following a simple Fermi-Dirac distribution. Immedi-
ately after the pump pulse, at t = t1, the electron occupations
are highly nonthermal. However, it is observed that shortly
after the initial pump pulse, by t = t2, the carriers rapidly
thermalize, effectively creating two Fermi-Dirac distributions,
one of electrons and one of holes. This inverse population
then persists until recombination leads to a single Fermi-Dirac
distribution around t = t3. It is observed that t2 is typically an
order of magnitude shorter than t3, e.g., t2 ∼ 10 and t3 ∼ 100 fs
in graphene. While there are some other observations reporting
a single hot Fermi-Dirac distribution in graphene tens of fs
after the photoexcitation [33], for the purposes of this paper,

we assume that the population inversion in 2D DMs can be
realized by optical pumping. Therefore, as a first step, we
consider a simple model of a pumped 2D DM in which the
electronic states take on a transient distribution governed by
two chemical potentials, one for the electrons μe and one for
the holes μh, as shown schematically in Fig. 1(a).

Under realistic conditions, the transient state has a finite
lifetime, limited to hundreds of femtoseconds (fs) in the case
of graphene [12–16] but extending to at least a few ps in
3DTIs [17]. Moreover, a recent time-resolved ARPES study
by Neupane et al. [18] revealed long-lived transient 3DTI
surface states with lifetimes of a few μs. Although the nature
of such gigantic lifetimes is not entirely understood, this is
a strong indication that long-lived (quasiequilibrium) excited
Dirac states can be achieved in these systems.

We begin our analysis by assuming that the lifetime of the
transient populations of electrons and holes in pumped 2D
DMs is sufficiently long that the system can be considered to
be in quasiequilibrium. In this case, the system is described by
the Hamiltonian H = He + Hh + Hint, where

He/h =
∑

k

ξ
(e/h)
k ψ

†
e/h,kψe/h,k,

Hint =
∑

q,k,k′
Vqψ

†
e,k+qψ

†
h,k′−qψh,k′ψe,k. (1)

Here, ξ
(e)
k = vk − μe (ξ (h)

k = −vk − μh) is the electron (hole)
dispersion measured from the electron (hole) chemical poten-
tial μe (μh), where v is the velocity of the Dirac states (in
this work, we set h̄ ≡ 1); ψ

†
τ,k (ψτ,k) creates (annihilates) a

Dirac state in band τ = {e,h} with momentum k. Note that
we consider a spinless model of a DM. Vq = 2πvα/(q + κ) is
the screened Coulomb potential modeled using the Thomas-
Fermi theory (see derivation below), where α = e2/εv is the
dimensionless coupling constant in the DM, e is the electron
charge, ε is the effective dielectric constant of the material,
and κ is the screening wave vector [7,34].

The order parameter, or gap, for an excitonic condensate
in this system is given by 	k = T

∑
k′,iωn

Vk−k′F (k′; iωn),
where T is the temperature of the electrons and holes,
ωn = (2n + 1)πT is a fermionic Matsubara frequency, and
we define F (k; τ ) ≡ −〈Tτψe,−k(τ )ψ†

h,k(0)〉 where Tτ is the
imaginary time-ordering operator. Combining this definition
of the gap with the Heisenberg equations of motion for
the creation and annihilation operators, and performing the
summation over Matsubara frequencies, one can show that the
gap equation is given by

	k = 1

2

∫
dk′

(2π )2
Vk−k′	k′

nF[ω+(k′)] − nF[ω−(k′)]√
(v|k′| − μ−)2 + 	2

k′

, (2)

where ω±(k) = −μ+ ±
√

(v|k| − μ−)2 + 1
4	2

k, μ± ≡ (μe ±
μh)/2, nF(ω) = 1/(eω/T + 1) is the Fermi-Dirac distribution,
and T is the temperature (assumed to be identical for both
photoexcited electrons and holes). The order parameter defined
in Eq. (2) represents the pairing between electrons and holes
in a single nondegenerate Dirac cone and is assumed to be
unaffected by the degeneracy of the Dirac states, which can
be different from 1, for instance, in graphene. However, the
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FIG. 1. Transient excitonic states in a pumped DM. (a) Schematic of optical pumping considered in this work. Before the pump, at time
t = t0, the electrons exist in equilibrium described by a single chemical potential (μ = 0 in the figure); at t = t1, electrons are pumped from
the valence band to the conduction band far from equilibrium; shortly after, the excitation electrons and holes can be described effectively by
two distinct Fermi-Dirac distributions with different chemical potentials, μe and μh (t = t2); transient populations eventually decay towards
equilibrium (t = t3). Empty states are shown in white; occupied states are shown in yellow. (b),(c) The spectral function A(k,E) and DOS
N (E) in equilibrium and in a transient excitonic state, respectively, calculated using the contact interaction model. Shaded regions in the DOS
show occupied states. For illustrative purposes, we use parameters for graphene [7] with α = 1, v = 6.58 eV Å, and cutoff energy scale of 1
eV, which corresponds to momentum cutoff � = 1/6.58 Å−1, μ− = 300 meV, and μ+ = 0.

degeneracy will strongly affect the screening and must be taken
into account [30]. By solving for the gap self-consistently, we
can study the conditions under which the quasiequilibrium
Dirac states will condense to form excitonic gaps in the
spectrum [19]. The gaps that open up at the electron and hole
chemical potentials offer a signature of the transient excitonic
condensate that can be probed by spectroscopic techniques.
In Fig. 1(b), we plot the spectral function A(k,E) and DOS
N (E) for a DM in equilibrium, while in Fig. 1(c), we show
the corresponding plots for a DM with dynamically generated
excitonic gaps. These spectroscopic features in A(k,E) and
N (E) can be accessed experimentally using ARPES and
scanning tunneling microscopy (STM), respectively.

The last term in Eq. (1) describes the interband Coulomb
interaction which is repulsive for pairs of electrons (or pairs of
holes) but attractive between electrons and holes. In the static
limit, the screened Coulomb potential is given by [35]

Vq = vq

ε(q)
, (3)

where

vq = 2πe2

εq
(4)

is the bare Coulomb potential in two-dimensional momentum
space which can be obtained by Fourier transforming the
long-range real-space potential v(r) = e2/εr . In the random

phase approximation, the q-dependent dielectric function ε(q)
is given by [35]

ε(q) = 1 + κ

q
, (5)

where κ is the screening vector, or the inverse screening length
of the combined system of electrons and holes. In 2D, the
electron/hole screening wave number is given by

κi = 2πe2

ε

∂ni

∂μi

, (6)

where ni, i = {e,h}, is the density of electrons or holes.
One can see that κi ∝ N (μi), where N (μi) is the DOS at
the electron or hole chemical potential [note that in 3D,
κi ∝ √

N (μi)] [35]. At T = 0, Eq. (6) is referred to as the
Thomas-Fermi screening wave vector. In this case, the density
is related to the Fermi wave vector ki

F, as ki
F = √

4πni/g,
where g is the Dirac cone degeneracy. For a Dirac spectrum,

ki
F = |μi |/v and, therefore, κi = 2πe2

ε

∂ni

∂μi
= ge2ki

F
εv

= gαki
F.

In 2D, the screening wave number of the electron-hole
plasma is given by κ = κe + κh [36]. For equal chemical
potentials (μ+ = 0), κe = κh and κ = 2κe. Hence, κ ∝ gαμ−,
and the screening becomes stronger for larger chemical
potentials, larger α, and larger g.
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Substituting expressions for the bare Coulomb potential vq
[Eq. (4)] and the dielectric function ε(q) [Eq. (5)] into Eq. (3),
the screened Coulomb potential can be rewritten as

Vq = 2πe2

ε(q + κ)
= 2παv

q + κ
. (7)

In the following section, we will solve the self-consistent gap
equation [Eq. (2)] first using a simplified interaction and then
the screened Coulomb potential defined in Eq. (7).

III. RESULTS

A. Analytical results for contact interaction

We can gain some insight into the behavior of these systems
by analyzing the limiting case in which the screening of
the Coulomb interaction is so severe that the interaction
potential becomes a contact interaction in position space
or, equivalently, a constant in momentum space, Vq = V0 =
2πvα/κ . We expect the analysis with the contact interaction
to agree quantitatively with the screened Coulomb interaction
when κ >> �, where � is the momentum cutoff for the Dirac
model in Eq. (1).

Assuming the interaction potential in Eq. (1) is given by
V0, we can see that the right-hand side of the gap equation (2)
becomes independent of k; therefore, 	(k) = 	0 is constant
in momentum. In this case, we can perform the angular
integration analytically and find approximate expressions for
the radial integral in terms of the momentum cutoff (see
Appendix B). We can then solve the resulting equation for
the critical temperature Tc, i.e., the maximum value of the
temperature below which the excitonic gap is different from
zero, by assuming that 	0 
= 0 and taking the limit 	0/T → 0.
Taking this limit, we find

Tc(μ+,μ−) ≈ T c(μ−)

[
1 − C+

μ2
+

4T c(μ−)2

]
,

T c(μ−) = C−
√

μ−(v� − μ−) exp

[
v(� − 2κα−1)

2μ−

]
,

(8)

where C+ = γ + ln 4
π

− 1/3, C− = 2
π
eγ−1, in which

γ ≈ 0.5772 is the Euler-Mascheroni constant.
From Eq. (8), we observe several important trends. One

crucial feature is that, as expected, Tc increases with increas-
ing μ−. In fact, for perfectly matched chemical potentials
(μ+ = 0) and when 2κ/α � �, any finite value of μ− leads
to the formation of a gapped state, as shown in Fig. 1(c). This
confirms the intuitive argument that an excitonic condensate
is expected to form in such a quasiequilibrium state as a
consequence of the enhanced DOS away from the Dirac node.

Another key feature is that away from perfect matching
(μ+ 
= 0), Tc decreases. To leading order in μ+/2T , the
decrease is quadratic and, for μ+/2T >> 1, Tc vanishes (see
Appendix B). Therefore, we expect that excitonic gapped
states should be most easily realized in systems with little
screening, strong coupling, and matched chemical potentials,
as in the case of undoped suspended graphene.

FIG. 2. Tunability of the critical coupling. The maximum value
of the gap evaluated at k = kF as a function of μ− and α for matched
chemical potentials (μ+ = 0), T = 0 and g = 1. Other parameters are
the same as in Fig. 1. The color shade represents the maximum value
of the gap in meV and is logarithmically scaled for better contrast.

B. Numerical results for screened Coulomb interaction

To provide quantitative estimates of Tc, we consider the
more realistic case of a screened Coulomb potential given
by Eq. (7). Unlike the contact interaction, the potential in
Eq. (7) accounts for both the long-range nature of the electron-
electron interaction and the metallic screening which becomes
important when the chemical potential is shifted away from the
Dirac node. In the case of the Coulomb potential, the gap 	k
is momentum dependent with a maximum value at |k| = kF.
We proceed by solving the self-consistent gap equation (2)
numerically, assuming an isotropic gap.

In Fig. 2, we plot the phase diagram of the transient
excitonic state in the μ− − α plane. The critical coupling αc

is defined for a given μ− as the minimum value of α for
which 	k is different from zero. As in the case of the contact
interaction, the critical coupling is dramatically reduced in the
quasiequilibrium state, μ− 
= 0. This phase diagram confirms
that the qualitative predictions made by Eq. (8) hold for the
case of the full Coulomb interaction and lends further support
to the premise that excitonic instabilities can be dynamically
induced in DMs.

In Fig. 3, we show the maximum of the gap calculated
with the full Coulomb potential plotted in the T − μ− plane
for two regimes: α < α0

c , in Figs. 3(a) and 3(c), and α > α0
c ,

in Figs. 3(b) and 3(d), where α0
c is the equilibrium critical

coupling. (Our mean-field model gives α0
c ≈ 1.0 [37].) In each

regime, we consider two cases for the degeneracy, g = 1 and
g = 2. Unlike in the case of the contact-interaction model,
where the gap and Tc always exhibit an increase with μ−
near the Dirac point (see Fig. 5), in the case of the screened
Coulomb potential the phase diagram for the order parameter
exhibits a more complex interplay between screening (which
becomes stronger with increasing α,μ−, and g), the value of
the DOS at a given μ−, and the value of α.

In the case α < α0
c and g = 1 [Fig. 3(a)], the gap is van-

ishingly small around μ− ≈ 0 and increases with increasing
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FIG. 3. Phase diagram of the transient excitonic condensate. The maximum value of the gap evaluated at k = kF as a function of μ− and T

for matched chemical potentials (μ+ = 0) computed numerically by solving Eq. (2) self-consistently using the Thomas-Fermi potential shown
in Eq. (7) for (a),(c) α = 0.7 and (b),(d) α = 1.0. Left column is for g = 1; right column is for g = 2. Other parameters are the same as in
Fig. 1. The color shade represents the maximum value of the gap in meV. Note that we exclude the region around μ− = 0 since it is not properly
described in the Thomas-Fermi model.

μ−, similar to the result of the contact-interaction model, until
it reaches a maximum. For large μ−, the screening becomes
strong, leading to a decrease of the gap and Tc. Similar behavior
is observed for the same value of α and g = 2 as shown in
Fig. 3(c). However, the downturn in Tc occurs at smaller values
of μ− due to larger screening.

In the case α � α0
c and g = 1 [Fig. 3(b)], the gap is different

from zero already at equilibrium and is enhanced at small μ−
due to the diverging Thomas-Fermi screening length which
leads to an essentially unscreened Coulomb potential. As μ−
increases, the screening becomes stronger and Tc decreases
rapidly. This is followed by an upturn in the size of the gap
and Tc at μ− ≈ 50 meV due to the enhanced DOS. Finally,
the gap starts to decrease as the screening becomes dominant
at large μ−. For α � α0

c and g = 2 [Fig. 3(d)], the behavior at
small μ− is similar to the g = 1 case. However, at large μ−,
the gap and Tc decrease monotonically due to severe screening,
making this case less favorable compared to the g = 1
case.

Figure 4 shows the maximum of the gap calculated with the
full Coulomb potential as a function of the mismatch between
the electron and hole chemical potentials at T = 0. A domain
of stability of the excitonic condensate exists in the region
of the parameter space where the gap is different from zero;
see Fig. 4(a). In Fig. 4(b), it is clear that the gap reaches its

maximum at μ+ = 0 and quickly vanishes away from μ+ = 0,
in agreement with the prediction of the contact-interaction
model (see Eq. (B4) in Appendix B). Furthermore, we confirm
that for this value of g and α (g = 1 and α = 0.7 in Fig. 4),
the magnitude of the gap increases with increasing μ−; see
Fig. 4(c).

FIG. 4. Stability diagram of the transient excitonic condensate as
a function of chemical potential mismatch. The maximum value of
the order parameter 	k evaluated at T = 0 plotted as a function of
(a) electron and hole chemical potentials, (b) the mismatch μ+ for a
fixed average chemical potential μ− = 0.1 meV, and (c) the average
chemical potential μ− for zero mismatch μ+ = 0. We used g = 1
and α = 0.7.
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TABLE I. Critical temperatures and excitonic gaps in pumped DMs. Dimensionless coupling constant α, average chemical potential μ−,
and lifetime of the transient excitonic state τ for graphene and 3DTIs were estimated based on existing literature (see Appendix A for details).
Critical temperature Tc and maximum value of the excitonic gap 	max at T = 0 for given material parameters were calculated using the
numerical model with screened Coulomb interaction. For the case of graphene, we consider both the one-valley (g = 2) and two-valley (g = 4)
cases. The last row corresponds to a hypothetical DM with parameters similar to graphene and g = 1.

Material α μ− (meV) τ (ps) Tc (K) 	max (meV)

Graphene (substrate) 0.4–1.0 500 0.1 1.0 for g = 4 0.1 for g = 4
6–35 for g = 2 1–5 for g = 2

Graphene (suspended) 2.2 500 0.1 2 for g = 4 0.3 for g = 4
70 for g = 2 10 for g = 2

3DTI 0.1–1.0 100 1–106 0–30 0–3
DM with g = 1 0.4–2.2 500 50–500 10–100

IV. DISCUSSION AND EXPERIMENTAL FEASIBILITY

In order to test the feasibility of our proposal for achieving a
transient excitonic-insulator state in a pumped DM, we provide
estimates of the critical temperature and the gap for different
materials in typical experimental setups. Table I summarizes
the results for graphene on a substrate, freestanding graphene,
and 3DTIs such as binary bismuth chalcogenides and related
materials. As input parameters for our model, we use the
material-specific coupling constant and the typical pump
energy (see Appendix A for discussion of the choice of material
parameters). In addition, we list the expected lifetimes (τ )
of the transient excitonic state inferred from experimental
data for existing DMs. An important parameter is the Dirac
cone degeneracy. For 3DTI, we take g = 1. For graphene,
we consider g = 4 and g = 2, corresponding to conventional
pumping with linearly polarized light and valley-selective
pumping, respectively, with the latter being the most favorable
situation. We also present the estimates for a hypothetical
DM with parameters similar to those of graphene but with
degeneracy g = 1, which could be realized in large-gap 3DTIs
with a single Dirac cone and a large α. In the case of graphene
on the substrate, we account for two common substrates, SiC
and SiO2, which correspond to choosing α = 0.4 and α = 0.8,
respectively.

To relate the values of the nonequilibrium chemical
potentials to the pump energy in the case of graphene,
we start by noting that μe/h = v

√
πne/h, where v is the

system-specific Fermi velocity and ne/h is the density of
photoexcited carriers. The density of photoexcited carriers can
be estimated using h̄ωpumpne/h ≈ �A0 [14], where � is the
pump fluence and A0 is the absorption coefficient of graphene.
We estimate that μ− = 500 meV will be achieved with carrier
densities ne/h ≈ 1013 cm−2, which corresponds to a fluence of
� ≈ 100 μ J cm−2 for A0 ≈ 0.02 and h̄ωpump ≈ 1 eV. These
values are in agreement with experimental estimates [38].

In the case of suspended graphene and single-valley
pumping (g = 2), for an average chemical potential
μ− = 500 meV, assuming balanced chemical potentials
(μ+ = 0), we predict the maximum size of the gap to be
	max ≈ 10 meV for temperatures up to ≈ 100 K. Such gap
sizes are within the energy resolution of ARPES. Time-
resolved optical conductivity measurements [13] may provide
an alternative probe for verifying the presence or absence of the

gaps in the spectrum. Additionally, the excitonic gap opening
should result in an enhanced photoluminescence due to the
recombination of electron-hole pairs [26].

We should comment on the possibility of valley-selective
pumping in graphene. Although it is, in principle, possible to
address different valleys of graphene using circularly polarized
light of different chirality, for technical reasons, a gap in the
Dirac spectrum is required to enable valley-selective optical
manipulation. It has been shown theoretically that valley-
contrasted circular dichroism requires a finite band gap, which
generates a nonzero Berry curvature and orbital magnetic
moment in the valleys [27]. In the case of graphene, the gap
can be induced by inversion-symmetry breaking, e.g., due to
the substrate. In the case of transition-metal dichalcogenides,
there is naturally a gap due to large spin-orbit coupling;
therefore, valley-selective pumping has been first realized
in these materials [28]. More recently, valley-contrasting spin
polarization has been demonstrated in other 2D materials such
as boron nitride (BN) [29].

It should be noted that the peak temperature of the inverted
carrier distributions inferred from pump-probe experiments
can be as large as a few thousand Kelvin [14,15]. While this
is above the predicted Tc for the typical DMs in Table I, an
increased lifetime of the transient state should lead to lower
local electronic temperatures as the carriers have more time
to cool down. Importantly, the predicted critical temperatures
for pumped graphene are several orders of magnitude larger
than the estimated maximum critical temperature of excitonic
condensation in double-layer graphene in the static regime
(T max

c � 1 mK) [30]. Our calculations predict that even larger
values of Tc, possibly hundreds of Kelvin, could, in principle,
be achieved in future DMs with carefully designed material
properties.

In Table I, we see that α in 3DTIs appears to be an
order of magnitude smaller than that found in graphene
due to the large dielectric constants of 3DTIs [39]. Us-
ing values of ε ≈ 100 and v ≈ 5 × 105 m/s, we find that
α ≈ 0.1 and that the predicted excitonic gap is < 1 meV,
which is below the current resolution of typical ARPES
experiments. This drawback could be overcome in a 3DTI
with a larger effective coupling constant [see Table I], which
would correspond to either a smaller dielectric constant
or Fermi velocity [40]. Smaller Fermi velocities can be
found in anisotropic Dirac cones on various crystal facets
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of topological insulators [41]. Recently, tilted Dirac cones
with Fermi velocities of the order of 104 m/s leading to large
α have been found in some quasi-two-dimensional organic
conductors [42,43].

In the above analysis of the transient inverted population,
quasiequilibrium was assumed; however, due to multiple
scattering processes, the nonequilibrium inverted carrier dis-
tribution decays toward equilibrium and, as a result, the
excitonic states in a pumped DM acquire a finite lifetime.
We have analyzed the relaxation of the order parameter
using a dynamical approach based on semiconductor Bloch
equations [44,45] applied to a pumped DM, where both
intraband relaxation and interband scattering (recombination)
are taken into account (see Appendix C for details). The result
is that the characteristic time scale over which the population
inversion is sustained provides an estimate of the lifetime of
the transient excitonic gapped state.

So far the lifetime of the inverted carrier distribution
observed in graphene has been limited to hundreds of fs [15],
after which a single equilibrium Fermi-Dirac distribution is
reestablished via inverse Auger scattering (recombination)
and electron-phonon scattering [16]. However, these relatively
short lifetimes were obtained for hole-doped graphene with
the equilibrium chemical potential lying a few hundred meV
below the Dirac node, as is typical for graphene on a substrate.
One might expect more favorable conditions in undoped
graphene, in which recombination of carriers is suppressed
due to reduced phase space near the Dirac node. Additionally,
one possible way to increase the lifetime of the inverted
population is to use continuous pumping, where electrons
are constantly injected into the empty states above the Dirac
node. However, such a scheme might result in high local
electronic temperatures which will inhibit the formation of
the excitonic condensate. In 3DTIs, the reported lifetimes of
the population inversion are much longer, e.g., of the order
of a few ps [17] and under certain conditions even exceeding
4 μs [18].

In general, in order for the transient excitonic gaps to be
observable in experiments, the time scale of formation of these
collective states, τex = h̄/	max, should be small compared to
the time scale τel on which the inverted population is observed,
τex << τel. For 	max ≈ 10 meV, τex ≈ 60 fs, allowing for the
observation of these gaps in graphene where τel is of the order
of 100–200 fs. For smaller gaps, larger lifetimes of inverted
population are necessary, which could be realized in future
experiments on graphene or 3DTIs.

While our analysis focused on 2D DMs, such as graphene
or 3DTI surface states, our theory also has implications for 3D
DMs, such as Dirac [46] and Weyl [47,48] semimetals. In a
3D DM, the DOS is quadratic in energy, N ∝ E2, in contrast
to the linear dependence in 2D; hence the effective coupling
can be made even larger in these materials. However, since
screening could also be much stronger in 3D, a more detailed
analysis would be necessary to make quantitative predictions
for these materials. It should be noted that the large valley
degeneracy found in some 3D Dirac systems (g = 24 in TaAs
Weyl semimetal [47]) could be detrimental for the effects
discussed in this paper. Therefore, as in the case of 2D DMs,
materials with smaller degeneracy will be the most promising
candidates.

V. CONCLUSIONS

In conclusion, we have shown that the energy dependence
of the DOS in 2D Dirac materials allows for a tunable
enhancement of the strength of the Coulomb interaction
relative to the values accessible in equilibrium. We have
demonstrated that this tunability allows for the generation
of transient excitonic states in optically pumped 2D Dirac
materials leading to the formation of gaps in the quasiparticle
spectrum away from the Dirac node. Our estimates indicate
that these dynamically induced gaps can be as large as 10 meV
in the case of graphene and a few meV for 3DTIs. With
these results, we have proposed an experimental scheme in
which these excitonic gaps could be detected via pump-probe
spectroscopy on undoped graphene and 3DTIs. Finally, we
have provided guidelines for the search for novel Dirac
materials with improved properties in which larger gaps and
critical temperatures could be observed.
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APPENDIX A: TUNABILITY OF THE EFFECTIVE
COUPLING CONSTANT

A great deal of work has gone into the study of the
phase diagram of graphene with respect to the dimensionless
coupling constant α = e2/εv [2,7–10,40,49–52], where e is
the charge of the electron, ε is the system-specific dielectric
constant, and v is the velocity of the Dirac electrons. These
results suggest the existence of a critical value αc such that
if α < αc, the spectrum remains gapless, while if α � αc,
the system flows toward the strong-coupling regime [7].
In the strong-coupling regime, pairs of electrons and holes
bind to form excitons which condense, giving rise to a gap
in the quasiparticle spectrum of the ground state. Thus far,
perturbative and numerical results for graphene suggest the
critical value is αc ≈ 1 [7–10]. Much like previous work,
our mean-field model of a 2D DM in equilibrium (μ = 0)
gives a critical value αc ≈ 1. However, experiments involving
suspended graphene, for which α ≈ 2.2, seem to indicate a
gapless state to within 0.1 meV of the Dirac point [11], likely
due to the logarithmic increase of the Fermi velocity close to
the Dirac point [7,11].

In a pumped DM with an inverted population, there will be a
finite density of both electrons and holes which will experience
an attraction proportional to the DOS of the two species
times the strength of the coupling. Since the DOS is linear
in energy, this factor will be determined by the parameters
μ± ≡ (μe ± μh)/2, while the coupling will be determined by
the strength of the Coulomb interaction [Eq. (3)], which is
controlled by α and screening effects. Therefore the effective
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TABLE II. Estimates of the dimensionless coupling constant in
graphene (freestanding and on the substrate) and 3DTI for typical
values of the dielectric constant and velocity of the Dirac states.

Material ε v (106 m/s) α

Graphene (suspended) 1 1.0 2.2
Graphene (substrate) 2–15 1.0 0.1–1.0
3DTI 30–50 0.2–0.6 0.1–0.4

interaction can be tuned either by directly modifying the
dimensionless coupling constant α or by tuning the DOS.
Table II contains the estimates of α for graphene and 3DTIs
based on typical values of the dielectric constants and
velocities found in the literature.

The velocity of the Dirac states in graphene is given by
v ≈ 1.0 × 106 m/s, while in typical 3DTIs such as binary
bismuth chalcogenides and related materials, v = 2.0–6.0 ×
105 m/s. Dirac states on the (110) surface of Bi2Se3 have
v ≈ 5 × 105 m/s. One can find smaller velocities on other
crystal facets of 3DTIs. For example, the (1̄12) surface of
Bi2Se3 hosts anisotropic (tilted) Dirac cones where the velocity
in the vertical direction (along the direction of quintuple-layer
growth) is v ≈ 2 × 105 m/s [41].

In the case of graphene, the effective dielectric constant is
taken to be ε = (εsub + εvac)/2, where εsub(vac) is the dielectric
constant of the substrate (vacuum). In the case of 3DTIs,
ε = (εTI + εvac)/2, where εTI is the dielectric constant of the
bulk 3D TI. The effective dielectric constant depends strongly
on the environment and also on the applied electric field [53].
Reported values of ε in graphene on the substrate are in
the range between 2 to 15, which gives α ∈ [0.1 : 1.0] (see
Ref. [53] and references therein). For two typical substrates
such as SiC and SiO2, α ≈ 0.4 and α ≈ 0.8, respectively,
while for freestanding graphene (nominally ε = 1), α ≈ 2.2.

In 3DTIs, the dielectric constant can be quite large, e.g.,
εTI ≈ 100 (113 in Bi2Se3 and 75–290 in Bi2Te3 [54]), which
gives ε ≈ 50. In some experiments, ε has been taken to
be closer to 30 due to heavy doping of the samples [55].
For typical velocities in Table II, this gives α ∈ [0.1 : 0.4].
However, since v can be made smaller in some cases [40] and
ε could be tuned, in principle, by gating in TI thin films, we
investigate a larger range of α, α ∈ [0.1 : 1.0], similar to the
case of graphene.

In a pumped DM with nonzero chemical potential of
photoexcited electrons and holes, the DOS is determined by
the values of the chemical potentials that can be achieved in
experiment. In the case of graphene, we can relate the chemical
potentials μe/h to the number of photoexcited carriers ne/h as
μe/h = v

√
πne/h. The number of carriers can be estimated

using the properties of the pump pulse, i.e., for a pump
fluence � and a pump energy h̄ωpump, h̄ωpumpne/h ≈ �A0 [14],
where A0 is the absorption coefficient of graphene. Taking
A0 = 0.02, h̄ωpump = 1 eV and assuming a balanced distri-
bution of photoexcited electrons and holes (ne = nh ≡ nex),
we estimate that in order to achieve a chemical potential
μe/h = μ− ≈ 500 meV, one would need a carrier density
nex ≈ 1013 cm−2 corresponding to a pump fluence � ≈
100 μ J cm−2. Such carrier densities and pump fluences can

be achieved in present experiments [38]. Thus, we used the
value μ− = 500 meV for estimates of the excitonic gap and
critical temperature in graphene.

In 3DTIs, the pump energy is typically large compared
to the bulk band gap, e.g., h̄ωpump ≈ 1.5 eV, while the bulk
band gap in chalcogenide 3DTIs is about 0.3 eV. Therefore,
electrons are first excited into empty states in the bulk
conduction band and then quickly populate the lower-energy
Dirac states. As observed in recent experiments, the lifetime
increases as the energy approaches the Dirac node [17]. As a
result, the hot electrons accumulate in the upper Dirac cone,
leading to a population inversion. This apparent bottleneck
can be attributed to the vanishing phase space at the node. The
lifetime of the population inversion is of the order of a few ps
and the corresponding chemical potential of the photoexcited
electrons that can be extracted from the ARPES images is of
the order of 100 meV [17]. This is the value used for numerical
estimates for 3DTIs in Table I. In Ref. [18], photoexcited states
with lifetimes of the order of μs (accompanied by a ∼100 meV
shift in the chemical potential) have been observed. We take
this result as an indication that long-lived photoexcited states
can be realized in 3DTIs.

APPENDIX B: ANALYSIS OF THE
CONTACT-INTERACTION MODEL

For |q| << κ , we can see from Eq. (7) that the potential is
approximately a constant in momentum space,

Vq ≈ V0 ≡ 2πe2

εκ
. (B1)

Inserting this expression for the interaction potential to the
gap equation (2), we can see that the gap becomes momentum
independent, 	k = 	0, and satisfies the following equation:

	0 = 	0
αh̄v

2κ

∫ �

0
kdk

tanh
(

Ek

2T

)
Ek

×
[

1 − tanh2
(

μ+
2T

)
1 − tanh2

(
μ+
2T

)
tanh2

(
Ek

2T

)
]
, (B2)

where α = e2/εv is the dimensionless coupling constant in
the DM, T is the temperature of the electrons and holes, and
Ek =

√
(h̄vk − μ−)2 + 	2

0.
The critical temperature for the formation of an

excitonic condensate, Tc, can be found by assuming
	0 
= 0 and taking 	0/T → 0. We will now analyze the
critical temperature in a few different, physically relevant
limits.

First, we consider the limit of perfectly matched chem-
ical potentials, μ+ = 0. In this limit, assuming μ− > 2T ,

μ−/h̄v� << 1, and T/h̄v� << 1, we find the critical tem-
perature can be approximated by

Tc = C−
√

μ−(h̄v� − μ−) exp

[
h̄v(� − 2κα−1)

2μ−

]
, (B3)

where C− = 2
π
eγ−1, in which γ ≈ 0.577216 is the Euler-

Mascheroni constant. From this expression, we can identify
three distinct cases which depend on the competition between
the ratio of the screening wave vector to the coupling, κ/α,
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FIG. 5. Color plot of the order parameter 	0 in the T -μ− plane for μ+ = 0 computed numerically by solving Eq. (B2) self-consistently

assuming κ = � = 1/6.58 Å
−1

and v = 6.58 eV Å for four different values of α: (a) α = 2.2, (b) α = 2, (c) α = 1, (d) α = 0.5. In each case,
we plot the expression for Tc using Eq. (B3), shown with dashed lines, and see excellent agreement except for the small μ− region in (a) due
to the exponential enhancement of Tc, as discussed in the text. 	0 is in units of meV.

and the cutoff wave vector, �: case (i) � > 2κα−1, case
(ii) � = 2κα−1, and case (iii) � < 2κα−1.

In case (i), the argument of the exponential is positive
and thus Tc is exponentially enhanced for small μ−. This
case is naturally the most favorable for the formation of
the excitonic condensate, which makes sense given that it
is the case associated with the limit of strong coupling and
weak screening. We should note that in this case, for very
small values of μ−, Eq. (B3) no longer applies since the
exponential enhancement of Tc will render our assumption
T/h̄v� << 1 invalid. This disagreement is demonstrated in
Fig. 5(a). However, as we can see, the expression in Eq. (B3)
still agrees qualitatively away from μ− = 0.

In case (ii), the exponential factor is equal to unity and thus
Tc possesses a simple square-root dependence on μ−. In this
case, any finite value of μ− will lead to a finite Tc ∼ √

μ−. In
Fig. 5(b), we demonstrate that this result agrees very well with
the numerically computed phase diagram.

In case (iii), the argument of the exponential is negative
and thus Tc is exponentially suppressed for small μ−. This
dependence seems natural since this is the case associated with

the limit of strong screening and weak coupling. In Figs. 5(c)
and 5(d), we show phase diagrams for two cases falling into
this regime, demonstrating the exponential suppression of Tc

for small μ−.
Next, we will discuss what happens to the phase diagram

for μ+ 
= 0. From Eq. (B2), we can see that in the limit of
μ+/2T >> 1, the only solution is 	0 = 0. Hence, it is clear
that a mismatch between the two chemical potentials (μe and
μh) is potentially destructive. Allowing for a small but finite
mismatch, μ+/2T << 1, we can expand Eq. (B2) in powers
of μ+/2T and we find that the leading-order corrections to Tc

are given by

Tc(μ+) ≈ Tc(0)

[
1 − C+

μ2
+

4Tc(0)2

]
, (B4)

where C+ = γ + ln 4
π

− 1/3 and Tc(0) is the critical temper-
ature given by Eq. (B3). From this expression, we can see
that even small deviations from μ+ = 0 will lead to a reduced
value of Tc.
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APPENDIX C: TIME EVOLUTION
OF THE ORDER PARAMETER

To account for the transient nature of the excitonic states
in a pumped DM, we require a dynamical approach. In
this section, we employ semiconductor Bloch equations
(SBE) [35,44,45,56,57] to model the dynamics of photoexcited
carriers in a pumped DM in the presence of interactions. This
approach yields a system of differential equations of motion
that describe the time evolution of the basic single-particle
expectation values, namely, electron and hole populations,
n

e/h
k = 〈ψ†

e/h,kψe/h,k〉, and the anomalous correlator (interband

polarization) fk = 〈ψe,−kψ
†
h,k〉, which is related to the order

parameter 	k as 	k = ∑
k′ Vk−k′fk′ . The numerical solution

of the SBE yields the time evolution of the order parameter
and electron and hole occupations.

To derive the SBE for a pumped DM, we write equations
of motion for n

e/h
k and fk. For any operator O, we have

d〈O〉
dt

= i

h̄
〈[H,O]〉, (C1)

where H is given in Eq. (1) with the interaction term in the
mean-field approximation. After computing the commutators
of O with each term in the Hamiltonian, we obtain the
following system of equations:

dne
k

dt
= i	∗

kf
∗
k − i	kfk + dne

k

dt
|scat,

dnh
−k

dt
= i	∗

kf
∗
k − i	kfk + dnh

k

dt
|scat,

dfk

dt
= i

(
εe

k + εh
k

)
fk + i	∗

k

(
1 − ne

k − nh
−k

) + dfk

dt
|scat.

(C2)

Dissipation has been incorporated into the equations of
motion via phenomenological scattering terms denoted as
d/dt |scat in Eq. (C2). We take into account two main
mechanisms of relaxation: (i) the interband relaxation due
to recombination of carriers, which results in a decrease of
the electron and hole populations and thus the magnitudes
of the chemical potentials, and (ii) intraband relaxation due
to intraband scattering, which results in thermal equilibration
of carriers at an instantaneous chemical potential μe(h)(t) and
time t . These processes are described by relaxation times T1

and T ′
1, respectively. The scattering terms in Eq. (C2) take on

the following form:

dne
k

dt
|scat = −ne

k(t) − nF[μe(t)]

T ′
1

− ne
k(t)

T1
,

dfk

dt
|scat = −fk(t)

T2
. (C3)

The form of the scattering terms is obtained by coupling the
electron and hole subsystems to a pair of featureless (fermionic

FIG. 6. Dynamics of (a) the order parameter and (b) electron
occupation obtained from numerical integration of the SBE, given
by Eq. (C2), for T1 >> T ′

1 with different T ′
1 . We use parameters for

graphene with α = 0.2, T = 0, and μe = μh = 500 meV. The inset
in (b) shows distribution of ne

k at t = 0.

or bosonic) reservoirs and by subsequently integrating out the
reservoir degrees of freedom [25,58]. The relaxation terms can
be derived microscopically from many-particle interactions,
e.g., in the second-order Born-Markov approximation [57].
Relaxation dynamics is mainly governed by carrier-carrier
and carrier-phonon scattering, which can contribute to both
intraband and interband relaxation.

The decay of the excitonic state is governed by the
dephasing time T2 related to the scattering times as
T −1

2 = T ′
1
−1 + T −1

1 [57]. Figure 6 shows the time evolution
of the order parameter and electron occupation (the dynamics
of electrons and holes is identical). We take as the initial state
the values of the gap and occupations in the quasiequilibrium
state at fixed μe and μh, which are then evolved according
to equations of motion. In doing so, we neglect the ultrafast
processes associated with excitation and with building up
of the transient inverted population and focus only on the
relaxation of the transient state towards equilibrium. The
gap and the instantaneous chemical potential are calculated
self-consistently at each time step. In these simulations, we
consider a regime in which T1 >> T ′

1 for different T ′
1 and we

limit the total simulation time to a few-hundred fs.
Since all relaxation channels contribute to the dephasing

of the the interband polarization fk and hence 	k, the
lifetime of the gapped excitonic state is determined by the
shortest of the relaxation times (the largest scattering rate).
Experimental results [16] and microscopic modeling [44] of
ultrafast relaxation dynamics in graphene suggest that the
Coulomb-induced interband interaction, in particular Auger
scattering (recombination), has the largest scattering rate and
is predominantly responsible for the relaxation of the transient
population inversion towards equilibrium within 100–200 fs.
This gives an estimate for the lifetime of the transient
excitonic state. According to recent experiments, lifetimes of
the population inversion in 3DTIs are orders of magnitude
larger (4 ps–μs); however, detailed microscopic calculations
similar to the ones done for graphene are needed to clarify the
relative contributions of different scattering channels.
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