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Spin-valley resolved photon-assisted tunneling in carbon nanotube double quantum dots
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We consider photon-assisted tunneling (PAT) and the Landau–Zener–Stueckelberg (LZS) interference for
double quantum dots induced electrostatically along a semiconducting carbon nanotube. An atomistic tight-
binding approach and the time-dependent configuration-interaction method are employed to describe systems
of a few confined electrons and holes. We reproduce the patterns of the LZS interference recently observed for
quantum double dots describing transport across hole-localized states. Moreover, we indicate that for charge
configurations for which the ground state is Pauli-blocked, PAT can be used for resolution of the transitions that
involve spin-flip or intervalley transitions without the spin-valley conserving background signal.
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I. INTRODUCTION

Photon assisted tunneling (PAT) across quantum dots (QDs)
[1–3] is observed in microwave fields when the Fermi-
level electrons pass across the higher-energy confined levels
upon absorption of the energy from the radiation field. The
phenomenon has a resonant character and occurs provided that
the microwave frequency is in resonance with the mismatch
between the energy levels �E so that the electron absorbs
a single or n photons in order to climb to the higher energy
level, nh̄ω = �E. PAT has been used for spectroscopy of
dot-confined energy levels [3–5] and charge dynamics in
multiple quantum dots [6–8]. PAT in double quantum dots has
also been used for spin-related phenomena including transport
involving spin flips [9] and manipulation of spin qubits [10,11].
For strong microwave fields within double quantum dots the
PAT enters the regime of the Landau–Zener–Stueckelberg
(LZS) [12,13] interference when the system is driven by an ac
electric field across the avoided crossing between energy levels
of different charge occupation. The procedures for fast spin
flips based on the LZS interference were proposed [7,14,15].
The LZS interference pattern has also been used for studies
of the dephasing processes [12,16] in double dots, including
the spin coherence times [17–19], as well as for sensitive
residual radiation detectors [20], charge [21,22], and spin
pumping [23].

The PAT and LZS interference were also observed in
quantum dots defined in semiconducting carbon nanotubes
(CNTs) [5,16]. In CNTs—the graphene-related material with
strong spin-orbit coupling due to the curvature of the carbon
plane [24–29]—in addition to the spin degree of freedom the
valley degree of freedom is present. In this paper we consider
detection of photon-assisted tunneling involving spin flips
and intervalley transitions. The study is based on the time-
dependent configuration-interaction approach for systems of
several carriers described within the atomistic tight-binding
approach. The study covers simulation of the LZS interference
pattern as recently observed [16]. Moreover, we indicate that,
for systems in which the charge transport is blocked by the
Pauli blockade, the LZS pattern contains clear separate lines
corresponding to either the spin or valley flips accompanying
the electron hopping.

II. THEORY

We model a semiconducting CNT of length L = 53.11 nm,
diameter 2r = 1.33 nm, and chiral vector Ch = (17,0). We
consider both a straight nanotube and a bent [30] one with
radius of the bend R = 40 nm [see Fig. 1(a)]. The nanotube
is suspended above the electrostatic gates which produce a
double quantum dot confining potential

WQD(z) = V1e
−(z+zs )2/d2 + V2e

−(z−zs )2/d2
. (1)

In Eq. (1) d determines the QD widths, zs is a shift of the dots
from z = 0, and V1 (V2) is a potential of the left (right) QD.
We consider nanotube in pp and nn configurations in which
both dots are occupied by either holes or excess electrons,
respectively. For a pp configuration we apply V1 = Vp,
V2 = Vp − �, and for the nn configuration V1 = Vn − �,
V2 = Vn + �, where � defines the energy mismatch between
potentials on the left and right dot. In the calculations we apply
Vp = 0.3 eV, Vn = −0.5 eV, zs = 10 nm, and d = 4 nm. We
apply an external magnetic field of magnitude B parallel to the
z direction.

We calculate single-electron states in the tight-binding
approximation with the pz orbitals. The Hamiltonian reads

H =
∑

{i,j,σ,σ ′}

(
c
†
iσ tσσ ′

ij cjσ ′ + H.c.
)

+
∑
i,σ,σ ′

c
†
iσ

(
WQD(ri)δσσ ′ + gLμb

2
σ σσ ′ · B

)
ciσ ′ . (2)

The first sum in Eq. (2) accounts for the hopping between the
nearest-neighbor atoms and the second sum for the interaction
with the external electric and magnetic fields. Here c

†
iσ (ciσ ) is

the particle creation (annihilation) operator at ion i with spin σ ,
tσσ ′
ij is the spin-dependent hopping parameter, δσσ ′ stands for

the Kronecker delta, gL = 2 is the Landé factor, μb is the Bohr
magneton, and σ is the vector of Pauli matrices. The hopping
parameters tσσ ′

ij contain the spin-orbit interaction (SO), which
arises from the curvature of the graphene plane [24–29].
Both the folding of the graphene plane into the tube and the
bend of the nanotube [31] are taken into account. Moreover,
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FIG. 1. (a) Scheme of the system considered in the paper. The
CNT is either straight with the axis that coincides with the z axis,
or bent within the xz plane for the radius of the arc R = 40 nm. (b)
(1h,0) and (c) (1e,1e) charge configuration of the pp and nn quantum
dots, respectively. The arrows indicate (b) the (1h,0) → (0,1h) and
(c) the (1e,1e) → (0,2e) transitions.

tσσ ′
ij include the Peierls phase which accounts for the inter-

action of the orbital magnetic moments with the external
magnetic field. The explicit form of the hopping parameters
has been given in Ref. [31].

We calculate few-electron eigenstates by using the
configuration-interaction (CI) method. We solve the eigen-
problem of the Hamiltonian

HCI =
∑

a

εag
†
aga + 1

2

∑
abcd

Vab;cdg
†
ag

†
bgcgd, (3)

where εa is the energy of the ath eigenstate of Hamiltonian
H , g

†
a and ga are the creation and annihilation operators of

the electron in the ath state, and Vab;cd are electron-electron
interaction matrix elements (with the form given in Ref. [32]).

For pp quantum dots we focus on a (1h,0) charge
configuration (a single hole localized in the left dot) and
its transition to the (0,1h) state (a single hole localized in
the right dot). To model the system we consider the seven
last electrons of the two highest valence-band orbitals [see
Fig. 1(b)] confined in the left and right dot, each of the
orbitals nearly fourfold degenerate with respect to the valley
and the spin—i.e., the system with a single unoccupied state
of the valence band. For nn quantum dots we study the charge
configurations for which Pauli blockade appears, i.e., (1e,1e)
(one electron in each dot) and its transition to (0,2e) (two
electrons in the right dot). For that transition we consider two
electrons at the bottom of the conduction band [see Fig. 1(c)]

and include the eight lowest conduction-band orbitals (32
states) in the CI basis.

The dynamics of the system driven by an external ac
field is simulated by solving the time-dependent Schrödinger
equation. The time-dependent Hamiltonian reads

H ′(t) = HCI +
N∑

j=1

eFzj sin (ωt), (4)

where F is the ac electric-field amplitude, ω is its frequency, N
is the number of electrons (seven for pp and two for nn quan-
tum dots). We solve the time-dependent Schrödinger equation
within the basis of the eigenstates �n of Hamiltonian HCI,

�(r1,...,N ,σ 1,...,N ,t) =
∑

n

cn(t)�n(r1,...,N ,σ 1,...,N )e− iEnt
h̄ .

(5)

In this basis the Schrödinger equation ih̄ ∂�
∂t

= H ′� takes the
form

ih̄ċk(t) =
∑

n

cn(t)eF sin (ωt)〈�k|z|�n〉e− i(En−Ek)t
h̄ . (6)

We discretize Eq. (6) in time by using the Crank–Nicolson
algorithm.

III. RESULTS

A. Photon-assisted (1h,0) → (0,1h) transitions

In Fig. 2(a) we present the single-hole lowest-energy levels
of pp system as a function of the potential difference �

between the dots. For equal potentials on both dots (� =
0) the hole in the lowest-energy states occupies both dots
evenly. Note that the levels of the (1h,0) and (0,1h) branch
are nondegenerate at � = 0. The avoided crossing of width
0.249 meV due to the tunnel coupling between the dots will be
used in simulation of the LZS interference. For positive � the

FIG. 2. (a) Single-hole energy levels in a pp QD as a function of
the potential difference � between the dots for B = 0. (b) Energy-
level dependence on the external magnetic field B for � = 3 meV. The
symbols K/K ′ ↑ / ↓ indicate the spin-valley states of the hole [the
single unoccupied energy level of the octet at the top of the valence
band—cf. Fig. 1(b)] and the arrows represent possible (1h,0) →
(0,1h) transitions.
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(1h,0) charge configuration is promoted to the ground state.
Each line in Fig. 2(a) is twofold degenerate. The degeneracy is
lifted by the external magnetic field B, as shown in Fig. 2(b).
The symbols K/K ′, ↑ / ↓ indicate the valley and spin states
of the hole (the only empty state in the valence band). The
energy levels corresponding to the (1h,0) and (0,1h) charge
configurations at � = 0 in Fig. 2(a) are split by the spin-orbit
interaction. The splitting between the orange and the blue lines
in each of the configurations is of the order of 2 meV.

We focus on the transitions between (1h,0) states (blue
lines in Fig. 2) and (0,1h) states (orange lines). These can
be understood as the hole jumping from the left dot to the
right one. We assume that the hole initially occupies the K ′ ↑
ground state. In straight, clean carbon nanotubes the hole can
tunnel to the right dot only by the transition to the same
spin and valley state [black arrow in Fig. 2(b)]. Transition
to the states of different spin and/or valley [gray arrows in
Fig. 2(b)] are possible provided that the symmetry of the
nanotube is broken: the spin-orbit coupling itself does not
allow for the spin transitions [33] and a short-range defect
is needed to drive the valley flips [34]. Mixing of the spin
or valley degree of freedom can be obtained by bending the
nanotube or introducing disorder in the lattice, respectively.

In Fig. 3 we plot the probability of the transition (1h,0) →
(0,1h) in a straight and clean CNT as a function of � and a
logarithm of the amplitude of the microwave field F . The
microwave frequency of h̄ω = 0.5 meV was assumed and
the simulation time covered 1 ns. In Fig. 3 several transition
lines can be observed which correspond to the direct transition
from the (1h,0) K ′ ↑ state to the (0,1h) K ′ ↑ state (denoted
as “1” in Fig. 3) and its harmonics (“1/2,” “1/3,” etc.) for
multiphoton transitions [13]. The dashed line indicates the
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FIG. 3. Maximal probability of (1h,0)K ′ ↑→ (0,1h)K ′ ↑ tran-
sition for straight and clean CNTs as a function of � and a logarithm
of the amplitude of the microwave electric field F . We apply the
frequency h̄ω = 0.5 meV within a pulse of duration 1 ns. White
numbers on the plot indicate the multiphoton resonances at 1, 1/2,
1/3, etc. of the nominal resonant frequency for the (1h,0)K ′ ↑ →
(0,1h)K ′ ↑ transition. The thick dashed line shows the electric field
required to take the system to the center of the avoided crossing
between the (1h,0) and (0,1h) energy levels for a given detuning �.

FIG. 4. Cross sections of Fig. 3—the maximal transition prob-
ability versus the ac electric field amplitude for (a) � = 0.31 meV
[direct (1h,0)K ′ ↑→ (0,1h)K ′ ↑ transition] and (b) � = 0.81 meV
(two-photon transition).

axial electric field that is necessary to reach the center of
the avoided crossing of the (1h,0), (0,1h) configurations for
a given �, i.e., F = E(0,1h)(�)−E(1h,0)(�)

2ezs
. To the right of the

dashed line the electric field drives the system across the
(1h,0), (0,1h) avoided crossing which allows for observation
of the LZS interference. A clear interference pattern appears
to the right of this line in Fig. 3. Together with the periodic
variation of the electric field eFz sin(ωt) the system goes back
and forth across the (1h,0) ↔ (0,1h) avoided crossing. Each
passage through the avoided crossing region results both in a
nonadiabatic transition between the states and in acquisition of
the additional phases by them—different for (1h,0) and (0,1h)
states. Depending on the relative phase acquired by the system
during the time evolution we observe either constructive or
destructive interference. It has been shown in Ref. [12] that,
within the slow-passage limit, the position of the minima or
maxima of the probability is proportional to the F/ω ratio.
In Fig. 4 we plot the cross sections of Fig. 3 for � = 0.31
meV [Fig. 4(a)] and � = 0.81 meV [Fig. 4(b)] with the
linear F scale. Both for direct [Fig. 4(a)] and two-photon
[Fig. 4(b)] transitions we indeed observe equal distances
of about 0.79 kV/cm on F scale between the consecutive
extrema of the probability, which confirms the LZS origin
of the observed oscillations. Since away from � = 0 the
energy levels depend linearly on � [see Fig. 2(a)], the distance
between the adjacent harmonics on the � scale is constant. The
results of Fig. 3 agree with those obtained in the experiment
of Ref. [16].

In Fig. 5(a) we reproduce the results of Fig. 3 for a bent CNT.
The bending mixes the spins and allows for the hole transition
from one dot to the other accompanied by a spin flip. The
lines appearing due to the bending correspond to the transition
from (1h,0) K ′ ↑ state to (0,1h) K ′ ↓ state at one fifth, one
sixth, and one seventh of the nominal resonant frequency. The
distance between the harmonics on the � scale is constant since
the energy difference between the two states participating in
the transition is linear in � [see Fig. 2(a)]. Moreover, the
� distances between adjacent harmonics are the same for
spin-conserving and spin-flipping transitions. However, the
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FIG. 5. Maximal probability of the (1h,0) → (0,1h) transitions as a function of � and a logarithm of the amplitude of the microwave
electric field F . We apply an ac electric field of frequency h̄ω = 0.5 meV within a pulse of duration 1 ns. In panels (a) and (c) the nanotube is
assumed bent. In panel (b) the two potential peaks of 1 eV at −14.2 nm and 14.13 nm are introduced in the CNT. In panel (d) both the bending
and the potential peaks are considered. In panels (a) and (b) the magnetic field is set close to zero (B = 0.01 T); in panels (c) and (d) B = 1 T.

lines corresponding to these two transitions are shifted with
respect to each other due to the SO splitting of the spin-valley
doublets of 2 meV which is constant for every �—see
Fig. 2(a).

To enable the valley-flipping transitions—i.e., (1h,0)K ′ ↑
→ (0,1h)K ↑—a short-range potential has to be introduced
into the CNT lattice. That type of potential acts as a scattering
center which mixes K and K ′ valleys. In experimental setups
the scattering potential might by produced by defects in the
lattice. To model the effect in our calculations we introduce two
potential peaks of 1 eV at −14.2 and 14.13 nm. This results in
additional narrow resonances visible in Fig. 5(b) as opposed
to Fig. 3. Similarly to Fig. 5(a), the lines correspond to the
one fifth, one sixth, and one seventh of the nominal resonant
frequency for the transition (1h,0)K ′ ↑→ (0,1h)K ↑. The
valley-flipping transitions are shifted with respect to the valley-
conserving transitions the same way as transitions of Fig. 5(a).
In fact, if both spin and valley mixing are introduced, the
resonant lines for spin- and valley-flipping transitions overlap.
This can be easily understood by looking at Fig. 2—for B = 0
the (0,1h)K ′ ↓ and K ↑ are degenerate.

The position of the resonant lines for spin or valley flipping
and spin-valley-conserving transitions with respect to each
other depends on the SO energy splitting and the applied ac
field frequency. While the SO interaction due to the curvature

of the carbon plane is hardly controllable from an experimental
point of view, the microwave driving frequency can easily
be modulated. For instance, by doubling ω we obtain two
times larger gaps between adjacent harmonics on the � scale.
Another externally tunable parameter which can be used to
modify the position of transition lines is the magnetic field
B. Distinct behavior of the different spin and valley states in
external magnetic field [see Fig. 2(b)] results in changes of the
resonant frequencies for spin- and valley-flipping transitions.
The spin-valley-conserving transition preserves the same
resonant frequency for every B since the energy difference
between same spin and valley states of (1h,0) and (0,1h)
configurations does not change in magnetic field. In Fig. 5(c)
we present spectra for the bent CNT with a magnetic field of
B = 1 T applied. Here, the narrow spin-flipping resonances of
Fig. 5(a) have shifted to lower � while spin-valley-conserving
transition lines have remained still. As shown in Fig. 5(c),
the spin-flipping resonances can be shifted until they overlap
with the wider spin-valley-conserving resonances and the
two become nearly indistinguishable. The narrow resonances
can be observed as a small perturbation in the—otherwise
regular—interference pattern of the wide ones.

In Fig. 5(d) we plot the transition spectra for a bent
nanotube with the potential peaks introduced in the lattice
and magnetic field of B = 1 T applied. Here still the
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FIG. 6. (a) Two-electron energy levels in nn QD as a function
of the potential mismatch parameter between the dots �. (b)
Energy-level dependence on the external magnetic field B for
� = −112 meV.

spin-valley-conserving and spin-flipping resonances overlap
but additional lines of valley-flipping transitions appear, as in
Fig. 5(b). Note, however, that these lines are strongly shifted
by the magnetic field—for � of about 0.9 meV we observe the
fifth harmonic for B ≈ 0 and the sixth harmonic for B = 1 T.
The valley-flipping transition lines are shifted more than the
spin-flipping ones because the energy difference between
(1h,0)K ′ ↑ and (0,1h)K ↑ grows faster with B then between
(1h,0)K ′ ↑ and (0,1h)K ′ ↓ [see Fig. 2(b)].

B. (1e,1e) → (0,2e) transitions

The two-electron nn system provides an entirely different
frame for photon-assisted tunneling. The reason is the Pauli
blockade, which arises in the ground state of the (1e,1e) charge
configuration in the nn quantum dot in the external magnetic
field [see Fig. 1(c)]. In Fig. 6(a) we present the lowest-energy
levels of two-electron nn system as a function of � and in
Fig. 6(b) the effect of the magnetic field B on the energy
levels. We are interested in transitions (1e,1e) → (0,2e), i.e.,
tunneling of an electron from the left dot to the right dot. As one
can see in Fig. 6(b), in nonzero magnetic field the two electrons
in the quantum dots occupy the same spin and valley states
(triplet state K ′ ↑ K ′ ↑), hence the tunneling from one dot to
the other is suppressed. In fact, for straight and clean CNTs
we do not observe any transitions (1e,1e)K ′ ↑ K ′ ↑→ (0,2e)
driven by a microwave electric field. Resonant lines analogous
to those in Fig. 3 do not appear in the spectra if the spin-valley
blockade persists in the microwave radiation.

However, the blockade can be lifted by mixing the spin
or/and valley states which can be achieved—similarly to the
pp system—by bending the nanotube or introducing defects in
the lattice. In Fig. 7(a) we plot the (1e,1e) → (0,2e) transition
probability for a bent CNT as a function of � and a logarithm
of the amplitude of the microwave electric field F . We assume
the system is initially in the blocked triplet K ′ ↑ K ′ ↑ state.
The only resonances that appear in Fig. 7(a) are very narrow
transition lines to the singlet state (0,2e)K ′ ↑ K ′ ↓.

Figure 7(b) contains the result in presence of the valley-
mixing short-range potentials that allow for valley flips along
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FIG. 7. Maximal probability of the transition (1e,1e)K ′ ↑
K ′ ↑→ (0,2e) for a bent CNT as a function of � and a logarithm
of the amplitude of the microwave electric field F . In panel (a) the
nanotube is assumed bent, in panel (b) the bend and the two potential
peaks of 1 eV at −14.2 and 14.13 nm are considered. We apply the
electric-field frequency h̄ω = 1.5 meV within a pulse of duration
1 ns. The final state of the (0,2e) charge configuration is marked in
the figure.

the tunneling. Now, the lines split into doublets which corre-
spond to either the spin flip (1e,1e)K ′ ↑ K ′ ↑→ (0,2e)K ′ ↑
K ′ ↓ or the valley flip (1e,1e)K ′ ↑ K ′ ↑→ (0,2e)K ′ ↑ K ↑.
Additionally, the line (1e,1e)K ′ ↑ K ′ ↑→(0,2e)K ′ ↑ K ′ ↓
also splits into two, which results from the mixing of the
K ′ ↑ K ′ ↓ and K ↑ K ↓ states which is present for weak
B. Therefore, two separate spin transition lines are visible in
Fig. 7(b) very close on the � scale. Other transitions, involving
spin and valley transition or the change of both occupied
single-electron orbitals, are too weak to be noticed in this plot.

IV. CONCLUSIONS

We have simulated photon-assisted tunneling for a double
quantum dot system defined within a carbon nanotube by
using the tight-binding approach and the time-dependent
configuration-interaction method. We considered unipolar
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quantum dots confining either holes or electrons for systems in
which the photon-induced charge transition from the ground
state to the excited state is either allowed or blocked by the
Pauli exclusion principle. For the former case we reproduced
the pattern of the LZS interference recently observed [16]. In
the latter case in an external magnetic field the ground state of
the (1e,1e) charge configuration is a nondegenerate triplet-like
spin-valley polarized state [Fig. 6(b)] K ′ ↑ K ′ ↑ from which
the charge transition to (0e,2e) can only occur provided that
either the spin or the valley change at the tunneling. The system

can be tuned by voltages into a regime where only the ground
state is below the Fermi energy of the drain. Then, the photon
assisted tunneling can be used to trigger and resolve charge
hoppings involving either the spin or the valley transitions.
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