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Quantum-continuum calculation of the surface states and electrical response of silicon in solution
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A wide range of electrochemical reactions of practical importance occur at the interface between a
semiconductor and an electrolyte. We present an embedded density-functional theory method using the recently
released self-consistent continuum solvation (SCCS) approach to study these interfaces. In this model, a quantum
description of the surface is incorporated into a continuum representation of the bending of the bands within
the electrode. The model is applied to understand the electrical response of silicon electrodes in solution,
providing microscopic insights into the low-voltage region, where surface states determine the electrification of
the semiconductor electrode.
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I. INTRODUCTION

Predicting the electrical response and stability of
semiconductor-solution interfaces is of central relevance to
a wide array of electrochemical and photoelectrochemical
systems. These interfaces are involved in the photocatatytic
splitting of water [1], the photoreduction of carbon dioxide
into hydrocarbons [2], the electrochemical etching of semi-
conductor surfaces [3–5], the storage of energy at metal oxide
electrodes [6], and the use of quantum dots as biological
markers [7]. The pivotal role of semiconductor electrodes at
the frontier between solid state physics and electrochemistry
provides a compelling motivation to study their behavior in
solution.

Density-functional theory has been used to search for new
photocatalysts [8–10], assess the alignment of the valence and
conduction bands of semiconductor electrodes with the redox
potentials of species in solution [11–15], determine reaction
pathways for photoelectrochemical reactions [16–19], and
elucidate the dynamical interactions of the solvent molecules
with the surface of the semiconductor [20–25]. The same
calculations can be applied to predict the electrical response
of semiconductor-solution interfaces as long as they account
for the long-range decay of the electrostatic potential within
the semiconductor depletion region. However, electrostatic
screening in doped semiconductors is much less effective
than in metals [26], causing the interfacial electric field to
penetrate up to 10−103 nm into the electrode for typical
dopant concentrations of 1016−1018 cm−3. These length
scales render the first-principles simulation of the interface
computationally demanding.

Therefore it is necessary to develop efficient models
that will capture the essential features of a semiconductor-
electrolyte interface at reduced computational cost. To this end,
we exploit and further develop the self-consistent continuum
solvation (SCCS) approach proposed by Andreussi et al. [27]
to simulate semiconductor electrodes under applied voltage
in electrolytic media. While this method has been successful
in modeling metal electrodes [28–32], no previous study has
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focused on describing band bending at semiconductor elec-
trodes using a self-consistent continuum solvation approach.

To illustrate band bending, the electrostatic profile of a
semiconductor-electrolyte interface is shown in Fig. 1. In
order to reach equilibrium, the electrochemical potential of
the semiconductor and the solution need to be equal. Since the
excess charge is accommodated within the semiconductor by
a low concentration of dopants, the electrostatic potential is
seen to decay gradually across the extended depletion region
(the Mott–Schottky layer). This ideal picture is made more
complicated, however, by the presence of surface states, which
result from the adsorption of ionic species. By trapping charge
at the interface, these surface states lead to much stronger
electrostatic screening within the semiconductor. It is the goal
of this work to develop a quantum-continuum model for sim-
ulating the response of semiconductor-electrolyte interfaces
under electrification, including the influence of the surface
states. We apply the model to prototypical silicon electrodes in
solution in an effort to elucidate the connection between their
electrical response and surface structure at the molecular level.

II. METHOD

A. Interface energy

The first step in constructing the model is to partition
the system into the three regions shown in Fig. 2. Region
I represents the bulk of the semiconductor, which will be
modeled at the continuum level. Region II corresponds to the
surface of the electrode; this region will be described quantum
mechanically to represent the adsorbed species and resulting
surface states. Region III denotes the electrolytic solution,
which consists of a diffuse distribution of ions in a polarizable
continuum. Also illustrated is the flatband potential �FB,
which corresponds to the difference between the asymptotic
value ϕ0 of the potential inside Region I and the Fermi energy
of the neutral slab:

�FB = (ϕ0 − εF)/e. (1)

Having defined the three regions, the free energy of the
system is written as

F = FI + FII + FIII − 1

2

∫
d rε0ε(r)|∇ϕ(r)|2, (2)
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FIG. 1. (a) Atomic-level view of a semiconductor–solution in-
terface. (b) Electrostatic profile across the semiconductor–solution
interface, showing the bending of the electronic bands on the
semiconductor side, described by an extended Mott-Schottky layer,
and the electrical double layer on the solution side, represented by
a Helmholtz-Stern layer in series with a Gouy-Chapman layer of
oppositely charged ions.

where ε denotes the space-dependent dielectric permittivity
across the interface, and FI, FII, and FIII stand for the free
energies of the continuum space charge, quantum surface slab,
and continuum electrolyte, respectively.

This dielectric permittivity is defined using the self-
consistent continuum solvation model (SCCS) [27]. In this
model, a dielectric cavity is created at each lateral facet. On
the semiconductor side, the local dielectric permittivity can be
written as ε(r) = exp[(ζ (r) − sin(2πζ (r))/2π ) ln εI], where
εI is the dielectric constant of the bulk of the semiconductor
and ζ (r) = (ln ρmax − ln ρ(r))/(ln ρmax − ln ρmin) is used as a
smooth switching function, marking the transition between
the quantum and continuum regions. Here, ρmin and ρmax

serve as the density thresholds specifying the inner and
outer isocontours of the dielectric cavity. We employ the
same parametrization in Region III, replacing εI with εIII,
the dielectric constant of the electrolyte. We specifically use
ρmax = 5 × 10−3 a.u. and ρmin = 10−4 a.u. for our calcula-
tions.

Focusing first on Region I, the contribution to the free
energy can be expressed in terms of the local density of
negative charge carriers n and positive charge carriers p as
the sum of electrostatic and entropic terms:

FI =
∫

d r(ϕ(r) + εV − εF)p(r) − T s(p(r),pd(r))

−
∫

d r(ϕ(r) + εC − εF)n(r) + T s(n(r),nd(r))

+
∫

d rϕ(r)(nd(r) − pd(r)) (3)

FIG. 2. (a) Partition of a rutile SiO2(110)-electrolyte interface
into three regions. Region I represents the continuum bulk semicon-
ductor section, Region II the quantum surface of the semiconductor,
and Region III the continuum electrolyte solution. Both Regions I
and III extend infinitely. The colors indicate the changing dielectric
constant in the simulation; red corresponds a dielectric constant of
∼ 3.9 for SiO2 and blue corresponds to a dielectric constant of ∼ 78
for water at room temperature. (b) Profile of the electrostatic potential
across the SiO2-electrolyte interface with the dotted horizontal line
representing the Fermi level εF of the slab. Having set the potential to
zero at the boundaries of the cell, the flatband potential �FB equals
the negative of the Fermi level.

with

s(f,fd) = −kB

[
(fd − f ) ln

(
1 − f

fd

)
+ f ln

(
f

fd

)]
.

In Eq. (3), εF denotes the Fermi energy, εV is the electronic
energy at the top of the valence band, and εC is the energy at
the bottom of the conduction band. Furthermore, it is assumed
that the donor and acceptor levels are shallow so that their
energy levels sit at the band edges. Moreover, s stands for
the Fermi-Dirac entropy; it depends locally on the smooth
switching functions

nd(r) = N

2

[
erfc

(
z − zI

σI

)
+ 1

]
,

pd(r) = P

2

[
erfc

(
z − zI

σI

)
+ 1

]
(4)

with N and P being the concentrations of electron-donating
and electron-accepting defects, and zI and σI being the location
and spatial extent of the transition between the semiconductor
and surface.

Likewise, the free energy of the electrolyte can be expressed
in terms of the concentrations c+ and c− of the positive and
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negative ions as

FIII =
∫

d rϕ(r)c+(r) − T σ (c+(r),c◦(r))

−
∫

d rϕ(r)c−(r) + T σ (c−(r),c◦(r)) (5)

with

σ (c±,c◦) = −kB

[
f ln

(
c±
c◦

)
− c±

]
.

In Eq. (5), we take a symmetric 1:1 ionic solution, in which
the maximal ion concentration is defined as

c◦(r) = C

2

[
erfc

(
zIII − z

σIII

)
+ 1

]
, (6)

where C is the equilibrium ionic concentration inside the
electrolyte, and zIII and σIII are the location and spread of
the frontier between the surface and electrolyte.

Finally, the free energy FII is expressed as a Kohn-Sham
functional of the density of the electrons ρ− and distribution
of the atomic cores ρ+:

FII = Ts + EHxc − θS −
∫

d rϕρ+ − (ϕ − εF)ρ−, (7)

where Ts is the kinetic energy of the auxiliary system within
the independent-electron mapping and EHxc is the sum of
the Hartree and exchange-correlation energies. The electronic
temperature and the entropy of the electronic smearing are
denoted θ and S , respectively.

B. Interface electrostatics

With the expression of the free energy in hand, the equilib-
rium charge density can be obtained by variations with respect
to the occupations of the doping levels, ionic concentrations,
and electrostatic potential, yielding the following electrostatic
problem:

∇(ε0ε(r)∇ϕ(r)) = p(r) − n(r) − pd(r) + nd(r)

+ c+(r) − c−(r) + ρ+(r) − ρ−(r), (8)

where the source terms can be expressed as

n(r) = nd(r)

[
1 + exp

(
ϕ(r) + εC − εF

kBT

)]−1

, (9)

p(r) = pd(r)

[
1 + exp

(
εF − εV − ϕ(r)

kBT

)]−1

, (10)

c±(r) = c◦(r) exp

(
∓ ϕ(r)

kBT

)
. (11)

Here, it is understood that ρ− is obtained by solving the self-
consistent Kohn-Sham equation for a given distribution ρ+ of
the atomic cores.

For a n-type semiconductor, using the Boltzman distribu-
tion, these equations become

p(r) = pd(r) = 0, (12)

n(r) = nd(r) exp

(
ϕ0 − ϕ(r)

kBT

)
, (13)

where ϕ0 stands for the asymptotic value of the potential in
Region I. Conversely, for a p-type semiconductor, we can write

n(r) = nd(r) = 0, (14)

p(r) = pd(r) exp

(
ϕ(r) − ϕ0

kBT

)
. (15)

Furthermore, it is important to note that deep inside the
semiconductor region, the electrostatic potential obeys the one-
dimensional Poisson equations:

d2ϕ

dz2
= N

ε0εI

[
1 − exp

(
ϕ0 − ϕ

kBT

)]
, (16)

d2ϕ

dz2
= P

ε0εI

[
exp

(
ϕ − ϕ0

kBT

)
− 1

]
(17)

under conditions of n-type and p-type doping, respectively. In
the long-range limit where ϕ approaches ϕ0, these equations
imply that

(
dϕ

dz

)2

= 2N

ε0εI

[
ϕ − ϕ0 + kBT

(
e

ϕ0−ϕ

kBT − 1

)]
, (18)

(
dϕ

dz

)2

= 2P

ε0εI

[
ϕ0 − ϕ + kBT

(
e

ϕ−ϕ0

kBT − 1

)]
. (19)

As explained in Sec. II C, these expressions are of central utility
in describing the bending of the electronic bands and overcome
the length scales that characterize electrostatic screening in the
depletion region of the electrode.

C. Band bending

Equation (8) can be solved by implementing a fully self-
consistent solution of the electrostatic problem. We plan to
implement this method in the continuation of this study. For
the moment, we use a simpler implementation to assess the
model. The details of this approach are presented below.

To obtain the equilibrium charge-voltage distribution of the
system, we start by specifying a total charge for the electrode,
from which the potential of the system can be found. To this
end, we place a plane of charge qI in Region I, representing
the defect charge in the bulk of the semiconductor, and another
plane of countercharge qIII in Region III, representing the ionic
charge of the electrolyte. Accordingly, an explicit charge qII is
added to the slab of Region II to fulfill charge neutrality:

qI + qII + qIII = 0.

This planar setup provides an accurate approximation of the
electrolytic side (Region III) as long as the ionic concentrations
(1020−1021 cm−3) in the electrolyte are significantly larger
than typical doping concentrations in the semiconductor
(1016−1018 cm−3). This means that most of the potential
drop takes place in the bulk of the semiconductor (Region I),
making a plane of countercharge a reliable representation of
the response of the electrolyte (Region III) (the Stern model).

Furthermore, on the semiconductor side, adding a plane
of countercharge within Region I does not lead to any loss
of generality in the solution of the problem within Region
II and Region III. This can be seen by noting that once the
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Helmholtz plane of countercharges in Region III is set and the
asymptotic boundary conditions of Poisson’s equation inside
the electrolyte is fixed, the Fermi energy εF and charge density
ρ− at the surface are fully determined; they do not depend
on the specific shape of the defect charge profile in virtue
of Gauss’ law. In other words, the charge distribution and
potential profile on the right hand side provide an accurate
description of the interaction of the electrode with solution.

Although the electrostatic profile in Regions II and III is
accurate, the potential in Region I is still not a reliable rep-
resentation of the electrostatics of a semiconductor electrode
where Region I consists of an infinite extension of Region II.
To accurately describe the electrostatic potential in Region I,
a cutoff plane is introduced within the slab as illustrated in
Fig. 3, and the electrostatic potential to the left of the cutoff
is set to follow the solution of the electrostatic equations of
a continuum dielectric. The region to the right of the cutoff
(but still within the explicit slab) will be taken as Region II,
representing the surface states. The position of the cutoff plane
is a user defined value which should correspond to around
the inflection of the potential ϕ̄. It should be far enough
within the slab that a bulk like state has occurred, making
a smooth transition from the surface states to the bulk of the
semiconductor. From the value of the electrostatic potential
and its derivative at the cutoff plane, the Fermi level of the
bulk of the semiconductor in Region I can be easily determined
from Eqs. (18) and (19):

εF,I = ϕ̄0 − e�FB (20)

with

ϕ̄0 = ϕ̄(zc) − kBT − ε0εI

2N

(
dϕ̄

dz
(zc)

)2

, (21)

ϕ̄0 = ϕ̄(zc) + kBT + ε0εI

2P

(
dϕ̄

dz
(zc)

)2

(22)

for n-type and p-type semiconductors, respectively. In these
equations, the cutoff position zc represents the location of the
frontier between Regions I and II in Fig. 3(b) and ϕ̄ is the
difference between the electrostatic potential of the charged
slab and that of the neutral slab, corresponding to the dashed
line in Fig. 3(a). The bulk potential of the electrode can then
be taken as εF,I.

Finally, to find the equilibrium state of the charge electrode,
we impose that the Fermi level of the bulk of the semiconductor
must equal the Fermi level of the quantum slab:

εF,I = εF,II. (23)

By satisfying this condition, the charge density of the electrode
can be calculated as a function of voltage, and the surface
state density can finally be obtained as the total charge on
the right hand side of the frontier defined by zc divided by
the elementary charge. Different algorithms can be used to find
the conditions of matching Fermi levels such as a dichotomy
procedure. The procedure we use is defined in Sec. III.

This protocol enables us to determine how surface states
and adsorption affect the potential profile and capacitance
of the system. This approach is, however, limited in a few
respects. First, the position of the frontier between Regions
I and II defined by zc may affect the asymptotic value ϕ̄0 of

FIG. 3. (a) The potential of a charged slab with planes of
countercharge on each side, creating a potential drop. The dotted line
represents the electrostatic potential ϕ̄ of the charged slab subtracted
from that of a slab with zero charge as shown in Fig. 2. (b) A
cutoff value zc corresponding to the inflection of the potential ϕ̄

is determined. To the left of this cutoff a Mott-Schottky extrapolation
is applied, as shown by the new dotted line. By examining several
different charge distributions, the specific distribution where the
Fermi levels match is found. The width of the depletion region is
shortened here for illustrative purposes and would normally extend
for several nanometers.

the potential ϕ̄ describing the overall trend of the potential
ϕ across the interface. This variation is, however, small and
can be easily evaluated from �ϕ̄0 = �zc

LI

dϕ̄

dz
(zc) with LI being

the electrostatic screening length of the semiconductor. Since
LI is on the order of 10−103 nm, the sensitivity of ϕ̄0 to
zc is negligible under relevant doping conditions. Second,
the range of charge that can be tested is dependent on
the size of the slab. In fact, if the voltage drop between
the two countercharge planes is larger than the band gap of the
material, unphysical charge transfer by Zener tunneling will
take place between the two sides of the slab. In these cases,
smaller slabs serve to reduce the voltage drop for a constant
Helmholtz charge density. It is important, however, to verify
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that the Fermi level converges with respect to the size of the
slab used for the calculation. Third, the solution is essentially
planar within Regions I and III. This assumes that both the
bulk of the semiconductor and the solution see no variation in
the planar directions. For a few applications such as quantum
dots, this assumption may need to be revisited. Nevertheless,
this is a valid assumption within most applications of interest
to first-principles surface electrochemistry.

III. COMPUTATIONAL DETAILS

Density-functional theory calculations are performed using
the PW code of the Quantum-Espresso distribution [33]. As
shown in Fig. 4, surface slabs of 1 × 1 Si(110) and rutile,
cristobalite, and quartz SiO2(110) and cristobalite and quartz
SiO2(110) are constructed with a slab width of five layers,
which is sufficient to give converged Fermi levels within
0.01 eV. The slab is centered in the supercell with a vacuum
height of 7 Å to ensure convergence of the atomic forces

within a few meV Å
−1

. We use ultrasoft pseudopotentials with
the Perdew–Burke–Ernzerhof parametrization of exchange–
correlation interactions [34]. The cutoffs of kinetic energy of
the charge density and electrons are set at 50 and 750 Ry,

FIG. 4. Lateral and top views of representative surface termina-
tions for silicon: (a) Si(110) with oxygen (O*), (b) Si(110) with a
hydroxyl group (O* + H*), (c) Si(110) with two oxygens absorbed
into the surface layers (2O*), (d) Si(110) with an oxygen absorbed
into the second layer with and adsorbed hydroxyl group (2O* + H*),
(e) Si(110) with a SiO4 tetrahedron terminated by a hydrogen (4O* +
H*), (f) Rutile SiO2(110), (g) Cristobalite SiO2(100), (h) Cristobalite
SiO2(110), (i) Quartz SiO2(1000), and (j) Quartz SiO2(112̄0).

respectively. The Brillioun zone is sampled with a shifted 5 ×
5 × 1 Monkhorst-Pack grid and 0.03 Ry of Marzari-Vanderbilt
smearing [35].

As explained above, the electrostatic response of the elec-
trolyte interface is modeled using the ENVIRON module with
the parametrizations developed for water [27]. Several surface
configurations of the Si and SiO2 surfaces are examined.
In finding the equilibrium structure for these configurations,
the three layers closest to Region I are frozen to create a
bulklike condition. The final relaxed positions are then used in
the semiconductor–interface model discussed above. To find
the equilibrium charge distribution between the surface states
and the bulk of the semiconductor, several partitions of the
charge qIII between qI and qII are tested for a fixed qIII. In
explicit terms, for each total electrode charge, 11 different
partitions were considered: one where 0% of the electrode
charge is in Region I and 100% in Region II, one where 10%
of the electrode charge is Region I and 90% of the electrode
charge is in Region II, and so on. Using a fixed cutoff position,
zc, we find the charge distribution that minimizes the difference
in Fermi level between Regions I and II from Eq. (23). A dopant
concentration of 1018 cm−3 was used along with a dielectric
constant of silicon as εI = 11.7 and a dielectric constant of
water of εIII = 78.3. The results of these simulations are
presented and discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

Silicon electrodes represent an important test for the
proposed method. Experiment shows that an amorphous layer
of SiO2 forms on the surface of Si in contact with water [36,37].
However, the underlying driving force for this oxidation
is not clearly understood and can vary with both pH and
voltage [38,39]. In response, several different terminations of
silicon were tested. The results of these calculations can be
seen in Fig. 5.

When charge is placed on a solvated silicon slab with planes
of countercharge for charge neutrality, all of the electronic
charge accumulates at the semiconductor edge [40]. This
contrasts with the expected electron distribution throughout a
semiconductor electrode with surface states, implying that all
the charge on a silicon semiconductor slab would accumulate
deep inside the bulk of the semiconductor. As a result, there
is no combination of charges qI and qII that equalizes the
Fermi levels in Regions I and II [Eq. (23)]. This shows that no
equilibrium charge distribution exists between the surface of
silicon and its bulk state, offering insight into the instability
of pure silicon in water at low potentials [41]. From this,
we conclude that no surface states are likely to form on a
pure silicon surface. Thus some significant contribution from
adsorption is expected for a silicon electrode in water.

To gain insight into the role that surface states play on
the charge-voltage curves semiconductor–solution interfaces,
we use a simple model that consists of describing the
charge–voltage behavior of a semiconductor electrode as an
ideal Mott-Shottky semiconductor in series with a metal
surface state. This gives an overall capacitance of the form
1/CI+II(�) = 1/CI(�B) + 1/CII, where CI is the capacitance
of Region I obtained from Eq. (18), CII is the capacitance of the
interface region, and �B is the potential drop across Region I
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FIG. 5. (a) The total charge versus voltage curves for Si(110)
structures. (b) The total charge versus potential curves for SiO2

structures. The lines correspond to the fitted trends of an empirical
model that consists of an ideal Mott-Schottky semiconductor in series
with a linear capacitor representing the surface states.

(the Schottky barrier). In this model, CII does not depend
on the potential �, whereas CI depends on it through �B.
Furthermore, we describe the relation between �B and � in the
vicinity of the flatband potential, that is, for a small amount of
charge accumulation at the electrode, as �B = γI(� − �FB),
where γI is the fraction of the total potential drop that
occurs within the semiconductor, limited to values between
0 and 1. The value of γI accounts for the contribution from
surface states to the overall electrical response; the value of
γI decreases with increasing charge buildup in the surface
states. The parameters of the fitted curves, shown in Fig. 5, are
reported in Table I.

Simulations using different surface terminations of silicon
show a strong buildup of charge upon increasing the potential,
as can be seen in Fig. 5(a). This reflects the fact that nearly
all the charge is trapped in Region II of the material, as
confirmed by the observation that the fraction γI of the potential
drop taking place within the semiconductor is low for all of
these structures. In general, adding hydroxyl groups to the
surface causes the charge to be more distributed within the

TABLE I. Fitted surface state properties for the 10 surface
configurations tested. The percentage of the total potential drop
that takes place within Region I, the bulk of the semiconductor, is
represented by γI (%). The capacitance of the surface state, assuming
a metal like distribution, is represented as CII.

γI (%) CII (μF cm−2)

Si+O* 3.75 78.9
Si+O*+H* 5.39 54.1
Si+2O* 3.38 75.2
Si+2O*+H 5.92 38.9
Si+4O*+H* 11.7 25.3
Rutile (110) 0.03 1.28
Cristobalite (100) 1.69 786
Cristobalite (110) 8.23 1.89
Quartz (1000) 1.95 41.3
Quartz (112̄0) 4.71 30.1

material than with just an oxygen added. This is supported
by noting that the fraction of the potential drop within
the semiconductor is higher for structures with hydrogen
added than the corresponding structures without hydrogen.
One likely explanation for this is that negatively charged
adsorbates lead to a trapping of positive charge near the
surface. Conversely, adding hydrogen to the surface reduces
the electronegativity of the adsorbate and allows for more
long-ranged charge distribution inside the semiconductor. This
is further shown with the Si+4O*+H* structure, which has
the most charge distribution within the electrode. Under typical
conditions, however, the type of adsorbate at the silicon surface
seems to have a moderate effect on the overall trend; in all these
curves, a large initial buildup of charge due to surface states is
followed by a much slower buildup dominated by the bulk of
the semiconductor. All of the silicon adsorbate materials have
a capacitance CII on the order of 10 μF cm−2.

In contrast, simulations with SiO2 terminations show
large differences in the resulting charge-voltage response. In
general, these structures have a much more distributed charge
profile. This is reflected in Fig. 5(b) by the lowered charge
density in comparison to the silicon adsorbate structures.
In particular, the rutile SiO2(110) structure and cristobalite
SiO2(110) structure present a stark difference with the other
shown structures. This can be attributed to surface states with a
much lower capacitance. This leads to much shallower growth
of the charge-voltage curve. It should be noted that the value
of CII for cristabolite (110) is unphysically high; this is not
due to the quantum continuum model, but rather indicative
of the limitations of a two parameter fitting function. One
important aspect to note is the change in electrode behavior
is a function of the exposed surface. Changing from the
(100) to (110) orientation for a cristobalite and quartz SiO2

structure leads to a lower accumulation of charge. This further
underscores the importance of the exposed facet in determining
the voltage-dependent charge distribution across the interface.
In a traditional Mott-Schottky model, the specific surface
termination would not change the charge-voltage response.

It should be noted that for surfaces that quickly grow
positive with the application of a small amount of potential, it
is expected that negatively charged species from the solution
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would adsorb at the surface. This would result in surface
oxidation until a passivating oxide layer forms, providing
insights into the experimentally observed formation of an
oxide layer when silicon is in contact with water [36,37].
For a more complete comparison with experiment, it would
be necessary to perform simulations on large-scale amorphous
surface terminations under applied voltage and controlled pH.
This will be the subject of a study in the continuation of
this work. The results presented here differ from the ideal
Mott-Schottky picture by providing a detailed description of
charge accumulation at low potential where the surface states
dominate the electrochemical properties of the electrode.

V. CONCLUSION

Semiconductor-electrolyte interfaces encompass numer-
ous applications at the frontier of solid state physics and
electrochemistry. We have presented a method to embed
first-principles calculations of surface states between a Mott-
Schottky description of the semiconductor and the Helmholtz
representation of the surrounding electrolyte. We have applied
the method on different surface terminations for silicon. These

simulations provide a comprehensive atom-level understand-
ing of the experimentally observed electrification of silicon
electrodes in water, suggesting the rapid accumulation of
positive charge at the surface of solvated silicon electrodes
leading to the formation of an oxide layer that shifts the
potential of charge neutrality to more positive voltages and
ultimately prevents further oxidation. This method is ideally
positioned to examine the low-potential regime where surface
state charges dominate the electrification of the electrode
in a manner not captured by the Mott-Schottky theory
alone. Future work will focus on the implementation and
distribution of algorithms to determine the three-dimensional
charge distribution between the bulk of the semiconductor, the
surface states, and the electrolyte for predicting the structure
and response of semiconductor-electrolyte interfaces under
electrochemical conditions.
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