
PHYSICAL REVIEW B 95, 205408 (2017)

Graphene layered systems as a terahertz source with tuned frequency
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The propagation of an electron beam over a graphene/dielectric sandwich structure is considered assuming the
distance between the graphene layers in sandwich is large enough to prevent interlayer tunneling. A dispersion
equation for the surface electromagnetic modes propagating along graphene sheets is derived and Čerenkov
synchronism between a surface wave and a nonrelativistic electron beam is predicted at achievable parameters
of the system. Generation frequency tuning is proposed by varying the graphene doping, the number of graphene
sheets, the distance between sheets, etc.
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I. INTRODUCTION

Owing to a variety of scientific and technical applications,
there is a great need for the development of coherent
terahertz radiation sources with a tunable frequency (see, e.g.,
Refs. [1,2], and references therein). In particular, tunability can
be realized in devices utilizing the kinetic energy of moving
electrons and transforming it into the energy of the emitted
electromagnetic wave [3]. Free-electron lasers (FELs) [4],
traveling wave tubes (TWTs), and backward wave oscillators
(BWOs) are the well-known devices of such a type. The
energy transfer occurs when the parameters of the electron
beam moving with velocity u and the electromagnetic wave
meet the synchronism condition (for example, ω − ku = 0
in the Čerenkov case). By changing the electron velocity,

one can smoothly tune the frequency in a wide range. The
development of FELs was initiated, in particular, by this
feature. However, the electron beam sources are normally
optimized for working at a given electron energy and do
not allow its easy variation without a considerable drop in
efficiency. Instead, tunability could be achieved by exposing
the medium which provides the synchronization conditions
to the external fields—for example, by varying the undulator
magnetic field [4]—but again, this technique appears to be
rarely used in practice since the undulator is usually designed
for a given operating frequency and its efficiency significantly
drops with deviations.

In the case of a Čerenkov-type emitter [5], the radiation
frequency depends also on the electrodynamic parameters
of the medium, thus providing alternative means of resonant
frequency tuning. Among the different possibilities, graphene
and carbon nanotubes (CNTs) are very promising materials
from this point of view since there are well known and
rather facile methods to vary their constitutive parameters
over a wide range. In particular, the well-developed methods
of graphene doping that include electrostatic doping allow a
smooth alteration of the surface conductivity [6]. An analogous
effect is reported in doped CNTs [7,8]. Besides, it has been
shown that carbon nanotubes and graphene can considerably
slow down the surface electromagnetic wave [9,10], thus
providing better conditions for the synchronization of the
electron beam and electromagnetic surface wave.
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The Čerenkov mechanism of the generation of coherent
stimulated radiation in graphene and carbon nanotubes was
theoretically investigated in Refs. [10–15], demonstrating the
realizability of nanotube-based nano-TWTs and nano-FELs at
realistic parameters of the CNTs and electron beams [14]. The
mechanism of the generation and amplification of plasmon
oscillations in graphene by optical or electrical pumping has
been discussed in the literature [16–21]. The efficiency of
emission and the influence of the quantum recoil effect on
Čerenkov emission by hot electrons in graphene were studied
in Refs. [22,23]. The possibility of terahertz emission in
CNTs imposed on transverse and axial electric fields due
to electric-field-induced heating of the electron gas has been
revealed in Refs. [24–28]. A periodical system of graphene
nanoribbons has been proposed as the Čerenkov medium
with the regulation of generation frequency by the width of
the nanoribbon, the spatial period, and the applied voltage
[29,30]. A similar approach exploiting the periodic dielectric
substrate underlying the graphene sheet has been developed
in Refs. [31,32]. A variant that is analogous to Čerenkov
radiation due to the excitation of dipole polarization in the
array of nanotubes, which leads to current generation with a
superluminal profile, is considered in Refs. [33,34].

The unique physical properties of graphene, either as a
plane or rolled up into a cylinder, are featured because not
only can an external electron beam be used for the excitation
of surface waves but also graphene’s own π electrons can be
used [10,14,29]. There are several reasons in favor of such
a generation scheme: First, graphene and nanotubes support
an extraordinarily large continuous electric current density,
>108 A/cm2, without degradation (see, e.g., Refs. [35–37]).
Then, a macroscopically large ballistic length (up to several
hundred microns) in graphene and the nanotubes is reported
[38–41]. For example, an about 16 μm long electron ballistic
transport in graphene nanoribbons has been observed recently
[42]. Therefore, electrons can emit coherently from this macro-
scopic length. The physical basis of such a high ballisticity is
in the Dirac nature of the graphene carriers and the Klein
paradox [43,44], which helps one to overcome the potential
barriers. Lastly, metallic CNTs exhibit a strong, as large as
50–100 times, slowing down of the surface electromagnetic
waves [9]. In single-layer graphene this quantity appears to
be smaller, but below we show that this problem can be
resolved by using a slow acoustic mode in a multilayered
structure due to the coupling of plasmon-polariton modes of
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different layers [10]. A similar effect can be achieved by
the hybridization of the graphene plasmon with its mirror
image in the metal plate disposed near the graphene layer
that leads, in particular, to a strongly confined asymmetric
mode [45,46]. Thus, as it has been stressed in Ref. [14], the
combination in graphene and CNTs of three key properties,
(i) the ballisticity of the electron flow over a typical length,
(ii) an extremely high current-carrying capacity, and (iii) a
strong slowing down of the surface electromagnetic waves [9],
allows us to propose them as candidates for the development
of nanosized Černekov-type emitters. As our estimates show
[14], an electron mean free path as large as tens of microns
would be enough to provide coherent emission and reach the
above stated goal. However, the practical realization of such
a large ballistical transport is a complicated task and, in any
case, is inconsistent with the high current density.

Alternatively, traditional Černekov and Smith-Purcell gen-
eration schemes can be utilized, when an external electron
beam moves synchronously with the excited surface wave
over the graphene surface over a distance sufficient to neglect
electron collisions with the carbon atoms. A later condition
allows one to exclude the negative role of the electrons’
multiple scattering, which destroys Čerenkov synchronism.
To provide the necessary slowing down, we propose to
make use of a sandwich structure consisting of parallel
noninteracting graphene layers. In Ref. [10] we have shown
that in two spatially separated graphene layers, one of the
surface plasmonic modes can be significantly slowed down,
up to the velocity of the graphene π electrons. Moreover, a
different mechanism of frequency tuning appears, exploiting
the variation in the interlayer distance. Recently [47,48],
we have demonstrated a strong graphene interaction with
radiation. In particular, a free-standing single graphene layer
can absorb up to 50% of the exposing radiation intensity in the
microwave and terahertz frequency ranges. This percentage
can be significantly increased under a corresponding choice of
substrate. From the Einstein rules, it follows that the inverse
process, i.e., stimulated radiation emission, can proceed
equally effectively.

In the present paper we study the excitation of surface waves
propagating in graphene sandwich structures and resonantly
interacting with an electron beam, aiming at revealing the
generation conditions and methods of smooth frequency tuning
by variations in the system parameters. The remainder of the
paper is organized as follows. In Sec. II the formulation of
the problem and basic equations are presented. A solution of
the boundary-value problem for a single-layer graphene sheet,
the possibility for an electromagnetic wave to slow down, and
frequency tuning in that case is presented in Sec. III. Section IV
presents results concerning the surface electromagnetic wave
in a two-layer graphene system, a slowing down of an enhanced
wave for the acoustical mode, and an addictive change in
the effective chemical potential for the optical mode. Both
these effects give the possibility to regulate the generated
frequency and resonance electron beam energy. A dispersion
equation for a graphene system with an external electron
beam is presented in Sec. V. The solution of this equation
gives us an increment of instability and estimation that is
required for generation parameters. Section VI contains an
analysis concerning the possibilities of generation and fre-

quency tuning based on previous calculations, and conclusion
remarks.

II. BASIC EQUATIONS

Consider an electron beam propagating along the x axis
parallel to a graphene sheet or multilayer graphene sandwich
structure comprising graphene sheets separated by layers of
a medium with dielectric functions εi . The index i marks the
double-layer graphene+underlying medium in the sandwich
(see Fig. 1). On its way over the sandwich, the beam
interacts with the surface electromagnetic wave retained by
the graphene structure. For coherent radiation generation, the
beam motion should be synchronized with the electromagnetic
wave on the beam propagation length over the structure. In
particular, for the Čerenkov emission mechanism, the electron
beam velocity must coincide with the phase velocity vph of the
electromagnetic wave. That is, since the electron velocity is
smaller than the speed of light, the slowing down of the surface
wave is a necessary condition for synchronization.

Let us examine the propagation of surface waves along the
sandwich in free space, assuming the distances between the
graphene layers to be large on the atomic scale and, therefore,
neglecting electron interlayer tunneling in the sandwich.
Further, we follow the procedure developed in Refs. [47–49].
The eigenwaves under study satisfy the Maxwell equations,
the boundary conditions at the graphene surfaces in each layer,
and the condition that there are no exterior current sources at
infinity. From the Maxwell equations we express the field of
the transverse magnetic (TM) wave in a piecewise continuous
form,

H (i)
y = eiqx

(
c

(i)
1 exp

{
ik(i)

z z
} + c

(i)
2 exp

{ − ik(i)
z z

})
. (1)

Here, the z axis is perpendicular to the graphene layers,
k(i)
z =

√
ω2εi/c2 − q2 is the z projection of the wave vector in

the ith layer, and q is the tangential component of the wave
vector. Further, we assume εi = 1. Generalization of the case
εi �= 1 can be easily performed and, what is important, it does
not create essential changes. To find the surface eigenmodes we
need to determine the unknown coefficients c(i). The boundary
conditions state the continuity of the tangential component of
the electric field on the graphene surface while the tangential
component of the magnetic field undergoes a discontinuity
proportional to the surface current jt excited in graphene
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FIG. 1. Geometry of the problem.
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[47–49],

H(zi + 0) − H(zi − 0) = 4π

c
[jt (zi) × n]. (2)

Here, n is the unit vector along the z axis. As it has been shown
in Ref. [49], the surface current excited in the graphene layer
is related to the electric field by

jt = σEt = αgsgv

T

πh̄
ln

[
2 cosh

(
μ

2T

)]
ic

ω + i�
Et , (3)

where σ is the sheet conductivity of the monolayer graphene,
μ is the chemical potential of the electron subsystem, T is the
temperature in energy units, � is the broadening parameter
(collision frequency), and α is the fine structure constant. In
further calculations we assume � ∼ 10 THz, in accordance
with our previous experiments on electromagnetic radiation
absorption in graphene sandwich structures [47,48]. Note that
in our approach any deviations of graphene from idealness
(defects, doping, strains, nonhomogeneities, etc.) are taken
into account by variation of the chemical potential and
broadening parameter �.

The coefficients gs and gv are due to spin and valley degen-
erations [49] and for graphene it can be accepted that both are
equal to 2. In Eq. (3) we only restrict ourselves to intraband
transitions. At realistic values of the chemical potential this
is correct for the terahertz and microwave frequency ranges
and inapplicable in optical and near-infrared (NIR) ranges
where the interband transitions come into play. If the chemical
potential proves to be less than the operating frequency, the
interband transitions should also be accounted for, even at low
frequencies. However, to reach such a situation, special efforts
are required during graphene synthesis and storage [50].

III. SURFACE WAVES IN A SINGLE-LAYER SYSTEM

Applying the procedure described above to the sandwich
structure consisting of n layers, we arrive at a homogeneous
system of 2n linear equations for 2n coefficients c

(i)
1,2. A

dispersion equation of the system arises when we set the
determinant of the system equal to zero and determine the
frequency dependence of the surface-wave wave vector. For a
single graphene layer the system comprises two equations for
two coefficients,

c2 + c1 = 0, c2(1 + σ0) − c1 = 0. (4)

Here, σ0 = (4π/ω)kzσ is a dimensionless parameter with σ

given by Eq. (3) under the assumption gs,gv = 2. Assuming
a chemical potential considerably exceeding the temperature,
from (4) it follows that

2μα

h̄ω

√
q2c2 − ω2

ω + i�
= 1, (5)

which describes the dispersion of the surface electromagnetic
wave propagating in graphene. Dispersion equation (5) leads
to

q2c2 = ω2 +
[
h̄ω(ω + i�)

2μα

]2

. (6)

This equation demonstrates the frequency dependence of the
surface-wave wave vector that is characteristic for degenerated

FIG. 2. Slowing down of the phase velocity for a surface wave
in an isolated graphene layer for different values of the chemical
potential: (1) μ = 0.05 eV, (2) μ = 0.1 eV, (3) μ = 0.2 eV.

two-dimensional (2D) quantum systems. In the case of
potential fields, when we can neglect the first term on the
right-hand side of Eq. (6), we arrive at the dependence [51]
q ∼ ω2 or ω ∼ √

q. Note that such a dependence drastically
differs from the dependence inherent in the three-dimensional
(3D) case, where the eigenfrequency is proportional to the
Langmuir plasma frequency and does not depend on the
wave vector [52]. The specific dispersion law admits a strong
slowing down of surface waves in 2D systems. The slowing
down of surface waves at different μ is illustrated in Fig. 2.
It is seen that the effect can vary in a wide range of values
depending on the frequency and chemical potential.

The dependence of the Čerenkov resonant frequency (the
frequency corresponding to the synchronism condition) ν on
the chemical potential is depicted in Fig. 3 at different values of
the electron beam energy. Figure 4 demonstrates the variation
in the Čerenkov resonant frequency by changing the electron
beam energy. Calculations were made for typical values of the
chemical potential, μ = 0.1 and 0.2 eV.

In the above analysis we considered the TM wave, whose
magnetic field vector is coplanar with graphene and the wave

FIG. 3. Čerenkov resonant frequency vs chemical potential at an
electron beam energy of (1) 4 keV, (2) 10 keV, and (3) 60 keV.
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FIG. 4. Čerenkov frequency dependence on the electron beam
energy. Chemical potential (1) μ = 0.1 eV and (2) μ = 0.2 eV.

vector is normal to the magnetic field. Analogously, the
boundary conditions can be stated for the transverse electric
(TE) wave and a corresponding dispersion equation can be
obtained,

4μα

h̄
√

q2c2 − ω2

ω

ω + i�
= −2. (7)

See (5) for a comparison. Since the TE wave can exist only
when the real part of

√
q2c2 − ω2 is positive, from (7) one

can conclude that graphene does not support TE waves in the
frequency range under consideration. The excitation of TE
waves in an isolated graphene layer is possible at much higher
frequencies when the contribution of the interband transitions
becomes significant [53].

IV. SURFACE WAVES IN A DOUBLE-LAYER SYSTEM

A double-layer graphene system can be used for the gen-
eration of Čerenkov radiation by an electron beam [10]. The
advantage achieved by graphene doubling is the appearance
of an acoustic mode among the plasmon oscillations inherent
in the system. This mode’s frequency is proportional to the
difference in frequencies of the plasmonic oscillations in the
layers. As a result, the phase velocity of this wave appears to be
much less than that achievable in monolayers. Owing to such
a large slowing down, one can meet Čerenkov synchronism
even for graphene π electrons whose velocity is ≈ 300 less
than the speed of light.

It should be noted that Eq. (3) for surface conductivity de-
duced in Ref. [49] holds true only if ω � qvF . If this condition
is not valid, a more precise expression for conductivity should
be applied [see Eq. (39) in Ref. [10]],

σ ′ = αgsgv

T

πh̄
log

[
2 cosh

(
μ

2T

)]
ic(ω + i�)

v2
F q2

× (ω + i�) − [
(ω + i�)2 − v2

F q2
]1/2[

(ω + i�)2 − v2
F q2

]1/2 . (8)

Here, vF is the π -electron velocity at the Fermi level. In the
case ω � vF q, Eq. (8) is reduced to (3).

FIG. 5. Slowing down of the phase velocity for the acoustic mode
in a structure with two graphene layers. In curves 1–5, the distances
between layers are 10 nm, 20 nm, 50 nm, 100 nm, and 1 μm,
respectively. The chemical potential in all cases is μ = 0.1 eV.

Let us analyze the surface electromagnetic modes in two
graphene layers separated by a distance l. The magnetic field
of the TM wave can be written as

Hy = exp{iqx}

×
⎧⎨
⎩

a exp {−ikzz}, z < 0,

c1 exp {ikzz} + c2 exp {−ikzz}, 0 < z < l,

d exp {ikz(z − l)}, z > l.

(9)

In the regions before (z < 0) and after (z > l) the structure,
system (9) contains only waves exponentially decaying with
distance from graphene. The boundary conditions allow-
ing the evaluation of the four coefficients a,d,c1,c2 are
given by

c1 − c2 + a = 0,

c1 + c2 − a(1 + σ ′
0) = 0,

c1 exp{−
√

q2 − ω2/c2l}
− c2 exp{

√
q2 − ω2/c2l} − d = 0,

c1 exp{−
√

q2 − ω2/c2l}
+c2 exp{

√
q2 − ω2/c2l} − d(1 + σ ′

0) = 0, (10)

where, as in the previous section, σ ′
0 = (4π/ω)kzσ

′ and σ ′ is
given by Eq. (8) under the assumption gs,gv = 2. The resulting
dispersion equation,

2 + σ ′
0 ± σ ′

0 exp{−
√

q2 − ω2/c2l} = 0, (11)

manifests the appearance of optical and acoustic modes (upper
and lower signs, respectively). At distances l much less than
the wavelength, the acoustic mode slows down much faster.
This is because the terms proportional to conductivity in (11)
are mutually suppressed in that case. Thus, in the acoustic
mode, the wave number q must be sufficiently large in order
to satisfy the dispersion equation.

Figure 5 presents the phase velocity dependence of the
surface asymmetric electromagnetic mode on frequency.
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FIG. 6. Slowing down of the acoustic mode as a function of
interlayer distance in a double graphene structure at different values
of the chemical potential: μ = 0.05 (curve 1), 0.1 (curve 2), and 0.2
(curve 3).

Comparing the curves in this plot with curve 2 from Fig. 2,
which has been plotted for a single layer at the same value of
the chemical potential μ = 0.1 eV, one can see that the acoustic
mode slows down much faster in a double-layer structure than
in monolayer graphene. Figure 5 also demonstrates a weak
frequency dependence of the slowing down factor in the range
considered. On the contrary, the dependence of this factor on
interlayer distance is essential (see Fig. 6). This gives us a tool
to control the effect by varying the distance.

There is also an optical mode in the double-layer structure
under consideration [“+” in (11)]. When the wavelength
exceeds significantly the interlayer distance, the dispersion
equation of the optical mode differs from the single-layer case
in that only the chemical potential should be doubled in all
expressions. In particular, this means that the slowing down
of this mode is less than in a single graphene layer. When the
interlayer distance is considerably less than the wavelength, it
can be easily seen that for the optical mode which corresponds
to the sign “+” in (11), the effective sheet conductivity is
doubled as compared to the case of monolayer graphene.
An analogous effect holds true for a sandwich graphene
structure with more than two layers. For this case, the effective
conductivity is equal to the sum of the layer conductivities.
Such an additivity has been observed experimentally in the
study of electromagnetic wave transmission through sandwich
graphene structures [47,48].

Note that in the above consideration we restricted ourselves
to the case μ � T . When this inequality is violated, the system
can be described by the effective chemical potential

μeff = 2T log

[
2 cosh

(
μ

2T

)]
, (12)

as it can easily be deduced from (3) and (8). Figure 7 shows
the temperature dependence of the ratio μeff/μ for different
values of the chemical potentials. One can see that temperature
has a slight influence on the ratio for μ > 0.1 eV up to the
poly(methyl methacrylate) (PMMA) melting point, which is
why in our transmission/absorption experiments with chemical

FIG. 7. Temperature dependence of the effective chemical poten-
tial for different values of the chemical potential: μ = 0.05 (curve 1),
0.1 (curve 2), and 0.2 (curve 3).

vapor deposition (CVD)-grown graphene [47,48], where the
chemical potential was estimated as μ ∼ 0.14–0.17 eV, we
did not observe a temperature dependence. “Purer” graphene
is expected to be more sensitive to temperature changes.

V. DISPERSION EQUATION IN GRAPHENE STRUCTURES
IN THE PRESENCE OF AN ELECTRON BEAM

Let the electron beam of width δ propagate on a distance h

from a two-layer graphene structure. The dispersion equation
can be derived in the manner described in the previous section.
The difference consists in the appearance of an additional
region occupied by an electron beam. In this region, the z

projection of the wave vector is given by

kbz = kz

√
1 − ω2

l

γ 3(ω − qu)2
, (13)

where ωL =
√

4πe2ne/me is the Langmuir frequency of the
electron beam and γ = 1/

√
1 − u2/c2 its Lorentz factor, u is

the velocity of electrons, ne is the electron density, and e and
me are the electron charge and mass. The system of boundary
conditions in this case is discussed in the Appendix. It leads
to the following dispersion equation,

Ib = − (2 + σ ′
0)2 − (σ ′

0)2 exp{−2
√

q2 − ω2/c2l}
σ ′

0[2 + σ ′
0 + exp{−2

√
q2 − ω2/c2l}(2 − σ ′

0)]
,

(14)

where

Ib = exp(2ikzh)

×
(
k2
bz − k2

z

){exp(ikbzδ) − exp(−ikbzδ)}
(kbz − kz)2 exp(ikbzδ) − (kbz + kz)2 exp(−ikbzδ)

.

It is obvious that in the case when the distance between the
layers significantly exceeds the distance of the surface-wave
dumping, the above dispersion equation is reduced to the
equation for a single layer. Mathematically, this is achieved
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FIG. 8. Frequency dependence of the instability increment
[Im(q)] for (1) four, (2) eight, and (3) nine graphene layers with
the chemical potential of a single layer, μ = 0.2 eV. Electron beam
energy E = 10 keV, � = 10 THz.

by neglecting small exponential terms in the numerator and
denominator in the right-hand side of (14).

As an example, in Fig. 8 we depict the instability increment
(imaginary part of the surface-wave tangential wave number
q) as a function of frequency. The negativity of the increment
is a necessary condition to start generation. In the figure we
compare the frequency dependencies for sandwich structures
with four, eight, and nine graphene layers at μ = 0.2 eV
in each layer. All curves are characterized by pronounced
minima at the Čerenkov resonant frequencies (generation
frequencies) with the linewidths dictated by the broadening
parameter. These frequencies appear to be in the THz range
and significantly shift to the short-wave side with the number of
graphene layers. The increments grow in absolute values with
the number of graphene layers also. The maximal absolute
values of the instability increments presented in Fig. 8 show
us that a strong amplification regime can be realized already
at an interaction length of the order of several centimeters. At
smaller lengths, the incorporation of feedback (for example, a
mirror) into the system allows one to achieve generation in a
weak-coupling regime.

Figure 9 demonstrates the increment frequency depen-
dencies for monolayer graphene at a smaller electron beam
energy and two different chemical potentials. In this case the

FIG. 9. Frequency dependence of the instability increment
[Im(q)] for a single graphene layer. Electron beam energy E = 4 keV,
and the chemical potential is (1) μ = 0.1 eV and (2) μ = 0.2 eV.

generation frequency is reduced to several terahertz with a
simultaneous decrease in the absolute value of the increment.
Thus, a multilayer graphene sandwich provides us with much
better generation conditions as compared to the monolayer and
admits resonant frequency tuning.

VI. CONCLUSION

In the present paper, we have studied the propagation
in graphene sandwich structures of surface waves excited
by an electron beam moving over the sandwich surface.
We have demonstrated the existence in the multilayered
structure of a strongly slowed down acoustic mode which
allows synchronization of the beam and the surface wave at a
much lower beam energy. Moreover, smooth frequency tuning
becomes possible by varying the system parameters, such as
the beam energy, chemical potential, and interlayer distance.

At a given beam energy the frequency can be smoothly
tuned by varying the chemical potential μ by means of
electrostatic doping (see Fig. 3). At a fixed chemical potential
the tuning is attained by a variation in the electron beam
energy, as is demonstrated in Fig. 4. If the graphene sandwich
structure allows alteration of the interlayer distance, tuning
of the spectrum can be realized even at a fixed chemical
potential and beam energy (see Fig. 5). This is because in
multilayered graphene structures there are electromagnetic
modes whose phase velocities can be both essentially smaller
and exceed the surface-wave phase velocity reachable in
single-layer graphene. All the factors mentioned allow one
to match the electron beam energy, the chemical potential, and
the interlayer distance (and number of layers) to synchronize
the electron beam and surface electromagnetic wave at a fixed
frequency, while an external electrostatic field (electrostatic
doping) provides an additional possibility for fine frequency
tuning.

It should be emphasized that the graphene layers in the
sandwich do not necessarily have to be whole. In order to
provide an interaction of the electron beam with the graphene
on a length of several centimeters, it is sufficient to have
a mosaic surface comprising disoriented in-plane graphene
blocks. Moreover, since cylindrical and tubular beams are
widespread in electronic engineering, the planar geometry
considered in the present paper (see Fig. 1) can be easily
rearranged to be cylindrical by, for example, stacking graphene
layers on a cylinder.

Thus, based on our analysis, we can conclude that multilay-
ered graphene/dielectric structures with negligible interlayer
tunneling provide enhanced conditions for terahertz Čerenkov
radiation generation excited by an external nonrelativistic elec-
tron beam. Different methods for the generation of frequency
tuning can be realized by varying the graphene doping, the
number of graphene sheets, the distance between sheets, etc.
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APPENDIX: ACCOUNTING OF THE ELECTRON BEAM

Consider electron beams propagating over some plane
structure (see Fig. 1). As a further consideration, we make use
of the procedure developed in Ref. [54]. Linealized equations
describing the electron beam dynamics are well known and
given by

∂δvx

∂t
+ u

∂δvx

∂x
= e

mγ 3
Ex,

∂δn

∂t
+ ∂

∂x
(n0δvx + uδn) = 0. (A1)

A Fourier transform of (A1) leads to

(
k2
bzc

2 − ω2
)
Ex − qkbzc

2Ez = −ω2
Lω2

�2γ 3
Ex,

−qkbzc
2Ex + (q2c2 − ω2)Ez = 0, (A2)

which gives the dispersion equation as follows

k2
bc

2 − ω2 = ω2
L

�2γ 3
(q2c2 − ω2), (A3)

where k2
b = q2 + k2

bz and � = ω − qu. Solutions of this
equation are given by (13). Boundary conditions for the
electromagnetic wave (1) interacting with an electron beam
are produced by analogy with the case considered in Secs. III

and IV by imposing conditions on the tangential components
of the electric and magnetic fields on the boundaries. The only
difference is that in the beam, the following relation, dictated
by the Maxwell equation

Ex = k2
0zc

ωkbz

Hy, (A4)

is used for tangential components of the electric and magnetic
fields. Particulary, for an electron beam with a thickness δ

propagating over two-layer graphene over a distance h, we
have a system for eight coefficients. Two of them, a1 and
a2, correspond to regions below the structure and above the
beam, respectively, while the coefficients c1,2 and d1,2 describe
waves inside a two-layer structure and between the structure
and beam. Finally, the coefficients f1,2 correspond to two
counterpropagating waves in the beam,

Hy = exp {iqx}

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a1 exp {−ikzz}, z < 0,

c1 exp {ikzz} + c2 exp {−ikzz}, 0 < z < l,

d1 exp {ikz(z − l)}
+d2 exp {−ikz(z − l)}, l < z < h,

f1 exp {ikbzz} + f2 exp {−ikbzz}, h < z < h + δ

a2 exp {ikzz}, z > h + δ.

Assuming the determinant of this linear system to be zero,
we arrive at Eq. (14).
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