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Reflection and transmission in nonlocal susceptibility models with multiple resonances
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We consider a semi-infinite dielectric with multiple spatially dispersive resonances in the susceptibility. The
effect of the boundary is described by an arbitrary reflection coefficient for polarization waves in the material at
the surface, with specific values corresponding to various additional boundary conditions (ABCs) for Maxwell’s
equations. We derive exact expressions for the electromagnetic reflection and transmission coefficients and
present the results for a variety of materials with multiple exciton bands. We find an improved single-band
approximation for heavy/light exciton bands and extend our model to exciton dispersion relations with linear k

terms which occur in uniaxial crystals. Finally, we calculate the spectral energy density of thermal and zero-point
radiation for a variety of multiresonance models and ABCs.
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I. INTRODUCTION

The susceptibility describing the material response to an
applied electromagnetic field contains both temporal and
spatial dispersion [1,2]. As a result of the latter, the induced
polarization at any point in the medium depends on the
applied field in the region surrounding that point. This
behavior can be due to a range of excitations within the
material, such as phonons or excitons, each with their own
associated resonance in the susceptibility. While this nonlocal
response is often negligible in comparison to the frequency
dependence, there are cases where it can play a significant role,
such as metallic nanostructures [3–7], radiative heat transfer
[8,9], spontaneous emission [10–14], spectral energy density
[15], and Casimir self-forces [10]. Spatial dispersion is also
important in semiconductors, where the complex electronic
band structure can lead to many excitations [16], each with
their own nonlocal response. In this paper, we continue our
previous work on nonlocal response [15] by extending results
on reflection and transmission at planar boundaries to the
case where the medium has multiple spatially dispersive
resonances.

The susceptibility is typically expressed as a sum of
resonances. Nonlocal response is included as a k dependence
in the model parameters, but is usually limited to a k-dependent
resonant frequency. Hopfield and Thomas [17] proposed the
following model, based on the properties of semiconductors,
but it can also be derived from a simple classical model [18]:

χ (k,ω) = χ0 +
M∑

m=1

ω2
pm

ω2
T m(k) − ω2 − iγmω

, (1)

where ωT (k) is the resonant frequency, γ quantifies the
absorption, and ωp is the oscillator strength. The term χ0

collects contributions from other resonances and acts as a
background susceptibility. For the sake of simplicity, the
parabolic dispersion

h̄ωT (k) = h̄ωT + h̄2k2

2mex
, ω2

T (k) ≈ ω2
T + Dk2 (2)
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was used [17] to describe the exciton bands in the medium,
where mex is the exciton mass and D = h̄ωT /mex.

The difficulties involved in the calculation of electromag-
netic reflection and transmission coefficients for nonlocal
media are well known. While there is only one transmitted
wave for a local medium, the nonlocal medium has several
transmitted waves due to the k dependence in (1) [2]. The
Maxwell boundary conditions are no longer sufficient to solve
for the unknown amplitudes of the multiple transmitted waves.
Historically, this need for extra information was resolved with
the introduction of additional boundary conditions (ABCs)
on the polarization P associated with the resonances in (1).
Various authors [19–42] have proposed different ABCs under
certain assumptions that suit different types of materials. The
Pekar ABC, where P vanishes at the boundary, is the simplest
and most commonly used.

The majority of work on the subject has focused on
susceptibilities with a single, isolated resonance. In this case,
Halevi and Fuchs [43] have derived reflection coefficients
for a generalized ABC model, containing all the previously
suggested ABCs. In a previous paper [15], we have adapted
this model to the tensor case with different transverse and
longitudinal susceptibilities.

In general, the susceptibility of real materials is far more
complex than simple isolated resonances [16]. In exciton
bands, for example, there can be multiple closely spaced bands,
degenerate bands [16,44,45], and more complex k dependence
[46–48]. While some authors [49–56] have considered mul-
tiresonance systems, they are typically limited to a maximum
of two resonances and a specific ABC.

The first aim of this paper is to extend the Halevi and Fuchs
[43] generalized ABC model to a multiresonance susceptibility
and derive expressions for the reflection and transmission
coefficients. This derivation is first applied to a system with
simple parabolic exciton bands and then to bands that are
degenerate at k = 0, where we find improved parameters for
the single-band approximation.

The second aim is to modify the derivation further to
include alternate wave-vector dependences, specifically the
case where the dispersion in (2) contains a ±k term. This
behavior is known as linear splitting and is typically found
in uniaxial crystals such as wurtzite. This case has been
previously calculated [54–56], but only for a specific ABC
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and orientation of the crystal axis. We will show that linear
k splitting can easily be incorporated into the multiresonance
model and that the orientation of the crystal axis has significant
effects on the result.

Finally, we will use the derived electromagnetic reflection
coefficients to calculate the spectral energy density of ther-
mal and zero-point radiation outside the spatially dispersive
medium. The results for various multiresonance systems are
calculated and compared to those in our previous paper on the
isolated resonance [15].

The assumptions made in the following derivation are
discussed in greater detail in our previous paper [15]. In
summary, we consider a smooth boundary that does not contain
any features such as slits or other nontrivial structures and is
sufficiently far from any other boundaries such that multiple
reflections can be ignored. In addition, we do not include any
quantum mechanical effects that are not directly encoded in
the macroscopic susceptibility

The paper is organized as follows. In Sec. II, we present
the spatially dispersive susceptibility model for a half-infinite
dielectric with a multiresonance permittivity and derive the
field equations. In Secs. III and IV, we derive the general
expressions for the reflection and transmission coefficients for
p and s polarized light, and present the results for parabolic
exciton bands in Sec. V. In Sec. VI, we extend our derivation
to a uniaxial crystal by including a linear splitting term, and,
in Sec. VII, we calculate the zero-point and thermal spectral
energy density.

II. THEORY

A. Infinite medium

We first consider an infinite, homogeneous, spatially dis-
persive dielectric with the susceptibility (1). The electric field
E and polarization field P satisfy the wave equation:

∇ × ∇ × E(r,ω) − ω2

c2
E(r,ω) = ω2

c2
P(r,ω), (3)

where the polarization field is given by

Pi(r,ω) =
∫

d3r ′χ (r − r ′,ω)Ei(r ′,ω). (4)

In general, the spatially dispersive susceptibility χ is a
tensor [1], but here we consider a scalar. Using the Fourier
transformation

Pi(r,ω) = 1

(2π )3

∫
d3kPi(k,ω)eik·r , (5)

we have

Pi(k,ω) =
∑

j

χ (k,ω)Ei(k,ω). (6)

The wave equation (3) has solutions for E when the frequency
and wave vector satisfy the dispersion relation [2]

(ω/c)2[1 + χ (k,ω)] = k2, (7)

for transverse waves with E · k = 0, or

1 + χ (k,ω) = 0, (8)

DielectricVacuum k1 k2
k3

k0

kr

z

x

z=0

θi

kN

…

FIG. 1. Schematic of the model. The z < 0 vacuum half space
contains the incident (k0) and reflected (kr ) wave. The angle of
incidence is θi . The z > 0 spatially dispersive dielectric half space
contains M + 1 transverse (k1, k2, . . . ,kM+1) and M longitudinal
(kM+2, . . . ,kN ) transmitted waves. The coordinate system is chosen
such that the xz plane coincides with the plane of incidence and
ky = 0.

for longitudinal waves with E × k = 0. With the field
dependence exp(ikzz), we restrict ourselves to Im[kz] > 0,
leading to M + 1 transverse and M longitudinal waves for
the susceptibility in (1) and the parabolic dispersion in (2).

B. Half-infinite medium

We now consider the half-infinite dielectric occupying the
z > 0 region, as shown in Fig. 1. The vacuum contains the
incident wave (E0) and reflected wave (Er ) with wave vectors
k0 and kr (k0 = kr = ω/c). Inside the dielectric, there are
N = 2M + 1 transmitted waves (En) with the corresponding
wave vectors kn. The coordinate system has been chosen such
that the xz plane coincides with the plane of incidence, with
knx = K , kny = 0, and knz = qn.

The bulk susceptibility (1) in this coordinate system can be
rewritten as

χ (K,0,q) = χ0 +
M∑

m=1

χm(K,0,q), (9)

where

χm(K,0,q) = ω2
pm/Dm

q2 − �2
m(K)

(10)

and

�2
m(K) = ω2 − ω2

T m + iγmω

Dm

− K2. (11)

With the presence of the boundary at z = 0, the polarization
field now depends on a position-dependent susceptibility χ ′

i

(i ∈ {x,y,z}) [43]. After a Fourier transformation in the xy

plane,

Pi(K,0,z) =
∫ ∞

0
dz′χ̃ ′

i (K,0,z,z′)Ei(K,0,z′). (12)

We subsequently omit K dependence for notational simplicity.
We assume that each resonance in the half-infinite medium can
be expressed in terms of the bulk susceptibility in the same

205406-2



REFLECTION AND TRANSMISSION IN NONLOCAL . . . PHYSICAL REVIEW B 95, 205406 (2017)

TABLE I. List of ABCs.

Ux Uy Uz

Agarwal et al. [19–28] 0 0 0
Ting et al. [29] 1 1 1
Fuchs-Kliewer [29–33] 1 1 −1
Rimbey-Mahan [34–38] −1 −1 1
Pekar [39–42] −1 −1 −1

manner as Halevi and Fuchs [43]:

χ̃ ′
mi(z,z

′) =
{
χ̃m(z − z′) + Umiχ̃m(z + z′) if z,z′ > 0

0 otherwise,
(13)

and the overall susceptibility is given by

χ̃ ′
i (z,z

′) =
{

χ0δ(z − z′) + ∑M
m χ̃ ′

mi(z,z
′) if z,z′ > 0

0 otherwise.
(14)

The first term in (13) is the position-independent nonlocal
bulk response. The second describes a polarization wave
propagating from z′ to the surface before reflecting and
continuing to z. The reflection amplitude coefficient Ui is
(in general) complex and frequency dependent, with |Ui | = 1
implying elastic reflection. Halevi and Fuchs [43] demon-
strated that specific values of Ui correspond to certain ABCs,
shown in Table I. Each ABC was developed for a particular
type of medium or excitation. For example, Pekar [39–42]
and Rimbey-Mahan [34–38] were developed for Frenkel
(tight-binding) excitons, Ting et al. [29] for Wannier-Mott
(weak-binding) excitons, Fuchs-Kleiwer [29–33] for metals,
and Agarwal et al. [19–28] for the general case where surface
effects can be ignored.

Substituting (14) into (12) gives

Pi(z) = χ0Ei(z) + 1

2π

∫ ∞

−∞
dq

∫ ∞

0
dz′

M∑
m=1

[eiq(z−z′)

+Umie
iq(z+z′)]χm(q)Ei(z

′), z > 0. (15)

At this point, we introduce an ansatz for the E field inside the
medium [43]—a linear combination of N = 2M + 1 plane
waves from (7) and (8),

Ei(z) =
N∑

n=1

E
(n)
i eiqnz, (16)

where n = 1 to M + 1 are transverse waves and n = M + 2
to N are longitudinal waves.

After substitution of the ansatz (16) into (15) and evaluating
the z′ integral, we find

Pi(z) = χ0Ei(z) + i

2π

∫ ∞

−∞
dqeiqz

M∑
m=1

N∑
n=1

×
[

1

qn − q
+ Umi

qn + q

]
χm(q)E(n)

i , z > 0. (17)

The q integral is evaluated by performing a contour integration
in the upper half plane. This encloses the poles at q = qn and

�m, giving

Pi(z) =
N∑

n=1

χ (qn)E(n)
i eiqnz

− ω2
p1

2D1�1

N∑
n=1

(
1

qn − �1
+ U1i

qn + �1

)
E

(n)
i ei�1z

− ω2
p2

2D2�2

N∑
n=1

(
1

qn − �2
+ U2i

qn + �2

)
E

(n)
i ei�2z − · · ·

− ω2
pM

2DM�M

N∑
n=1

(
1

qn − �M

+ UMi

qn + �M

)
E

(n)
i ei�Mz.

(18)

For the wave equation (3) to be valid for all values of z,
we require each of the right-hand-side sums proportional to
exp(i�mz) in (18) to equal zero,

N∑
n=1

φ
(n)
mi E

(n)
i = 0, m = 1, . . . ,M, (19)

where

φ
(n)
mi =

(
1

qn − �m

+ Umi

qn + �m

)
. (20)

This leads to a set of M equations of the form (19) for each of
the Ei components.

III. p POLARIZATION

The field can be decomposed to components with E
perpendicular to (s-polarized) or in the plane of (p-polarized)
incidence. For p-polarized light, Ey = 0, Ex �= 0, and Ez �= 0.
Both the transverse and longitudinal waves appear in the
medium.

A. Surface impedance

The reflection coefficient is calculated using the surface
impedance, which for p-polarized light is given by

Zp = Ex(0+)

Hy(0+)
. (21)

(Here, H = μ0 B.) The magnetic field By can be expressed in
terms of the electric field using k0 B = k × E and (16),

B(n)
y (z) = 1

k0

[
qnE

(n)
x − KE(n)

z

]
eiqnz

=
[
qn − Kη(n)

k0

]
E(n)

x eiqnz

= τ (n)E(n)
x eiqnz, (22)

where we have substituted Ex for Ez using

E(n)
z = η(n)E(n)

x , (23)
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where η(n) = −K/qn for transverse waves and η(n) = qn/K

for longitudinal waves. This leads to

τ (n) =
{

q2
n+K2

qnk0
transverse waves,

0 longitudinal waves.
(24)

The surface impedance can now be expressed solely in terms
of Ex field amplitude ratios,

Zp = 1

μ0

∑N
n=1 E(n)

x∑N
n=1 τ (n)E

(n)
x

= 1

μ0

1 + ∑N
n=2

E
(n)
x

E
(1)
x

τ (1) + ∑N
n=2 τ (n) E

(n)
x

E
(1)
x

. (25)

B. Field amplitude ratios

To proceed any further, we require the Ex field amplitude
ratios in (25). By using (23), we can rewrite the Ez equations
in (19) in terms of Ex ,

N∑
n=1

[
φ(n)

mx

]
E(n)

x = 0,

N∑
n=1

[
η(n)φ(n)

mz

]
E(n)

x = 0. (26)

We now have 2M equations relating the 2M + 1 waves inside
the medium and have sufficient information to solve for the
reflection coefficient. After dividing by E(1)

x and rearranging,
we can express (26) in matrix form. As an example, we present
the result for a two-resonance system:⎛

⎜⎜⎜⎜⎝
φ

(2)
1x φ

(3)
1x φ

(4)
1x φ

(5)
1x

φ
(2)
2x φ

(3)
2x φ

(4)
2x φ

(5)
2x

η(2)φ
(2)
1z η(3)φ

(3)
1z η(4)φ

(4)
1z η(5)φ

(5)
1z

η(2)φ
(2)
2z η(3)φ

(3)
2z η(4)φ

(4)
2z η(5)φ

(5)
2z

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

E(2)
x /E(1)

x

E(3)
x /E(1)

x

E(4)
x /E(1)

x

E(5)
x /E(1)

x

⎞
⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎝

φ
(1)
1x

φ
(1)
2x

η(1)φ
(1)
1z

η(1)φ
(1)
2z

⎞
⎟⎟⎟⎟⎠, (27)

where n = 1,2,3 are transverse waves and n = 4,5 are
longitudinal waves. By inverting the 2M × 2M matrix, we
can find the field amplitude ratios.

C. Reflection and transmission coefficients

The p-polarization reflection coefficient can be expressed
in terms of surface impedance [30],

rp = Er

E0
= Z(0)

p − Zp

Z
(0)
p + Zp

, (28)

where Zp is given by (25) and Z(0)
p =

√
k2

0 − K2/μ0k0 is the
vacuum surface impedance.

We can find the transmission coefficients for the N

transmitted waves by imposing the continuity of the tangential
E field across the boundary. Our choice of coordinate system

means we simply equate the Ex components on each side,

[E0 − Er ] cos θi =
[

N∑
n=1

E(n)
x

]
. (29)

This can be expressed in terms of the previously calculated
field amplitude ratios using (28) and cos θi =

√
k2

0 − K2/k0:√
k2

0 − K2

k0
[1 − rp]E0 =

[
1 +

N∑
n=2

E(n)
x

E
(1)
x

]
E(1)

x . (30)

By rewriting

E(n) =
√[

E
(n)
x

]2 + [
E

(n)
z

]2 =
√

1 + η(n)2E(n)
x , (31)

we can derive the transmission coefficient,

t (n)
p = E(n)

E0
, (32)

for transverse waves,

t (n)
p =

√
q2

n + K2

qn

E(n)
x

E
(1)
x

√
k2

0 − K2

k0

[1 − rp][
1 + ∑N

n=2
E

(n)
x

E
(1)
x

] , (33)

and longitudinal waves,

t (n)
p =

√
q2

n + K2

K

E(n)
x

E
(1)
x

√
k2

0 − K2

k0

[1 − rp][
1 + ∑N

n=2
E

(n)
x

E
(1)
x

] . (34)

We now have a single method for rp and tp in the presence
of multiple resonances that can cover a wide frequency
range. This derivation could be extended further to a tensor
susceptibility using the method described in our previous paper
[15]. In this case, the polarization reflection coefficients are a
tensor Uij with certain restrictions on the components.

IV. s POLARIZATION

We now consider the simpler case of s-polarized light,
where Ey �= 0, Ex = 0, and Ez = 0. As kn all lie in the xz

plane, this leads to the absence of longitudinal waves in the
medium, leaving the M + 1 transverse waves.

A. Surface impedance

The surface impedance for s-polarized light is given by

Zs = −Ey(0+)

Hx(0+)
. (35)

As in (25), we express Hx in terms of Ey and field amplitude
ratios,

Zs = 1

μ0

k0
∑M+1

n=1 E(n)
y∑M+1

n=1 qnE
(n)
y

= 1

μ0
k0

1 + ∑M+1
n=2

E
(n)
y

E
(1)
y

q1 + ∑M+1
n=2 qn

E
(n)
y

E
(1)
y

. (36)

As we only have the M + 1 transverse waves in the s polar-
ization, the set of M equations from (19) can be rewritten as

M+1∑
n=2

[
φ(n)

my

]E(n)
y

E
(1)
y

= −φ(1)
my, (37)

which is sufficient to solve for the amplitude ratios.
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B. Reflection and transmission coefficients

Using the vacuum surface impedance Z(0)
s =

k0/μ0

√
k2

0 − K2 and (36), we can construct the s-polarization
reflection coefficient,

rs = Er

E0
= Z(0)

s − Zs

Z
(0)
s + Zs

. (38)

As in the previous section, we impose the continuity of the
tangential E field across the boundary. As we only have Ey

components, this leads to

E0 − Er =
M+1∑
n=1

E(n)
y . (39)

Using (38), this can be expressed in terms of the field amplitude
ratios previously found from (37),

E0(1 − rs) = E(1)
y

(
1 +

M+1∑
n=2

E(n)
y

E
(1)
y

)
, (40)

which leads to

t (n)
s = E(n)

E0
= E(n)

y

E
(1)
y

1 − rs

1 + ∑M+1
n=2

E
(n)
y

E
(1)
y

. (41)

V. REFLECTION COEFFICIENT RESULTS

We now use the derivations in the previous sections for a
number of materials with a variety of exciton band structures.
In Fig. 2, we show some example exciton bands and the
corresponding dispersion relations for transverse E waves in
the absence of damping.

In this section, we first consider the simple case of ZnO [50]
with three noninteracting exciton bands and GaAs [52] with
two bands that are degenerate at k = 0. The model parameters
are given in Table II. The values of ωp are calculated from
the measured values of ωL, which are the solutions of the

FIG. 2. Exciton band behavior (black dashed line) compared to
the light line (black dotted line) and dispersion relations for transverse
E waves in an infinite medium (solid red line) when γ is set to zero.
Examples include multiple parabolic bands (left), heavy/light exciton
bands with the same ωT but different k2 terms (middle), and bands
with the same ωT and k2 terms, but a ±k linear splitting term (right).
The exciton bands in last two are degenerate at k = 0.

TABLE II. List of model parameters.

ZnO [50] GaAs [52]

m 1 2 3 1 2

χ0 5.2 5.2 5.2 11.6 11.6
h̄ωT (eV) 3.3758 3.3810 3.4198 1.514 1.514
h̄ωL (eV) 3.3776 3.3912 3.4317 1.515 1.515
h̄γ (meV) 0.7 0.7 0.7 0.05 0.05
mex (mex) 0.87 0.87 0.87 0.183 0.805

h̄ωp (eV) 0.5334 0.6055 0.5983 0.138 0.138
D (1011 m2 s−2) 6.82 6.84 6.91 14.55 3.31

dispersion relation for transverse E waves at k = 0 in the
absence of damping. Similarly, D is found from the measured
exciton mass mex, which is given in units of the rest electron
mass me0.

A. Simple resonances

We first consider a three-resonance model for ZnO [50],
involving the A, B, and C excitons which we label m = 1, 2,
and 3, respectively. The exciton bands are of the form in (2)
and do not interact.

Figure 3 shows rp(ω) and rs(ω) for a fixed incident angle.
The peak locations are determined by the ωT and ωL values,
indicated by solid and dashed vertical lines, respectively. The
rp behavior is mostly determined by Ux , with Ux = 1 giving
the largest maxima and smallest minima. In contrast, Uz only
affects the results at the reflection minima. The frequency
region around ωT 3 can be accurately described using the
single-resonance model. This is because the overlap with the
other resonances in the susceptibility is very small. The same
is not true of the m = 1 and 2 resonances. Here the proximity

eV

FIG. 3. Reflection coefficients rp and rs as a function of ω for
the ZnO three-exciton model at an incident angle of 60◦. Vertical
lines indicate ωT m (solid line) and ωLm (dashed line) values. Includes
Agarwal et al. (red), Ting et al. (brown), Fuchs-Kliewer (green),
Rimbey-Mahan (blue), and Pekar (purple) ABCs.
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eV

FIG. 4. Reflection coefficient rp as a function of ω for the GaAs
heavy/light exciton model at an incident angle of 60◦. Vertical lines
indicate ωT (solid line) and ωL (dashed line) values. Plot styles follow
the conventions in Fig. 3.

of ωT 1 and ωT 2 leads to the one-resonance model’s failing,
particularly in the intermediate-frequency region. The effect
of Ui remains the same as the isolated resonance. However,
if there is significant overlap in the resonant peaks (e.g., if
the ωT values are separated by less that the full width at half
maximum), then Ux = 1 gives not only the largest peaks, but
also the largest value in the intermediate-frequency region.

B. Heavy and light excitons

We now move on to consider an exciton band structure
with degeneracy at k = 0. Kane [44] showed that interactions
in a medium could lead to the splitting of degenerate exciton
bands. In the case of isotropic valence bands, this can lead to
a “heavy” and “light” exciton band with parabolic dispersion
relations

ω2
T h(k) = ω2

T + h̄ωT

mh
k2 = ω2

T + Dhk
2, (42)

ω2
T l(k) = ω2

T + h̄ωT

ml
k2 = ω2

T + Dlk
2 (43)

substituted into the susceptibility.
We consider a two-resonance model for GaAs [52] con-

taining only the heavy and light exciton bands, using the
parameters in Table II. We have slightly simplified the model
by assuming isotropic valence bands and using the 〈100〉
exciton masses for all directions. The results for rp are shown in
Fig. 4 and display the same basic features as a single-resonance
model. The same behavior is seen in the rs result, which we
do not plot.

Previous work [52] has suggested that the two-resonance
system of heavy and light exciton bands can be approximated
by a single band with an effective Deff term in the susceptibility,
given by

Deff = Dh + Dl

2
, (44)

and multiplying ω2
p by a factor of 2. However, simply taking

the average of the nonlocal parameter D as in (44) does not lead

eV

FIG. 5. Detail of rp using the Agarwal et al. ABC for the GaAs
heavy/light exciton model (solid line) compared to effective one-
exciton results. We find that D∗ (dashed line) from (46) gives a better
fit to the resonant peak than the previously suggested Deff (dotted
line) from (44).

to the best approximation. Figure 5 compares the heavy/light
exciton model to the effective single-band result and shows
that it underestimates the peak of the heavy/light system. This
is true even when Dh and Dl are close. Instead, if we reexpress
the nonlocal term as

D∗k2 = (σk)2, (45)

we find that a better fit is given by taking the average value of
the coefficient σ , which leads to

√
D∗ =

√
Dh + √

Dl

2
. (46)

This new value provides an excellent fit when Dl and Dh

have similar values. For larger differences between Dl and Dh

(such as this model, where Dl ≈ 4Dh), both single-resonance
approximations begin to fail as the two-resonance model has
a larger peak just above ωT . This difference is greatest for
Ux = −1 and smallest for Ux = 1. Despite this, we find that
(46) gives a better fit to rp and rs than (44) for all values of
Dl/h and Ui .

VI. LINEAR k TERMS

So far we have only considered materials with isotropic,
parabolic energy bands of the form (2). However, the symmetry
of the crystal structure can lead to the introduction of additional
k terms. For example, in 1964, Mahan and Hopfield [54] used
a linear k term to explain a shoulder in the reflection spectra of
CdS, a uniaxial medium with wurtzite crystal symmetry. This
behavior was only observed when E was perpendicular to the
crystal axis c, with the exciton dispersion relation

h̄ω±(k) = h̄ωT + h̄2k2
⊥

2mex⊥
+ h̄2k2

‖
2mex‖

± ζk⊥, (47)

where mex is the exciton mass, and k‖ and k⊥ are wave-vector
components parallel and perpendicular to c, respectively. In
the susceptibility, (47) is approximated to [54],

ω2
±(k) = ω2

T + D⊥k2
⊥ + D‖k2

‖ ± ξk⊥, (48)
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TABLE III. List of χliny expressions for c orientations.

χliny

c ‖ x̂
2ω2

p(ω2
T + D⊥q2 + D‖K2 − ω2 − iγ ω)

(ω2
T + D⊥q2 + D‖K2 − ω2 − iγ ω)2 − ξ 2q2

c ‖ ŷ
2ω2

p

[ω2
T + D⊥(K2 + q2)] − ω2 − iγ ω

c ‖ ẑ
2ω2

p(ω2
T + D⊥K2 + D‖q2 − ω2 − iγ ω)

(ω2
T + D⊥K2 + D‖q2 − ω2 − iγ ω)2 − ξ 2K2

where D⊥/‖ = h̄ωT /mex⊥/‖ and ξ = 2ωT ζ/h̄. This leads to
two resonances,

χ+(k) + χ−(k)

= ω2
p(

ω2
T + D⊥k2

⊥ + D‖k2
‖ + ξk

) − ω2 − iγ ω

+ ω2
p(

ω2
T + D⊥k2

⊥ + D‖k2
‖ − ξk

) − ω2 − iγ ω
, (49)

which can be collected to a single fraction χ⊥
lin, giving

χ⊥
lin(k) = 2ω2

p

(
ω2

T + D⊥k2
⊥ + D‖k2

‖ − ω2 − iγ ω
)

(
ω2

T + D⊥k2
⊥ + D‖k2

‖ − ω2 − iγ ω
)2 − ξ 2k2

⊥
(50)

for E ⊥ c. When E ‖ c, the exciton bands were found to be
degenerate with ζ = 0, leading to the resonance

χ
‖
lin(k) = 2ω2

p(
ω2

T + D⊥k2
⊥ + D‖k2

‖
) − ω2 − iγ ω

. (51)

The bulk susceptibility of the uniaxial crystal is no longer a
scalar and takes a vector form when c is aligned with one of
the coordinate axes, such as

χlin(k) =

⎛
⎜⎝

χ⊥
lin(k)

χ⊥
lin(k)

χ
‖
lin(k)

⎞
⎟⎠ (52)

for c ‖ ẑ. In Tables III and IV, we present the χlini components
relevant for s- and p-polarized light when c is aligned with
each of the coordinate axes as defined in Fig. 1.

Previous work [54–56] has only considered such a model
for c ‖ ŷ (perpendicular to the incident plane) using the
Pekar ABC. We will now modify the derivation of the

previous section to include resonances of the form (52) in
a multiresonance system with arbitrary U values when c is
aligned with each of the coordinate axes.

A. Field amplitude ratios

Due to the fact that the bulk components in (52) are no
longer equal, the dispersion relations take the form

k2
0[1 + χliny(q)] − (K2 + q2) = 0 (53)

for s-polarized light, and

k2
0[1 + χlinx(q)][1 + χlinz(q)] − K2[1 + χlinx(q)]

− q2[1 + χlinz(q)] = 0 (54)

for p-polarized light, where we have omitted K dependence
for notational simplicity. Unlike the previous section, the
results of (53) are not also solutions of (54). We substitute
the susceptibility (50) and (51) and the ansatz (16) into (15),
using the N values of qn that satisfy (53) and (54). If the field
is aligned with c, there is no linear splitting and the derivation
in the previous section is sufficient to find the amplitude
ratios. If linear splitting is present, then χlini has two poles
with Im[q] > 0, which we label �

(+)
i and �

(−)
i . Evaluating the

contour integral in (17) gives

Pi(z) =
N∑

n=1

χlini(qn)E(n)
i eiqnz

−F
(+)
i

N∑
n=1

(
1

qn − �
(+)
i

+ Ulini

qn + �
(+)
i

)
E

(n)
i ei�

(+)
i z

−F
(−)
i

N∑
n=1

(
1

qn − �
(−)
i

+ Ulini

qn + �
(−)
i

)
E

(n)
i ei�

(−)
i z,

(55)

where F
(±)
i is a simple prefactor and we have used a single

value of Ulini for both resonances. The additional terms not
proportional to exp(iqnz) lead to the same set of equations as
(19), but with different values of �m:

N∑
n=1

(
1

qn − �
(+)
i

+ Ulini

qn + �
(+)
i

)
E

(n)
i = 0,

(56)
N∑

n=1

(
1

qn − �
(−)
i

+ Ulini

qn + �
(−)
i

)
E

(n)
i = 0.

TABLE IV. List of χlinx and χlinz expressions for c orientations.

χlinx χlinz

c ‖ x̂
2ω2

p

(ω2
T + D⊥q2 + D‖K2) − ω2 − iγ ω

2ω2
p(ω2

T + D⊥q2 + D‖K2 − ω2 − iγ ω)

(ω2
T + D⊥q2 + D‖K2 − ω2 − iγ ω)2 − ξ 2q2

c ‖ ŷ
2ω2

p[ω2
T + D⊥(K2 + q2) − ω2 − iγ ω]

[ω2
T + D⊥(K2 + q2) − ω2 − iγ ω]2 − ξ 2(K2 + q2)

2ω2
p[ω2

T + D⊥(K2 + q2) − ω2 − iγ ω]

[ω2
T + D⊥(K2 + q2) − ω2 − iγ ω]2 − ξ 2(K2 + q2)

c ‖ ẑ
2ω2

p(ω2
T + D⊥K2 + D‖q2 − ω2 − iγ ω)

(ω2
T + D⊥K2 + D‖q2 − ω2 − iγ ω)2 − ξ 2K2

2ω2
p

(ω2
T + D⊥K2 + D‖q2) − ω2 − iγ ω
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TABLE V. List of model parameters.

CdS [16]

χ0 6.5
h̄ωT (eV) 2.5674
h̄ωL (eV) 2.5688
h̄γ (meV) 0.075
mex (mex) 1.3 (⊥ c), 1.02 (‖ c)
ζ (eV m) 5.6 × 10−12

h̄ωp (eV) 0.164
D (1011 m2 s−2) 3.47 (⊥ c), 4.43 (‖ c)
ξ (m s−2) 6.637 × 1019

In summary, the inclusion of linear k terms to the exciton
dispersion relation does not significantly affect the derivation
of field amplitude ratios presented in the previous section. The
only changes required are to use the appropriate � values in
the field amplitude ratio matrix and the q values that satisfy
the dispersion relation.

B. c ‖ ŷ orientation

The simplest case is to align the crystal axis c with ŷ. This
particular orientation has been looked at previously for the
Pekar ABC. As there is no linear splitting in χliny for this
orientation, the derivation in the previous section is sufficient
to calculate rs and t (n)

s in the s polarization. The χliny term leads
to two transverse waves from (53), if it is the only resonance.

In comparison, χlinx and χlinz are equal and contain linear
splitting. Equation (54) for the p polarization can be simplified
to

[1 + χlinx(q)]
{
k2

0[1 + χlinx(q)] − (K2 + q2)
} = 0. (57)

Solutions of the first bracket give two longitudinal waves and
the second give three transverse waves, for a total of five if χlin

is the only resonance. The transverse waves are no longer the
same as those in the s polarization.

As χlinx and χlinz contain linear splitting, the integral in (17)
leads to two equations of the form (56) for both Ex and Ez. The
Ez equations can be converted to Ex using (23) with η(n) =
−K/qn for transverse waves and η(n) = qn/K for longitudinal
waves, as in the previous section. This gives a total of four Ex

equations, the same as the number of transmitted waves added
by the resonance, which is sufficient to solve for the reflection
coefficient.

C. c ‖ x̂ or c ‖ ẑ orientation

The two other orientations present additional challenges.
As splitting is present in χliny , the s polarization now has three
transverse waves, and two equations of the form (56) for Ey .
There is sufficient information to solve for rs and t (n)

s .
The fact that the expressions for χlinx and χlinz in

Table IV are different means (54) cannot be simplified and
the waves are no longer purely transverse or longitudinal. The
χlin resonances give a total of four waves in the absence of
other resonances. The contour integration in (17) leads to a
total of three equations of the form (56)—one from the unsplit
χlini and two from the split χlini . Again, we have sufficient
information to solve for the field amplitude ratios.

As the waves are no longer purely transverse or longitudi-
nal, care must be taken when converting Ez to Ex . From the
wave equation, we find

η(n) = − 1

Kqn

{
k2

0[1 + χlinx(qn)] − q2
n

}
. (58)

Similarly, the relation between By and Ex used in (25) is
modified from (24) to

τ (n) =
[
qn − Kη(n)

k0

]
= k0

qn

[1 + χlinx(qn)]. (59)

These expressions and the calculated field amplitude ratios are
substituted into (25) and (36) to find the surface impedances
and the subsequent reflection coefficients.

eV eV eV

FIG. 6. Reflection coefficients rp and rs as a function of ω at an incident angle of 60◦ with the crystal axis c aligned with x̂ (left), ŷ (middle),
and ẑ (right). Vertical lines indicate ωT (solid line) and ωL (dashed line) values. Plot styles follow the conventions in Fig. 3.
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D. Results

As an example, we present the results for CdS [16] using
the model parameters in Table V, where ξ in (47) has been cal-
culated from the measured ζ in (48). Figure 6 shows rp(ω) and
rs(ω) at an incident angle of 60◦ for c aligned with x̂, ŷ, and ẑ.

As expected, the c ‖ ŷ result for rp is significantly different
from the others due to linear splitting in both the χlinx and
χlinz components used for p-polarized light. This leads to an
additional peak in rp below ωT . While the behavior of the new
peak is still mostly determined by the value of Ux , the order
in which the ABCs appear is different to that of the previous
section where Ux = 1 is the largest and Ux = −1 is the small-
est. The rs result for c ‖ ŷ is identical to that of the previous
section as there is no splitting in χliny for this orientation.

The c ‖ x̂ and c ‖ ẑ cases have splitting in only one
component of χlini for p-polarized light, resulting in an rp

that is closer to the ξ = 0 result but also displays new features
just below ωT at a smaller scale. The c ‖ ẑ results for rp

and rs are the closest to the ξ = 0 case as the linear term in
Table IV only contains K . As θi (and K) is decreased, the
peak at ωT becomes smaller, returning to the ξ = 0 result for
normal incidence. As in the previous section, the new peak
is unaffected by Uz and is larger for Ux = 1. In contrast, the
c ‖ x̂ case has q in the linear splitting term. The differences in
the rp result are similar in magnitude to the c ‖ ẑ case, but the
new peak at ωT is more pronounced for Ux = −1 and is now
affected by the value of Uz. The effect of the splitting in q is
even more pronounced in rs , which displays features similar
to rp in the c ‖ ŷ case. This is because the linear splitting in q

is present in every χlini term used in their derivation.
In all cases, the difference between m⊥ and m‖ has very

little effect compared to the choice of ABC. This agrees with
our previous work on the tensor susceptibility [15].

VII. SPECTRAL ENERGY DENSITY

We now focus on the electromagnetic zero point and
thermal radiation at a perpendicular distance |z| from the
boundary of the nonlocal medium. In our previous paper on
the one-resonance system [15], we found that the inclusion of
spatial dispersion removed the unphysical 1/|z|3 divergence
present in the spectral energy density of the local model
[57,58]. We now investigate how the behavior of the materials
considered in the previous sections changes due to the presence
of multiple resonances.

The average energy density of the electromagnetic zero
point and thermal radiation in the vacuum outside a medium
is given by [59]

〈U 〉 = ε0

2
〈|E(r,t)|2〉 + μ0

2
〈|B(r,t)|2〉

=
∫ ∞

0
dω utot(z,ω), (60)

where utot(z,ω) is the spectral energy density. Assuming
that the nonlocal medium is in thermal equilibrium with its
surroundings and the system is rotationally invariant around
the z axis, this can be written in terms of the previously

calculated reflection coefficients,

utot(z,ω) = u0

k0

∫ k0

0

KdK√
k2

0 − K2

×
{

1 + K2Re[(rs + rp)e2i
√

K2−k2
0 |z|]

2k2
0

}

+ u0

2k3
0

∫ ∞

k0

K3dK√
K2 − k2

0

Im[rs + rp]e−2
√

K2−k2
0 |z|.

(61)

The first integral in (61) is the contribution of propagating
waves, while the second comes from evanescent waves. The
term u0 is the spectral energy density in the absence of the
material, given by

u0 = �(ω,T )ω2

π2c3
, (62)

FIG. 7. Comparison of Im[rp] as a function of K for evanescent
waves in ZnO at h̄ω = 3.44 eV (top), GaAs at h̄ω = 1.517 eV
(middle), and CdS ( ẑ ‖ c) at h̄ω = 2.573 eV (bottom). Plot styles
follow the conventions in Fig. 3.
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FIG. 8. Behavior of utot as a function of distance |z| from
the boundary of ZnO at h̄ω = 3.44 eV compared to the 1/z3

divergent result of the local model (black line). Plot styles follow
the conventions in Fig. 3.

where the mean energy of a harmonic oscillator in thermal
equilibrium is

�(ω,T ) = h̄ω

(
1

2
+ 1

eh̄ω/kBT − 1

)
. (63)

The first term of (63) gives rise to the electromagnetic zero-
point energy.

In the K → ∞ limit for the local medium, rs → 0 and
rp → χ (ω)/[2 + χ (ω)], leading to the divergent result for the
second integral [59],

1

4|z|3
Im[χ (ω)]

|2 + χ (ω)|2 . (64)

In our previous paper, we showed that the inclusion of spatial
dispersion leads to peaks in Im[rp] near the point where the
Re[�2] changed sign from positive to negative, followed by a
1/K4 decay in the large-K limit. In Fig. 7, we find the same
behavior for ZnO, GaAs, and CdS (ẑ ‖ c), with a peak for
every �m value.

FIG. 9. Behavior of utot at a fixed distance of 8 nm from the
boundary of ZnO. Vertical lines indicate ωT m (solid line) and ωLm

(dashed line) values. Plot styles follow the conventions in Fig. 3.

FIG. 10. Behavior of utot at a fixed distance of 8 nm from the
boundary of GaAs. Vertical lines indicate ωT (solid line) and ωL

(dashed line) values. Plot styles follow the conventions in Fig. 3.

Figure 8 shows the z dependence of utot for ZnO at h̄ω =
3.44 eV. The behavior is the same as found in our previous
paper—the 1/|z|3 divergence is removed and utot saturates to
a finite value. The ABC behavior is similar, with Ting et al.
giving the largest result; Fuchs-Kleiwer, Rimbey-Mahan, and
Agarwal et al. have similar intermediate values and Pekar is
the smallest. The other materials display the same behavior
and so are omitted here.

The main differences to the one-resonance model are found
in the ω dependence of utot at a fixed distance from the
boundary. We first consider the simple case of ZnO, with
multiple, nonintersecting parabolic exciton bands. Figure 9
shows utot(ω) at a distance of 8 nm from the boundary.
The results are strongly dependent on the choice of ABC,
with Ting et al. giving the largest peaks, followed by Fuchs-
Kleiwer, Agarwal et al., Rimbey-Mahan, and finally Pekar.
This behavior agrees with our previous paper [15]. Each
resonance has two associated peaks in utot(ω), for a total of
six. The peaks in utot near ωT m are due to the s-polarization
contribution to the integral and the peaks at ωLm are due to

FIG. 11. Detail of the Agarwal et al. ABC in Fig. 10 for the
heavy/light exciton model compared to the one-exciton results for
D∗ (dashed line) and Deff (dotted line).
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FIG. 12. Behavior of utot at a fixed distance of 8 nm from the
boundary of CdS. Vertical lines indicate ωT (solid line) and ωL

(dashed line) values. Plot styles follow the conventions in Fig. 3.

the p-polarization contribution. In the one-resonance system,
the s-polarization peaks in utot were typically much smaller
than their p-polarization counterparts. However, the utot peak
at ωL1 has been suppressed due to the proximity of the peak at
ωL2 and is now comparable in size to the s-polarization peaks.
This can be seen in Fig. 7, where the peak in Im[rp] associated
with �1 and the m = 1 resonance at the largest K value is very
small due to the presence of the nearby �2 peak at a smaller
K value.

We next consider the heavy/light exciton model of GaAs.
Figure 10 shows utot(ω) at a distance of 8 nm from the
boundary. At first glance, the results appear similar to those
of the single-resonance model, but the comparison in Fig. 11
reveals that both the D∗ and Deff single-exciton models both
underestimate the peak values. This is due to the behavior of rp .
While both approximations provide a good fit for propagating
waves, utot depends more on the evanescent wave contribution
at small distances. Both approximations have a single peak in
Im[rp] at large K in contrast to the two peaks of the heavy/light
exciton model in Fig. 7.

We finally consider the uniaxial crystal of CdS in the c ‖ ẑ
case, as the other orientations lack the rotational invariance
about the z axis required for Eq. (61). The underlying behavior
behind Fig. 12 is more complex than the previous cases
with k2 dispersion. There are now two peaks in each of the
s- and p-polarization contributions to utot. A large peak in the
p-polarization term is still found near ωL, but a new smaller
peak is also present just above ωT . However, the peak in the
s-polarization contribution to utot previously found at ωT is
now a minimum, with a larger peak below this frequency and
a smaller peak above that coincides with the position of the
lower peak in the p-polarization contribution. This leads to
an overall three-peak structure in utot. This strongly contrasts
with the results in Fig. 6, where the reflection coefficients for
c ‖ ẑ are nearly identical to the ξ = 0 results. Such a contrast
was also present in our previous paper [15], where a difference

in transverse and longitudinal nonlocal terms had little effect
on rp, but a significant effect on utot. The overall effect of the
ABC choice remains the same as in previous sections.

From this and the previous sections, it is clear that if
multiple spatially dispersive resonances are present in a
medium, then they cannot be considered separately. Each
of these results displays behavior not present in the single-
resonance case, such as the suppression of peaks in utot

associated with the p polarization in closely spaced parabolic
bands, the difference between the heavy/light exciton model
to the single-band approximations, and, finally, the additional
utot peak from linear splitting in exciton bands.

VIII. CONCLUSIONS

We have extended the work of Halevi and Fuchs [43] to
derive exact expressions for electromagnetic reflection and
transmission coefficients at the boundary of a medium with
multiple spatially dispersive resonances in the susceptibility.
Surface effects are included by using phenomenological reflec-
tion coefficients Umi for the polarization waves at the boundary.
We have compared the results for several multiresonance
media, using a variety of Umi values corresponding to ABCs
in the literature. In the case of heavy/light exciton bands, we
have found an improved fit for the single-band approximation
with

√
D∗ = (

√
Dh + √

Dl)/2.
The model has been extended to alternate exciton dispersion

relations with the inclusion of a linear splitting term in ω(k)
typical of uniaxial crystals. We have compared the results when
the crystal axis c is aligned with each of the coordinate axes in
our system The largest effects were seen with c perpendicular
to the plane of incidence for s polarization and in the plane of
incidence, parallel to the surface, for p polarization.

Finally, we have used the calculated reflection coefficients
to find the zero-point and thermal spectral energy density
utot(z,ω) outside the dielectric. Many features are the same
as the single-resonance model, such as the effect of the ABC
choice and the saturation of utot as z → 0. However, there
is different behavior that is only present when the multiple
resonances are considered together. We have found that close
resonances can lead to significant suppression in the peaks
of utot(ω) and that single-band approximations fail to capture
the correct behavior of the heavy/light exciton band model.
The linear splitting term led to significant changes for utot

in the uniaxial crystal by splitting the peak at the resonant
frequency to give an overall three-peak structure.

While the model presented here incorporates many more of
the features found in real materials than the model of Halevi
and Fuchs, it could be extended further to include differences
between the transverse and longitudinal susceptibilities [15] or
higher-order nonlocal terms. This could also be applied to other
problems, such as identifying which ABC is most appropriate
for a medium with a complex exciton band structure, or in the
calculation of Casimir self-forces [10].
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